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Introduction and Motivations

Plan of the talk:

Compactification

Conformal densities and tractor calculus

Holography: a toy model

The YM model

Some (rather technical :( ) result

Contact geometry
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Why (conformally) compactify?

M+ a complete non compact pseudo
Riem. manifold. Add a boundary at
infinity ∂M and exploit it.

This structure pops up in many contexts (some key words)

Q curvature and its generalizations

Fefferman-Graham program

Maldacena Holography and AdS/CFT correspondence in string theory

Scattering and PDE boundary problem

Renormalised volume Wilmore energies and Weyl anomalies

California link

Alberto Cattaneo research program on BV-BFV quantization on mfd with
boundary DC11
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Why YM?

YM is the theory of connections on principal bundles, namely 1 forms
taking value in some (semisimple) Lie algebra or the endomorphism of a
vector bundle.

That’s the mathematical model for gauge propation (e.g. photons)
and interactions in particle physics

It is conformal invariant BUT only in dimension 4

Interesting topological aspects relating 2+1 YM theory and Jones
polynomial

Instantons and Donaldson theory to study the topology of four
manifolds
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The geometrical setting

Definition

Conformal compactification of a Riemannian
manifold (M+, g+) is a manifold M with a
boundary ∂M s.t.

∃ g on M with

g+ = g/r2 where r is a defining
function for the boundary

Comment: Given g+ (a fixed data) and founded g and r , if we rescale the
defining function r̂ = Ωr , we obtain another defining function and thus
another “good” metric ĝ on M conformally related to g .

⇒ We have induced on the boundary a conformal structure

(∂M, [ḡ := g |∂M ])

Poincaré-Einstein, or just PE, when g+ is Einstein
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The geometrical setting

Escher’s cricle limit

M = H2 + S1

M+ = H2 embedded conformally in
E2

g+ = 4
(1−|x |2)

(dx2
1 + dx2

2 )

S1 = ∂M

[(dx2
1 + dx2

2 )|S1 ] conformal boundary
structure
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The geometrical setting

To better understand the geometry of the (“compactified”) boundary it
might be useful to be a bit more open mind. More generally one may want
to study hypersurfaces Σ embedded in a conformal manifold (M, [g ])

In this setting it is natural to ask how to make invariants and invariant
operators kind of natural for the embedding, or study conformal boundary
problem
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Conformal Geometry

A conformal manifold is a smooth manifold M equipped with an
equivalence class of pseudo-Riemannian metric [g ] where

g ∼ ĝ ↔ ĝ = Ω2g

Because there is no distinguished metric a key object in this game is the
(conformal) density bundle

E [w ] := (ΛdTM)w

that can be understood as an equivalence class of (metrics, functions)
pairs, i.e. (g , f ) ∼ (ĝ , f̂ ) := (Ω2g ,Ωw f ).

Tensor bundles S can be twisted by EM[w ] inducing S[w ] := S ⊗ E [w ]
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Conformal Geometry

A simple BUT relevant example: The Laplacian ∆g in not covariant under
conformal rescaling BUT when acting on densities of weight 1− d

2(
∆ĝ + (1− d

2
)J ĝ
)

︸ ︷︷ ︸
Y ĝ

f̂ = Ω−1− d
2

(
∆g + (1− d

2
)Jg
)

︸ ︷︷ ︸
Y g

f

where Jg is the trace of the Schouten tensor Pg
ab that is a trace adjusted

Ricci.

The interpretation is that we have a conformal covariant Laplace operator

Y : E [1− d

2
]→ E [−1− d

2
]

In conformal geometry we don’t have a metric but a more general object
called the conformal metric

g ∈ Sym2(T ∗M)[2]⇒ gσ := σ−2g with σ ∈ E+[1] the scale
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Tractor calculus

Conformal manifolds is one of the most important example of parabolic
geometry

Definition

A parabolic geometry modelled on G → G/P with P some parabolic
subgroup of G , is the data of

a P principal bundle G → M

a Cartan connection A ∈ Ω1(G, g) with LieG = g = g−1 ⊕ g0 ⊕ g1︸ ︷︷ ︸
p

.

California link

Buachalla and Strung (DC4 and DC5) for quantum flags. Fioresi and
Lledo (DC6 and DC9) for quantum super flags.
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Tractor calculus

Given a finite dimensional representation V of G one can construct
G ×P V = V that is named tractor bundle naturally equipped with a linear
“tractor” connection.

Going back to the conformal case one has G = SO(p + 1, q + 1) and the
following graded Lie algebra

so(p + 1, q + 1) = (Rp+q)∗ ⊕ co(p, q)⊕ Rp+q︸ ︷︷ ︸
p

and taking V = Rp+q+2 one gets the standard tractor bundle:

T := G ×P Rp+q+2 g⇒ T g
= E [1]⊕ T ∗M[1]⊕ E [−1]

Explicitly in a scale we write a section of this bundle as TA
g
= (σ, ta, ρ).

California link

Neusser and Slovak DC1 and DC2 for tractor calculus. Also Waldron and
Gover that are involved in this network.
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Tractor calculus

We have the (conformal) tractor connection ∇Ta acting on T

∇Ta (σ, ta, ρ)︸ ︷︷ ︸
TB

g
= (∇aσ,∇atb + Pabσ + gabρ,∇aρ− Pabt

b)

∇a the L.C. connection of the chosen metric g in the equivalence class
Let’s play with that structure:

DA : E [w ] → T [w − 1]

f → ((d + 2w − 2)wf , (d + 2w − 2)∇af ,−(∆ + wJ)f )

Note: if f ∈ E [1− d
2 ] then

DAf = (0, 0,−Yf )

Comment: we can make DA to any tractor bundle simply by ∇a → ∇Ta
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The defining density

Definition

A conformally compactified manifold is the data (M, g, σ) with

M a (conformal) d-manifold with boundary ∂M

A defining density i.e. a non-negative σ ∈ E [1] (i.e. σ = [(g , r)]) s.t.
Σ := ∂M = σ−1(0) and for any LC connection in the conformal class,

∇σ|Σ 6= 0 ,

The scale tractor: if we take instead f = σ ∈ E [1]

IA =
1

d
DAσ

g
= (σ, na := ∇aσ,−

1

d
(∆ + J)σ)

observations M+ := M\Σ is equipped with the distinguished metric

g+ := g/σ2 .
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IdotD

On the tractor bundle we have a natural parallel metric

hAB =

0 0 1
0 gab 0
1 0 0


we use to construct

IADA =

{ −∆g+ + .. in the interiorM+

δ(1) := ∇n + wH along Σ

δ(1) : EM[w ]→ EΣ[w − 1] is the famous Robin operator, very important
in the context of DtoN maps.

Comment: For PE structure (I 2 = 1) in the interior we get
−∆g+ + s(d − 1− s) with s = (d + w − 1) being the spectral parameter
and this is the scattering problem (Mazzeo-Melrose and Graham-Zworski)
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The beginning of holography

THE PROBLEM:

Given f |Σ and an arbitrary extension f0 ∈ E [w0] on M find

f (`) := f0 + σf1 + ..

solving formally I · Df (`) = O(σ`) for ` as high as possible

Assuming I · Df (`) = O(σ`) for some `, and thanks to

I · Df (`+1) = I · Df (`) − σ`(`+ 1)(d + 2w0 − `− 2)f`+1 + O(σ`+1)

we can formally solve this problem for ` =∞ WHEN d + 2w0 − `− 2 6= 0

BUT...
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The beginning of holography

WHEN d + 2w0 − `− 2 = 0 the solution is obstructed by I · Df (`)

I · Df (`) = I · D (f (`) + σ`+1f`+1)︸ ︷︷ ︸
f `+1

modulo O(σ`+1)

Definition

We say that an operator O is tangential if O(h + σh̃) = Oh + σÕh̃ Thus
along Σ is insensitive to how the function is extended off the boundary ⇒
there is a formula on Σ involving only derivatives tang. to Σ

OBSERVE at the special ` = d + 2w0 − 2 thenI · Df (`) is tangential

f0|Σ → (I · D)d+2w0−1f0|Σ
is conformal invariant, `+ 1 is even ⇒ holographic GJMS operators

P`+1 : EΣ[ `+1−d
2 ] → EΣ[−`−1−d

2 ]

f → ∆̄
`+1

2 f + ...
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The beginning of holography

COMMENT 1 The solution could be prolonged to all order by adding a log
term

COMMENT 2 There is a second solution of the problem of the form

f̃ = σd+2w0−1(f̃0 + σf̃1 + ..)

that is not obstructed.

COMMENT 3 Call F1 = f and F2 = σ1−d−2w0 f̃ we can combine this two
solutions to get a general one

F1 + σd+2w0−1F2

For global solutions for the the scattering problem
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YM theory

YM is the theory of connections on a principal G bundle E → M or
equivalently an equivalence class of A ∈ Ω1(M, g) with

A ∼ A′ = µ−1Aµ+ µ−1dµ︸ ︷︷ ︸
Gauge transformation

µ : M → G

The YM curvature is then defined by

Ω2(M, ad(g)) 3 F [A] = dA + [A,A]

under gauge transformation F [A′] = µ−1F [A]µ where

In general on can be more open mind and consider
F ∈ Ω2(M,EndVM) with VM some vector bundle over M
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YM theory

The action functional

S [A] := −1

4

∫
M
dVol(g)Tr(gabg cdFac ◦ Fbd) ,

induce the YM equation

[A] := δAF = 0 = gac∇A
c Fab .

(Every covariant derivative is now twisted also by the YM connection even
if not specified.)

YM functional and equations satisfy a conformal covariance in
dimension 4

What about conformal YM in other dimensions??

IDEA!!!! use holography
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YM theory

In our setting consider the YM equation constructed out of the singular
metric on M+

gab
+ ∇aFbc = 0

Observe that

gab
+ ∇aFbc = σ(σgab∇aFbc − (d − 4)gabnaFbc︸ ︷︷ ︸

jb

)

⇒ Note the confromally compact YM current it does make sense
everywhere on M (even along the boundary) and we want to study

jb[A] = 0 , on M
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YM theory

THE MAGNETIC PROBLEM:

Given a conformally compact structure and a connection∇Ā along Σ find a
smooth connection ∇A on M such that

∇A
X

Σ
= ∇Ā

X , j [A] = O(σ`) ,X ∈ TΣ

Theorem (Gover,Waldron, E.L., Zhang)

When d ≥ 4 there exists a solution of the magnetic problem to order
` = d − 4. When d = 3 there exists an order ` =∞ solution. Moreover
two solutions are “gauge” equivalent

∇A on a d ≥ 4 conformally compact structure s.t.

j [A] = σd−4k ,

for k ∈ T ∗M[3− d ]⊗ EndVM, is named asymptotic Yang–Mills
connection
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YM theory

An important corollary of the above theorem concerns the uniqueness of
k̄ := k |Σ

Corollary

Let (M, g, σ) be a conformally compact structure and Ā a connection on
Σ ⇒ a canonical map

(M, g, σ, Ā) 7→ k̄ ∈ T ∗Σ[3− d ]⊗ EndVΣ .

By construction k̄ is conformal and gauge invariant thus we interpret it as
higher YM equation.
Questions:

is it variational?

how explicit can we write it?
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Renormalized action

Integrals over conformally compact manifolds are ll-defined. Nonetheless,
useful information can often be extracted.

Take τ ∈ (E+M[1]) namely a true scale for the conformal manifold (note
τ |Σ is a scale for the boundary conformal structure (∂Σ, [ḡ ]))

Mε = {p ∈ M |σ(p)/τ(p) > ε} ⊂ M+ = M\∂M .

and the renormalized functional

Sε
YM

[A] :=

∫
Mε

Vol(g+) 〈F [A],F [A]〉g+ .

Theorem (Gover,Waldron, E.L., Zhang)

Sε
YM

[A] =
vd−5

(d − 5)εd−5
+

vd−6

(d − 6)εd−6
+· · ·+v1

ε
+En[A]log

1

ε
+S ren

YM
[A]+O(ε) ,

Moreover, the energy En is independent of the choice of regulator τ .
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Renormalized energy

We have the following relevant result

Theorem (Gover,Waldron, E.L., Zhang)

S ren
YM [A;λτ ]− S ren

YM [A; τ ] =
∫

Σ Vol(ḡ)
√
I 2
(

1
I 2 I .D

)d−5( 〈F [A],F [A]〉
I 2 λ

)
= λE [A]

with λ some constant. When ∇A is asymptotically YM the above depends
on the boundary connection only. Moreover the functional gradient of the
energy is a non-zero multiple of the obstruction current k̄. On PE

k̄b =


j̄b , d = 5 ,

1
2∇̄

a
(
∇̄[a j̄b] − 4P̄[a

c F̄b]c − J̄ F̄ab

)
+ 1

4 [ j̄a, F̄ab] , d = 7 ,

0 , d = even.
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Contact geometry

Definition

A contact structure is a 2n + 1 dimensional manifold M is the data of an
hyperplane distribution ξ ⊂ TM maximally nonintegrable. Equivalently
one can introduce a contact form α with the property that
Volα = α ∧ (dα)n is a volume form, and construct ξ as kerα

ωp := (dα)p is a symplectic
form on ξp ⊂ TpM

Exists a unique vector field
t ∈ Γ(TM), named Reeb v.f.,
satisfying α(t) = 1 and
ω(t, •) = 0
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Contact geometry

California link

Contact distributions are often equipped with a sub-Riemannian structure.
Geometric control theory/deppe learning (DC2, DC9 and DC10)

Example

M = R3 with α = ydx − dz is a contact manifold with hyperplane
distribution given by ξ = kerα = span{∂y , y∂z + ∂x} and t = −∂z

Theorem

Locally we can always find a coordinate system s.t. α = pidqi − dt
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Contact geometry

Comment: Contact geometry is closely related to classical mechanics.

S =

∫
γ

(pq̇ − H(p, q, t))dt

that controls the dynamics of some system. This can be interpreted as
local expression of the pullback on γ of the contact form α = pq −Hdt on
some manifold M in local coordinates (p, q, t). Hamiltonian setting is
”good” for quantization.

Theorem

(M, α = piq
i − Hdt) an odd dimensional manifold with a contact form

and an Hilbert bundle Z that we name quantum connection. We can
locally construct

∇ = d +
α

i~
+ ...

a linear flat connection for Z . Then the equation ∇Ψ = 0 reproduces the
Schroedinger equation.
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Contact geometry

Theorem (Quantum Darboux theorem)

Any quantum connection ∇ is formally gauge equivalent to the Darboux
one ∇D = d + 1

i~(pidqi − dt) + k̂ that you might think as the simplest one
in town.

California link

Thi quantization procedure is directly linked to BRST quantization of first
class constraint that is a special case of the BV quantization approach (see
again DC11) and it might somehow be useful for quantum information
geometry (see Perez-Canellas and Ercolessi DC7 and DC8).
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Contact geometry

I lied to you sorry...

We have discussed so far strict contact structures (M, α) while contact
geometry must be understood as (M, [α]).
In fact when α̂ = Ω2α we have kerα = ξ = ker α̂ but the other structures
changes accordingly as for example the Reeb dynamics.

What about
(M, [g ]) −→ (M, [α])

STAY TUNED
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