On the coincidence of Pettis and McShane integrals and Hilbert generated spaces

Marián Fabian,

Prague, fabian@math.cas.cz

In [DR], R. Deville and J. Rodríguez prove that every Pettis integrable function with values in a Hilbert generated space is already McShane integrable. In [APR], A. Avilés, G. Plebanek, and J. Rodríguez construct a weakly compactly generated Banach space X and a scalarly null (hence Pettis integrable) function from [0, 1] into X, that is not McShane integrable. In this note, we elaborate some ideas from [APR] and get a more general result, see Theorems 1 and 2 below.

A Banach space X is called *weakly compactly generated* if it contains a weakly compact set which is linearly dense in it. X is called *Hilbert generated* provided that there are a Hilbert space Y and a linear bounded mapping from Y into X whose range is dense in X. A compact space is called *Eberlein (uniform Eberlein)* if it can be continuously injected into a Banach space (into a Hilbert space) provided with the weak topology. We recall well known facts that a compact space K is *Eberlein (uniform Eberlein)* if and only if the corresponding Banach space C(K) is weakly compactly generated (Hilbert generated), see $[F\sim, Theorems 12.12, 12.17]$.

Let λ denote the Lebesgue measure and let $f : [0,1] \longrightarrow X$ be a function with values in a Banach space X. We say that f is *Pettis integrable* if for every $x^* \in X^*$ the composition $x^* \circ f$ is Lebesgue inegrable and for every measurable set $E \subset [0,1]$ there is $x_E \in X$ such that $x^*(x_E) = \int x^*(f(t)) d\lambda(t)$. We say that f is *McShane integrable* if there exists $x \in X$ such that for every $\varepsilon > 0$ there are $\eta \in (0,1)$ and a function δ assigning to every $t \in [0,1]$ an open subset $\delta(t) \subset [0,1]$, containing t, such that: for every finite family \mathcal{E} of pairwise disjoint measurable subsets of [0,1], with $\lambda(\bigcup \mathcal{E}) > 1 - \eta$, and for every choice of points $t_E \in [0,1]$, with $\delta(t_E) \supset E$, $E \in \mathcal{E}$, we have $\|\sum_{E \in \mathcal{E}} \lambda(E)f(t_E) - x\| < \varepsilon$.

Theorem 1. Let *K* be any Eberlein compact space, of density at most **c**, which is not uniform Eberlein. Then there exist an Eberlein compact over-space $H \supset K$, of density at most **c**, and a scalarly null (hence Pettis integrable) $f : [0,1] \longrightarrow C(H)$ which is not McShane integrable.

Sketch of proof: According to Amir and Lindenstrauss, we may assume that $K \subset c_0(\Gamma)^+$ where $\#\Gamma \leq \mathbf{c}$. By [F, 419I], there is a partition $[0, 1] = \bigcup_{\gamma \in \Gamma} Z_{\gamma}$ such that $\lambda^*(Z_{\gamma}) = 1$ for every $\gamma \in \Gamma$. For $k \in K$, for every $S \subset \text{supp } k$ and for every $\gamma \in S$ pick $t_{\gamma} \in Z_{\gamma}$, and define then $h(t_{\gamma}) = k(\gamma)$ if $\gamma \in S$ and h(t) = 0 otherwise. Let H denote the space of all h's constructed this way. Note that H is and Eberlein and not uniformly Eberlein compact space. Define $f : [0, 1] \longrightarrow C(H)$ by

$$f(t)(h) = h(t), \quad h \in H, \quad t \in [0, 1].$$

Then use Farmaki's result [Fa] that H is a uniform Eberelin compact space if and only if for every $\varepsilon > 0$ there is a partition $[0,1] = \bigcup_{n=1}^{\infty} \Delta_n^{\varepsilon}$ such that

$$\forall n \in \mathbb{N} \ \forall h \in H \quad \# \big\{ t \in \Delta_n^{\varepsilon} : \ h(t) > \varepsilon \big\} < n.$$

Question. Is it possible to take H := K in Theorem 1?

Theorem 2. Let X be a weakly compactly generated Banach space, of density at most \mathbf{c} , which is not a subspace of a Hilbert generated space. Then there exist a weakly compactly generated space Y, of density at most \mathbf{c} , whose quotient contains X, and a scalarly null (hence Pettis integrable) $f : [0, 1] \longrightarrow Y$ which is not McShane integrable.

Question. Is it possible to take Y := X in Theorem 2?

Remark 1. There do exist Eberlein compact spaces built on a hereditary family of finite subsets of [0, 1] that are not uniform Eberlein, see [BS], [LS, Example 5.2]. *Remark* 2. If *K* is a Gul'ko and not Talagrand compact space, or *K* is a Talagrand and not Eberlein compact space, then such a *K* is also suitable for the argument proving Theorem 1.

Acknowledgement

The research was supported by grant IAA 100 190 901 and by Institutional Research Plan of Academy of Sciences of Czech Republic AVOZ 101 905 03

References

- [AMN] S. Argyros, S. Mercourakis, S. Negrepontis *Functional-analytical properties* of *Corson-compact spaces*, Studia Math. **89** (1988), 197–229.
- [APR] A. Avilés, G. Plebanek, J. Rodríguez, *The McShane integral in weakly compactly generated spaces*, J. Functional Anal., to appear.
- [BS] Y. Benyamini, T. Starbird, Embedding weakly compact sets into Hilbert space, Israel J. Math. 23 (1976), 137–141.
- [DR] R. Deville, J. Rodríguez, *Integration in Hilbert generated Banach spaces* Israel J. Math., to appear.
- [FGMZ] M. Fabian, G. Godefroy, V.Montesinos, V. Zizler, Inner characterizations of weakly compactly generated Banach spaces and their relatives, J. Math. Anal. Appl. 297 (2004), 419–455.
- [F~] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, and V. Zizler, Functional Analysis and Infinite–dimensional Geometry, CMS books, No 8, Springer Verlag, New York 2001.
- [Fa] V. Farmaki, *The structure of Eberlein, uniformly Eberlein and Talagrand compact spaces in* $\Sigma(\mathbb{R}^{\Gamma})$, Fundamenta Math. **128** (1987), 15–28.
- [F] D.H. Fremlin, Measure theory, Vol 4. Torres Fremlin, Colchester, 2006, Topological measure spaces. Part I, II, Corrected 2nd printing of the 2003 original.
- [LS] A.G. Leiderman, G.A.Sokolov, *Adequate families of sets and Corson compacts*, Comment. Math. Univ. Carolinae **25** (1984), 233–245.