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We will present results from the joint paper with Jiřı́ Benedikt and Petr Girg
[3], where we have used computer to give a part of rigorous proof of the fact that
the second eigenfunction of the p–Laplacian on the disc is not radially symmetric.

The role of computers in mathematics had become very important from the
very beginning, when the first computers were invented and spread among uni-
versities and research institutions all over the world. In particular, young people
are very skilful and capable to use computers in many different contexts.

In mathematics and other sciences as well, computer is an important tool
which helps to perform the research on higher level and allows more deep in-
sight in many problems. However, it should be emphasized that the research is
always performed by the scientist but not by the computer itself.

There are basically three different ways of using computers in mathematics:
1. To calculate numerically or symbolically (and to plot graphically if necessary) the

solutions of real world problems with concrete data and inputs. This is usually done
when the solution is known to exist and the error estimate can be given. Numerical
mathematics deals with problems of this kind.

2. To look for solutions the existence of which is not a priori known. To perform
numerical simulations and experiments with various data and inputs. Such a
”laboratory approach” can be very useful step towards the rigorous mathematical
proof of mathematical statement the right formulation of which is one looking for.
This way of using computers is sometimes called numerical experiments.

3. To use computer performed steps as a part of rigorous mathematical proof. There
are several examples of this approach, maybe the most famous one from the four
colour problem in the graph theory. Nevertheless, it seems that such computer
aided proofs are still not much recognized in the literature and even not acceptable
for some mathematicians at all.

We are convinced that for proving assertion similar to Theorem 1 in [3], com-
puter aided proof represents one of the possible tools beside the direct or indirect
proof or the mathematical induction.

Let D ⊂ R2 be the open unit disc centered at the origin. We consider the
following eigenvalue problem{

−∆pu = λ|u|p−2u in D,

u = 0 on ∂D,
(1)

where ∆pu = div
(
|∇u|p−2∇u

)
is the p-Laplacian, p > 1, and λ is the spectral

parameter. It is a well-known fact that the principal eigenfunction of (1) (corre-
sponding to the least eigenvalue λ1 of (1)) is a radial function which does not
change the sign in D (see, e.g., Kawohl, Fridman [6]) and it is unique up to a
multiple by a nonzero real number. The existence of sign changing radial eigen-
functions associated with higher eigenvalues was shown in Walter [9] (cf. also



Brown, Reichel [4]). Note that the radial eigenfunctions of (1) are determined by
nonzero solutions u = u(r) of the ordinary differential equation

−
(
r|u′|p−2u′

)′
= µr|u|p−2u in (0, 1) (2)

subject to the boundary conditions

u′(0) = 0, u(1) = 0. (3)

It is also well-known that there is the second eigenvalue of (1), λ2 > λ1. There
are no eigenvalues of (1) in (λ1, λ2), and an eigenfunction associated with λ2
changes the sign exactly once in D (see, e.g., Anane, Tsouli [2]). Note that the
structure of the set of all eigenvalues of (1) (p 6= 2) beyond λ2 seems to be an
interesting open problem.

The main result of [3] is the following statement.

Theorem 1. An eigenfunction associated with λ2 is not radial for all p ∈ (1,+∞).

For the case p = 2, this fact follows from Payne [8]. In [3] we present a different
argument to prove this fact and generalize it for arbitrary p > 1. It is important to
note that the result from Theorem 1 for p sufficiently close to 1 follows from Parini
[7, Thm. 6.1]. The proof of Parini’s Theorem 6.1 is based on Cheeger’s inequality
and implies that a second eigenfunction of (1) is not radial provided 1 < p < p0,
where p0 is sufficiently close to 1. However, the value of p0 is not quantified in
[7].

We quantify the constant p0 from [7] in our paper [3]. The proof of the state-
ment for p ≥ p0 is a combination of asymptotic analysis for p → +∞ and the
application of interval arithmetic.

To be more specific, in [3], we prove that p0 ≥ 1.1. This follows from an upper
estimate of the Rayleigh quotient for the principal eigenvalue of (1) restricted
to the upper half–disc. We also show analytically that the result is true for all
p ≥ 226. This is done by means of the variational characterization of the second
eigenvalue of (1) (see, e.g., [5]) combined with the monotone dependence of the
principal eigenvalue of the p–Laplacian on the domain and with the estimates for
the first two zeros of the solution to the initial value problem{

−
(
r|u′|p−2u′

)′
= r|u|p−2u in (0,+∞),

u(0) = 1, u′(0) = 0.
(4)

Note that for p = 2 the solution of (4) coincides with the Bessel function J0 =
J0(r), see Abramowitz, Stegun [1]. Our estimate reflects the fact that the shape
of the solution to (4) approaches uniformly the piecewise linear ”saw type” func-
tion as p → +∞ and, as a consequence, the second zero is almost three times as
big as the first one. The proof of the statement for 1.01 ≤ p ≤ 226 is based on
self-validated numerical computation. Besides the proof a short overview of the
interval arithmetic and an explanation of its role in the computer aided mathe-
matical proofs is given in [3]. We also describe an implementation of some key
functions in Mathematicar.
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