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In 1990, S. Hilger introduced the Calculus on time scales (or on measure chains),
[1]. This kind of calculus showed the possibility to manage concepts considering
a very wide range of time scales (defined as a closed non-void subset of the real
numbers) . Examples of time scales are the real numbers, the integers the sets
having cluster points or even such as a Cantor set. The measure theory adapted
to time scales, the delta and nabla measures were first defined by Guseinov in
2003, [2]. In a further study, the relationship between Lebesgue delta-integral
and Riemann delta-integral on time scales were introduced in detail by Guseinov
and Bohner [3]. In 2004, Cabada and Vivero [4] established the relationship be-
tween delta-measure and the classical Lebesgue measure, and further between
the Lebesgue delta-integral and the classical Lebesgue integral,considering gen-
eral time scales . The delta-measurability of sets was studied by Rzezuchovsky in
2005, [5], and finally the Lebesgue-Stieltjes measure has been constructed on time
scales and the connection between Lebesgue-Stieltjes measure and Lebesgue-Stiel-
tjes delta-measure and also the link between Lebesgue-Stieltjes delta-integral and
Lebesgue-Stieltjes integral was done by A.Deniz [6] in 2007.

In this frame we considered more advanced problems in the theory and we
propose in this work the consideration of the renewal theorem and the local cen-
tral limit theorem that works well when considering centered lattices. In this way
we established the main theorem solving on time scales, the known in literature
as the ”occupation-time problem” (see [7]) that determines in a stochastic pro-
cess the amount of time (in terms of the first trials) that the sums of independent
identically distributed tagged random variables spend in the total interval T con-
sidered.
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