A decomposition of Henstock-Kurzweil-Pettis integrable multifunctions

Kazimierz Musiał*
Wrocław University, Institute of Mathematics,
Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland.
musial@math.uni.wroc.pl

September 29, 2010

Throughout X is a Banach space and X^* is the dual space of X. [0,1] is the unit interval of the real line equipped with the usual topology and the Lebesgue measure. We denote by $\mathcal L$ the family of all Lebesgue measurable subsets of [0,1] and by $\mathcal I$ the collection of all closed subintervals of the interval [0,1]. For $E\in\mathcal I$ the symbol |E| denotes the Lebesgue measure of E.

Definition 1. A function $f \colon [0,1] \to X$ is said to be *Henstock-Kurzweil-Pettis integrable* (or HKP-integrable) on [0,1] if for every $x^* \in X^*$ the function x^*f is Henstock-Kurzweil integrable and for each $I \in \mathcal{I}$ there exists a vector $w_I \in X$ such that $\langle x^*, w_I \rangle = (HK) \int_I x^* f dt$, for every $x^* \in X^*$. w_I is called the *Henstock-Kurzweil-Pettis integral* of f over I and we set $w_I := (HKP) \int_I f dt$.

Definition 2. A function $f\colon [0,1]\to X$ is said to be *Henstock-Kurzweil-Pettis integrable* (or HKP-integrable) on [0,1] if for every $x^*\in X^*$ the function x^*f is Henstock-Kurzweil integrable and for each $I\in \mathcal{I}$ there exists a vector $w_I\in X$ such that $\langle x^*,w_I\rangle=(HK)\int_I x^*fdt$, for every $x^*\in X^*$. w_I is called the *Henstock-Kurzweil-Pettis integral* of f over I and we set $w_I:=(HKP)\int_I fdt$.

Throughout cwk(X) will denote the family of all nonempty convex weakly compact subsets of X. For every $C \in cwk(X)$ the support function of C is defined for each $x^* \in X^*$ by $s(x^*, C) = \sup\{\langle x^*, x \rangle : x \in C\}$. A map $\Gamma : [0,1] \to cwk(X)$ is called a multifunction. A multifunction Γ is said to be scalarly measurable if for every $x^* \in X^*$, the map $s(x^*, \Gamma(\cdot))$ is measurable. Γ is said to be scalarly integrable (resp. scalarly HK-integrable) if, for every $x^* \in X^*$, the function $s(x^*, \Gamma(\cdot))$ is integrable (resp. HK-integrable). A function $f:[0,1] \to X$ is called a selector of Γ if $f(t) \in \Gamma(t)$, for every $t \in [0,1]$.

Definition 3. A multifunction $\Gamma:[0,1]\to cwk(X)$ is said to be *Pettis integrable* in cwk(X), if Γ is scalarly integrable and for each $A\in\mathcal{L}$ there exists a set $W_A\in\mathcal{L}$

^{*}Presented results have been obtained in cooperation with Luisa Di Piazza [2].

cwk(X), respectively) such that

$$s(x^*, W_A) = \int_A s(x^*, \Gamma(t)) dt$$
 for all $x^* \in X^*$.

We call W_A the Pettis integral of Γ over A and we set $W_A := (P) \int_A \Gamma(t) dt$.

Replacing \mathcal{L} by \mathcal{I} and the Lebesgue integrability by the HK-integrability, we obtain the definitionnitions of HKP-integrability of Γ . We set then $W_I = : (HKP) \int_I \Gamma(t) dt$.

Given a multifunction Γ , the symbol $S_{HKP}(\Gamma)$ denotes the family of all selectors of Γ that are HKP-integrable.

Definition 4. A scalarly measurable multifunction $\Gamma:[0,1]\to cwk(X)$ is said to be *Aumann–Henstock–Kurzweil–Pettis integrable* if $\mathcal{S}_{HKP}(\Gamma)\neq\emptyset$. Then we definitionne for each $J\in\mathcal{I}$

$$(AHKP)\int_{J} \Gamma(t) dt := \overline{\{(HKP)\int_{J} f(t)dt : f \in \mathcal{S}_{HKP}(\Gamma)\}}.$$

The following theorem is the main result of my presentation:

Theorem 1. Let $\Gamma: [0,1] \to cwk(X)$ be a scalarly measurable multifunction. Then the following conditions are equivalent:

- 1. Γ is HKP-integrable in cwk(X);
- 2. $S_{HKP}(\Gamma) \neq \emptyset$ and for every $f \in S_{HKP}(\Gamma)$ the multifunction $G : [0,1] \rightarrow cwk(X)$ definitionned by $\Gamma(t) = G(t) + f(t)$, is Pettis integrable in cwk(X);
- 3. there exists $f \in \mathcal{S}_{HKP}(\Gamma)$ such that the multifunction $G : [0,1] \to cwk(X)$ definitionned by $\Gamma(t) = G(t) + f(t)$ is Pettis integrable in cwk(X);
- 4. for each interval $I \in \mathcal{I}$, the set $(AKHP) \int_I \Gamma(t) dt$ belongs to cwk(X) and

$$s\left(x^*, (AHKP)\int_I \varGamma(t)\,dt\right) = (HK)\int_I s(x^*, \varGamma(t))\,dt$$

for all $x^* \in X^*$;

5. each scalarly measurable selector of Γ is HKP-integrable.

References

- [1] L. Di Piazza and K. Musiał, *Characterizations of Kurzweil-Henstock-Pettis integrable functions*, Studia Math. 176(2006), 159-176.
- [2] L. Di Piazza and K. Musiał, *A Decomposition of Henstock-Kurzweil-Pettis Integrable Multifunctions*, Operator Theory: Advances and Appl. 201(2009), 171-182. Birkhäuser Verlag Basel.