We are interested in the existence of positive solutions of some non-local boundary value problems (BVPs) for equations of the form

\[u^{(4)}(t) - \omega^4 u(t) = f(t, u(t)), \text{ a.e. } t \in (0, 1), \]

for some constant \(\omega \in (0, \pi) \), subject to the following non-local boundary conditions (BCs)

\[u(0) = \beta_1[u], \quad u''(0) + \beta_2[u] = 0, \quad u(1) = \beta_3[u], \quad u''(1) + \beta_4[u] = 0, \]

where each \(\beta_i[u] \) is a linear functional on \(C[0, 1] \), that is, is given by a Riemann-Stieltjes integral

\[\beta_i[u] = \int_0^1 u(s) \, dB_i(s). \]

Since some of the \(\beta_i \) can be zero, while others are not, this covers many BCs in one. A distinguishing feature of our work is that each \(B_i \) is a function of bounded variation, that is, \(dB_i \) is a signed measure. Some kind of positivity on the functionals \(\beta_i \) is needed in order to have positive solutions, but we do not suppose that \(\beta_i[u] \geq 0 \) for all \(u \geq 0 \).

For (1) we can consider cases where \(f(t, u) \) is not positive for all positive \(u \) but is such that \(f(t, u) + k^4 u \geq 0 \) for \(u \geq 0 \) for some constant \(k \in (0, \omega) \). One useful motivation is that the original problem (1) with the BCs (2) may be at resonance, that is, \(\lambda = 0 \) is an eigenvalue of the linear problem \(u^{(4)} - \omega^4 u = \lambda u \) with the given BCs. In such a case we can consider the equivalent problem, which is of the same type as the original one,

\[u^{(4)}(t) - \tilde{\omega}^4 u(t) = \tilde{f}(t, u(t)), \]

where \(\tilde{\omega}^4 := \omega^4 - k^4 \), \(\tilde{f}(t, u) := f(t, u) + k^4 u \), with the same BCs. We will show that, under natural conditions, this perturbed problem is non-resonant. In order to study the existence of positive solutions for (1)-(2) we use the method developed by Webb and Infante in [1] and [2].

References
