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In [DR], R. Deville and J. Rodrı́guez prove that every Pettis integrable function
with values in a Hilbert generated space is already McShane integrable. In [APR],
A. Avilés, G. Plebanek, and J. Rodrı́guez construct a weakly compactly generated
Banach space X and a scalarly null (hence Pettis integrable) function from [0, 1]
into X , that is not McShane integrable. In this note, we elaborate some ideas from
[APR] and get a more general result, see Theorems 1 and 2 below.

A Banach space X is called weakly compactly generated if it contains a weakly
compact set which is linearly dense in it. X is called Hilbert generated provided
that there are a Hilbert space Y and a linear bounded mapping from Y into X
whose range is dense in X . A compact space is called Eberlein (uniform Eberlein) if
it can be continuously injected into a Banach space (into a Hilbert space) provided
with the weak topology. We recall well known facts that a compact space K is
Eberlein (uniform Eberlein) if and only if the corresponding Banach space C(K) is
weakly compactly generated (Hilbert generated), see [F∼, Theorems 12.12, 12.17].

Let λ denote the Lebesgue measure and let f : [0, 1] −→ X be a function
with values in a Banach space X . We say that f is Pettis integrable if for every
x∗ ∈ X∗ the composition x∗◦f is Lebesgue inegrable and for every measurable
set E ⊂ [0, 1] there is xE ∈ X such that x∗(xE) =

∫
x∗(f(t)

)
dλ(t). We say that

f is McShane integrable if there exists x ∈ X such that for every ε > 0 there are
η ∈ (0, 1) and a function δ assigning to every t ∈ [0, 1] an open subset δ(t) ⊂ [0, 1],
containing t, such that: for every finite family E of pairwise disjoint measurable
subsets of [0, 1], with λ

( ⋃
E
)

> 1 − η, and for every choice of points tE ∈ [0, 1],
with δ(tE) ⊃ E, E ∈ E , we have

∥∥∑
E∈E λ(E)f(tE)− x

∥∥ < ε.

Theorem 1. Let K be any Eberlein compact space, of density at most c, which is not
uniform Eberlein. Then there exist an Eberlein compact over-space H ⊃ K, of density
at most c, and a scalarly null (hence Pettis integrable) f : [0, 1] −→ C(H) which is not
McShane integrable.

Sketch of proof: According to Amir and Lindenstrauss, we may assume that K ⊂
c0(Γ)+ where #Γ ≤ c. By [F, 419I], there is a partition [0, 1] =

⋃
γ∈Γ Zγ such that

λ∗(Zγ) = 1 for every γ ∈ Γ. For k ∈ K, for every S ⊂ supp k and for every γ ∈ S
pick tγ ∈ Zγ , and define then h(tγ) = k(γ) if γ ∈ S and h(t) = 0 otherwise. Let H
denote the space of all h’s constructed this way. Note that H is and Eberlein and
not uniformly Eberlein compact space. Define f : [0, 1] −→ C(H) by

f(t)(h) = h(t), h ∈ H, t ∈ [0, 1].

Then use Farmaki’s result [Fa] that H is a uniform Eberelin compact space if and
only if for every ε > 0 there is a partition [0, 1] =

⋃∞
n=1 ∆ε

n such that

∀n ∈ N ∀h ∈ H #
{
t ∈ ∆ε

n : h(t) > ε
}

< n.



Question. Is it possible to take H := K in Theorem 1?

Theorem 2. Let X be a weakly compactly generated Banach space, of density at most c,
which is not a subspace of a Hilbert generated space. Then there exist a weakly compactly
generated space Y , of density at most c, whose quotient contains X , and a scalarly null
(hence Pettis integrable) f : [0, 1] −→ Y which is not McShane integrable.

Question. Is it possible to take Y := X in Theorem 2?

Remark 1. There do exist Eberlein compact spaces built on a hereditary family of
finite subsets of [0, 1] that are not uniform Eberlein, see [BS], [LS, Example 5.2].
Remark 2. If K is a Gul’ko and not Talagrand compact space, or K is a Talagrand
and not Eberlein compact space, then such a K is also suitable for the argument
proving Theorem 1.
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