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In [10] we introduced a regularly varying function f : T→ (0,∞) of index ϑ (we
write f ∈ RVT(ϑ)) as a measurable function satisfying f(t) ∼ Cα(t) as t→∞ and
limt→∞ tα∆(t)/α(t) = ϑ, with C ∈ (0,∞) and a positive sufficiently smooth α.
In [13] we established the following equivalent (under certain assumption on the
graininess) Karamata characterization of f ∈ RVT(ϑ): limt→∞ f(τ(λt))/f(t) = λϑ

uniformly on each compact λ-set in (0,∞), where τ : R → T, τ(t) = max{s ∈
T : s ≤ t}. Various equivalent representations and properties of RVT functions
were obtained in [10, 13]. This theory was applied to study asymptotic properties
of solutions to second order dynamic equations, see [10, 13]. For the classical
continuous resp. discrete theory of regular variation see e.g. [2], resp. [4], and
for its applications in the theory of differential resp. difference equations see e.g.
[7, 8], resp.[9].

Soon it has turned out that it is advisable and somehow necessary to distin-
guish three following cases when studying regular variation on time scales: (i)
µ(t) = o(t). Then we obtain a continuous like theory, which is mentioned above;
details can be found in [10, 13]. The condition µ(t) = o(t) cannot be omitted. (ii)
µ(t) = Ct with C > 0. Here we are in the q-calculus case and we obtain surpris-
ingly simplified and powerful theory. It is briefly described below and details can
be found in [11, 12]. (iii) Other cases (in particular, either a “very big” graininess
or a combination of “big” and “small’ graininess). Then we get no reasonable
theory which would satisfy our natural requirements. There are more reasons
for such a categorization: For example, we want to prove important (equivalent)
characterizations of RVT functions and we want f(t) = tϑ to be an element of
RVT(ϑ), which is impossible without additional conditions on µ; in contrast to
the case µ(t) ∼ Ct, with C > 0, where µ(t) 6≡ Ct, or to all other cases, the theory
of regular variation in q-calculus is simple, elegant, and shows very interesting
untypical features – this provides strong tools in applications.

We will focus primarily on the q-calculus case, where we work on the q-
uniform lattice qN0 := {qk : k ∈ N0}. For a basic material on this calculus see
[1, 5, 6]. See also [3] for the calculus on time scales which somehow contains q-
calculus. The theory of q-calculus is very extensive with many aspects; some peo-
ple speak about different tongues of q-calculus. In our consideration we follow
essentially its “time scale dialect”. Concerning the definition of q-regularly vary-
ing functions, we may follow general theory and define it in terms of the Jackson
derivative or to provide a Karamata type definition. But, as can be shown, we
can work with much simpler (but still equivalent) characterization, which is not
known in the classical continuous or the discrete case. Such a simplification is
possible because of special structure of qN0 , which turns out to be very “natural
environment” for the Karamata like theory. Indeed, q-regular variation can be



characterized in terms of relations between f(t) and f(qt), which perfectly fits
the discrete q-calculus, in contrast to other settings. A function f : qN0 → (0,∞)
is said to be q-regularly varying of index ϑ if limt→∞ f(qt)/f(t) = qϑ. We are in-
terested also in situations where the limit value attains their extremal values ∞
and 0; this leads to the concept of q-rapid variation of index ±∞. We also introduce
the concept of q-regular boundedness, which can be seen as a generalization of q-
regular variation in the sense that the limit may not exist, but the expression is
somehow bounded. Every such a function is automatically normalized (which
does not hold in the continuous case). Various characterizations and proper-
ties of these functions were established in [12, 11]. We consider the equation
D2

qy(t) + p(t)y(qt) = 0 (with no sign condition on p). Linear q-difference equa-
tion were studied e.g. in [1]; see also the references therein. In [11] we established
sufficient and necessary conditions for all positive solutions of this equation to be-
have like the above introduced functions. In contrast to the differential equations
case, the conditions are not in integral form and show also some other differences.
The methods in the proofs are different too. Since q-calculus is natural setting in
RV theory, these methods seem to be very promising also for the examination
of more general or other q-difference equations. Such results may then serve in
other parts related to q-calculus or may serve to predict how their continuous
counterpart (which can be difficult to be examined) could look like.
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