Bubbles, chaos, and the Hydra effect in delayed population models

Eduardo Liz
Vigo, Spain

We study the effects of increasing harvesting in a population model whose dynamics is governed by the delay-differential equation with negative feedback

\[x'(t) = -\delta x(t) + f(x(t - \tau)), \quad (1) \]

where \(x(t) \) is the number of adult members of the population at time \(t \), \(\delta \) is the natural mortality rate, and \(f \) is the so-called stock-recruitment relationship. It is assumed that there is a constant maturation period \(\tau \), and a constant probability of survival to adulthood.

The most famous population model of this type was suggested by Gurney, Blythe and Nisbet [1], and it is known as the Nicholson’s blowflies equation:

\[x'(t) = -\delta x(t) + px(t - \tau)e^{-\beta x(t - \tau)}, \quad \delta, p, \beta, \tau > 0. \quad (2) \]

Assuming a strategy of constant effort harvesting prior to reproduction, we consider the following modification of equation (1):

\[x'(t) = -(\delta + \gamma)x(t) + f((1 - \gamma)x(t - \tau)), \quad (3) \]

where \(\gamma \in (0, 1) \) is the rate of harvesting effort.

We analyze the changes in the dynamics of the solutions of (3) when \(\gamma \) is increased from 0 to 1, taking as a case of study the Nicholson’s blowflies equation (2). The most interesting phenomena that we report are:

- The existence of bubbles in the bifurcation diagram, which are characterized by two consecutive Hopf-bifurcation points,
- a route of period-doubling bifurcations to chaos, and
- the Hydra effect, that means that a population can increase its abundance in response to an increase in its per-capita mortality rate (see [2]).

Acknowledgements

This research was supported in part by the Spanish Ministry of Science and Innovation and FEDER, grant MTM2007-60679.

The author thanks sincerely the kind invitation and the financial support of the Organizing Committee of the Conference CDEIT 2010.
References
