Variational principle and half-linear oscillation criteria

Ondřej Došlý

Brno, Czech Republic

We consider the half-linear second order differential equation

$$(r(t)\Phi(x'))' + c(t)\Phi(x) = 0, \quad \Phi(x) := |x|^{p-2}x, \ p > 1, \tag{1}$$

with continuous functions r, c and r(t) > 0. Together with this equation, regarded as perturbation of (1), we investigate the equation

$$\left[(r(t) + \hat{r}(t))\Phi(x') \right]' + [c(t) + \hat{c}(t)]\Phi(x) = 0.$$
(2)

It is known (see [4]) that the linear oscillation theory extends almost verbatim to (1), in particular, equation (1) can be classifies as oscillatory (nonoscillatory) according to whether its solutions have (do not have) a sequence of zero points tending to ∞ . The variational technique is based on the following statement which relates nonoscillation of (1) to the positivity of its energy functional.

Proposition 1. Equation (1) is nonoscillatory if and only if there exists $T \in \mathbb{R}$ such that

$$\mathcal{F}(y;T,\infty) = \int_T^\infty \left[r(t) |y'|^p - c(t) |y|^p \right] dt > 0$$

for every $0 \neq y \in W_0^{1,p}(T,\infty)$.

Consequently, we see that a positive (negative) perturbation of the coefficient c "contributes" to oscillation (nonoscillation) of (1), while perturbations of the coefficient r have an opposite effect.

The investigation of the influence of perturbations of the function c is the classical topic of the half-linear oscillation theory and the following statement from 1984 ([5]) is one of the first deeper results along this line.

Theorem 1. If $\int_{0}^{\infty} d(t)t^{p-1} dt = \infty$, then the equation

$$\left(\Phi(x')\right)' + \left[\frac{\gamma_p}{t^p} + d(t)\right]\Phi(x) = 0, \quad \gamma_p := \left(\frac{p-1}{p}\right)^p,\tag{3}$$

is oscillatory.

In this statement, equation (3) is viewed as a perturbation of the Euler equation

$$(\Phi(x'))' + \gamma_p t^{-p} \Phi(x) = 0.$$
(4)

A natural question is why just the power t^{p-1} appears by the function d in the oscillation condition. The answer is hidden in the concept of the *principal solution* of nonoscillatory equation (1) which was introduced in 1988 by D. Mirzov and independently by Elbert and Kusano ten years later, see [4] for details. Recall that

a nonoscillatory solution h of (1) is said to be principal if its logarithmic derivative h'/h is less than logarithmic derivative x'/x of any linearly independent solution. Note that $h(t) = t^{\frac{p-1}{p}}$ is the principal solution of (4), so $h^p(t) = t^{p-1}$.

Theorem 1 is a special case of the following statement proved in [4].

Theorem 2. Suppose that (2) is nonoscillatory and h is its principal solution. If

$$\int^{\infty} \hat{c}(t)h^{p}(t) dt = \infty$$
(5)

then equation (2) with $\hat{r}(t) \equiv 0$ is oscillatory.

The last statement of this contribution, achieved jointly with S. Fišnarová and presented in [1], is motivated by [6] where equations (1), (2) are consider in the linear case p = 2 and, in contrast to the previous statements, a perturbation is allowed also in the term involving derivative.

Theorem 3. Let h be the same as in Theorem 2. If the functions r, \hat{r} are differentiable, $(\hat{r}/r)' \leq 0$ and (5) holds, then (2) is oscillatory.

Finally note that all previous statements are proved using the variational method and that a natural complement of [1] is the paper [2] where (2) is investigated using the Riccati technique.

Acknowledgement

The research was supported by the grant 201/10/1032 of GAČR and the Research project MSM0021622409 of MŠMT.

References

- [1] O. DOŠLÝ, S. FIŠNAROVÁ, Variational technique and principal solution in halflinear oscillation criteria, submitted.
- [2] O. DOŠLÝ, S. FIŠNAROVÁ, Half-linear oscillation criteria: Perturbation in term involving derivative, Nonlinear Anal. 73 (2010), 3756-3766.
- [3] O. DOŠLÝ, A. LOMTATIDZE, Oscillation and nonoscillation criteria for half-linear second order differential equations, Hiroshima Math. J., **36** (2006), 203-219.
- [4] O. DOŠLÝ, P. ŘEHÁK, Half-Linear Differential Equations, North Holland Mathematics Studies 202, Elsevier, Amsterdam 2005
- [5] A. ELBERT, Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations. Ordinary and partial differential equations (Dundee, 1982), pp. 187212, Lecture Notes in Math., 964, Springer, Berlin-New York, 1982.
- [6] H. KRÜGER, G. TESCHL, Effective Prüfer angles and relative oscillation criteria.
 J. Differential Equations 245 (2008), 3823–3848.