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Overview of CaLiForNIA Work Packages: WP1

1. Lie, representation theory and Cartan Geometry. (WP Leader Prof. Slovak)

Task 1.1 Foundations of Cartan connections and representation theory.
DC1 Sprenger Georg (Neusser, Gover)
Objectives: Investigate various aspects of rigid geometric structures using Cartan
connections and methods from representation theory.

Task 1.2 Geometric Control Theory.
DC2: Greenwood Steven (Slovak, Waldron)
Objectives: Find new geometric techniques via Cartan geometry and tractor
calculus for the geometric control theory problems, including singularities

Task 1.3 Contact and SubRiemannian Geometry.
DC3: Garćıa Rivas Alejandro (Latini, Waldron)
Objectives: Generalize, in terms of the curved orbit decomposition program,
tractor calculus and the notion of defining densities for the study of conformal
manifolds.

Task 1.4 Palatini-Cartan Formalism.
DC11: Zaitseva Taisiia (Cattaneo, Latini)
Objectives: Bring BV, BFV formalisms centerstage to develop a new approach to
Palatini gravity

Rita Fioresi, University of Bologna CaLiForNIA, Training School



Overview of CaLiForNIA Work Packages: WP2

WP2: Non commutative geometry of symmetric spaces.
WP Leader Prof. R. O Buachalla.

Task 2.1 Quantum Flags and C*-Algebras.
DC4: Akhila Nelliyamkunnath Satheesen (Strung, Somberg)
Objectives: extend known constructions of graph C*-algebra models for the C*
algebras of quantum homogeneous spaces of Drinfeld–Jimbo quantum groups.

Task 2.2. Baum-Connes conjecture for quantum symmetric spaces.
DC5: Julius Benner (O Buachalla, Fioresi)
Objectives: noncommutative geometry of the quantum flag manifolds from a
geometric and algebraic point of view Noncommutative Kähler geometry of the
Heckenberger–Kolb calculi of the irreducible quantum flag manifolds.

Task 2.3. Quantum Harmonic Superspace and Unitary Representations.
DC6: Giovanni Camilletti (Lledo, Fioresi)
Objectives: Generalize the Mackey machine to supersymmetry (SUSY)
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Overview of CaLiForNIA Work Packages: WP3 and WP4

WP3: Quantum Computing and Quantum Information Geometry

DC7: Quantum Information Geometry.
Luca Ion (Perez-Canellas, Ercolessi)
Objectives: Investigate the role of metrologic and associated metric concepts on
the design and performance of noisy quantum algorithms. Research on systems of
many interacting spins in quantum computing.

DC8: Quantum Algorithms
Marko Brnovic (Ercolessi, Perez-Canellas)
Objectives: Exploit the geometry of quantum states to develop more efficient
schemes for hybrid quantum-classical variational algorithms.

WP4: Geometric Deep Learning.

DC9: Foundations of Sheaf Neural Networks.
Jan-Willem Van Looy (Fioresi, Slovak)
Objectives: Exploit sheaf theory and information geometry to understand
parameter and data spaces in group equivariant graph neural network.

DC10: Geometric Deep Learning and Symmetric Spaces.
Olga Zaghen (Bekkers, Fioresi)
Objectives:
Understand group equivariant graph neural network.
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Training Activities
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1. Crash Course in Deep Learning
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AI, Machine Learning and Deep Learning
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Imagenet Challenge ILSVRC:
ImageNet Large Scale Visual Recognition Challenge

2010 20000 immages, 20 categories: 25% error.

2011 1 milion images, 1000 categories: 16% error.

2015 1 milion di images, 1000 categories: 4% error.

The Imagenet Challenge was declared won in 2017 by a Deep Learning algorithm.
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Images in Imagenet category “chair”
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Supervised/Unsupervised Learning
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Introduction to Deep Learning (Convolutional Neural Networks CNN)
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Ingredients for Deep Learning

Score function: it is a function of the weights w (es. linear classifier) It gives a
score for a data x and weights w : e.g. s(x ,w) =

∑
wijxj .

Loss function: measures error
(Li datum i loss, yi correct label)

Li = −log
efyi∑
j e

fj
= −fyi + log

∑
j

efj , L =
∑
i

Li

Optimizer: for weights update “minimizes” the Loss

wij (t + 1) = wij (t)− α∇ Lstoc, ∇Lstoc =
32∑
i=1

∇Lrand(i)
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Training

Divide the dataset (ex. CIFAR10):
80% Data for training
10% Data for validation
10% Data for test (ONCE)

1 Learning: determine weights parameters

2 Validation: determine net structure.
Example: choose loss function, number of layers, learning rate
Goal: find best hyperparameters.

3 Test: once at the end.

Accuracy: percentage of accurate predictions on tests set.
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Loss Landscape
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2. Crash Course in Geometric Deep Learning
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Geometric Deep Learning: Graph Convolutional Networks
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Geometric Deep Learning: Spectral Methods
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Steps in Graph Convolutional Networks learning process

A GCN consists of the following steps:

Encoding: realize a (low) dimensional embedding of the graph.
Typically via a set of learned convolutional layers.

Decoding: from the embedding we compute a SCORE
Typically via a learned linear layer.

Loss function (same idea as DL)

Optimizer (same idea as DL)

Once score, loss and optimizer are given, the training, validation and step take place in
the same way as in Deep Learning algorithm.

Encoder-decoder framework:
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3. Convolution on Graphs
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Convolution on graphs: Message passing

The mechanism of message passing is an approximation of the mathematical
operation of convolutions on graph (Spectral methods):
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The operation of message passing in practice

h
(k)
v : the hidden representation of node v at layer k

Wk : weight matrix for neighborhood aggregation (Bk : bias).
Important: Message passing and neighbor aggregation in graph convolution networks
is permutation equivariant.

Rita Fioresi, University of Bologna CaLiForNIA, Training School



Laplacian on graphs

For ordinary geometry the Laplacian is the operator:

∆ = ∂2
1 + · · ·+ ∂2

n = (∂1 + · · ·+ ∂n) · (∂1 + · · ·+ ∂n) = ∇t · ∇

Definition. Let G(V ,E) be a directed graph.
L = D − A is the Laplacian.
D degree matrix
A adjacency matrix

Proposition. L = ∇t · ∇ (obvious)
∇f : E −→ R, f (i , j) = f (j)− f (i) discrete gradient.

Example.

∇ =

(
−1 −1 0
−1 0 1

)
, ∇t∇ =

−1 1
1 0
0 1

(
−1 1 0
−1 0 1

)
=

 2 −1 −1
−1 1 0
−1 0 1



Rita Fioresi, University of Bologna CaLiForNIA, Training School



Heat equation and message passing

Diffusion Laplacian

LD := D−1L = I − D−1A

Heat equation

Heat equation in its graph version (continuous time):

(∂th)(v) = −(∆h)(v) = −h(v) +
∑

u,(u,v) edge

h(u)

d(u)

Heat equation in its time discrete version:

ht+1(v) = ht(v)− ht(v) +
∑

u,(u,v) edge

ht(u)

d(u)
=

∑
u,(u,v) edge

ht(u)

d(u)

Hence:
Message passing = heat equation for diffusion Laplacian
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Quantum Differential Geometry

Definition. A First Order Differential Calculus (FODC) on an associative unital
algebra A is a pair (Γ, d), where

i.) Γ is an A-bimodule.

ii.) d : A→ Γ is a k-linear map satisfying the Leibniz rule

d(ab) = d(a)b + ad(b), a, b ∈ A

iii.) A⊗ A→ Γ, ai ⊗ bi 7→ aid(bi ) is a (left A-linear and) surjective map.

Example.
A = k[V ] = span{δx | x ∈ V },

where ∂x (y) = 1 if x = y and zero otherwise. We define a FODC (Γ, d) on A:

Γ := kE = span{ωx→y | (x , y) ∈ E}

where the bimodule structure is given by:

f ωx→y = f (x)ωx→y , ωx→y f = ωx→y f (y), df =
∑

x→y∈E

(f (y)−f (x))ωx→y , f ∈ k[V ]

dδx =
∑

y :y→x

ωy→x −
∑

y :x→y

ωx→y , δxdδy =


−

∑
z:x→z ωx→z x = y

ωx→y x → y

0 otherwise
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Quantum Differential Geometry on Graphs

There is a one to one correspondence:

FODC on V ←→ G = (V ,E) directed graphs

In this language we can define all the notions of Riemannian Geometry:

Vector bundles and Differential operators

Connections, Curvature and Cohomology

Most important we can define sheaves once we give a topology on G .

Base of open sets on G (Alexandroff topology):

Ue = {e}, i.e. the edge e, without its vertices, for each e ∈ E .

Uv = {e ∈ E | v ≤ e}, that is the open star of v , for each vertex v ∈ V ,

e
•
v
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Sheaves on Graphs

Definition. A sheaf on a directed graph G = (EG ,VG , hG , tG ) is equivalent to a
presheaf F on the base for the topology. This is the datum of:

a vector space F (v) for each vertex v ∈ VG ,

a vector space F (e) for each edge (with its endpoints) e ∈ EG ,

linear maps (restriction maps) FhG (e)≤e : F (e)→ F (hG (e)),
FtG (e)≤e : F (e)→ F (tG (e)) for each edge e ∈ EG , where, we write v ≤ e to
mean that v is a vertex of the edge e.

Notice: we have a natural notion of preorder on G , this leads to sheaves on preordered
sets called cellular sheaves.

Definition. Let G be a directed graph. Let F be a sheaf on G of rank n. We define a
sheaf connection as ∂ : C0(G ,F ) := ⊕v∈V F (Uv ) −→ C1(G ,F ) := ⊕e∈EF (Ue) as

∂(x)e = Fv≤exv − Fu≤exu , xv ∈ F (Uv ), xu ∈ F (Uu), ∂(x)e ∈ F (Ue)
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Laplacians on bundles and sheaves on graphs

Definition. Define the sheaf Laplacian LF : C0(G ,F )→ C0(G ,F ) as

LF := ∂∗ ◦ ∂

or, more explicitly (calculation):

LF (x)v =
∑

u,v≤e

F∗
v≤e(Fv≤exv − Fu≤exu)

where:

∂(x)e = Fv≤exv − Fu≤exu , xv ∈ F (Uv ), xu ∈ F (Uu), ∂(x)e ∈ F (Ue)

Note: if all the vector spaces involved in the definition of F are one dimensional, one
recovers the usual graph Laplacian.
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Conclusion and further work

Go towards the notions of discrete manifolds, vector bundles, schemes, etc., you
may want to apply to it appropriate networks invariant with respect to some
geometric structure and you can use our framework to identify the ”correct”
constraints your network should satisfy (discrete symmetric spaces).

Sheaf neural networks ”learns the sheaf”. A geometric bias on the data can
constrain the learning (cocycle conditions/form of transition morphisms to learn).

Different Grothendieck topologies (aka different notion of covering) give rise to
different type of sheaves. We have also a noncommutative side of the story.
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CaLISTA COST Action

Join CaLISTA CA 21109!

https://site.unibo.it/calista/en

Action Chair: Rita Fioresi

Working group 1: Cap U. Vienna, Slovak U. Brno
Cartan Geometry and Representation Theory

Working group 2: Abenda U. Bologna, Tanzini Sissa
Integrable Systems and Supersymmetry

Working group 3: O Buachalla Charles U., Aschieri Uniupo
Noncommutative Geometry and Quantum Homogeneous Spaces

Working group 4: Angulo Mines Paris, Parton U. Pescara
Vision and Machine Learning

Working group 5: Lledo U. Valencia, Tekel U. Bratislava
Dissemination and Public Engagement

https://e-services.cost.eu/action/CA21109/working-groups/applications
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