Exploring dualities beyond sound doctrines

B. Lindan

Bruno Lindan (bruno.lindan@postgrad.manchester.ac.uk) University of Manchester

Abstract.

Several dualities in categorical logic (including Gabriel-Ulmer duality) admit a unified treatment in terms of the kinds of limits required to exist in the relevant "theories" (finite limits in the Gabriel-Ulmer case). Given a collection of small categories Φ (a "doctrine"), we may regard categories \mathcal{C} having all limits of all shapes $\mathcal{J} \in \Phi$ as syntax-independent avatars for certain essentially algebraic theories, possibly with infinitary operations; **Set**-models of \mathcal{C} are precisely the Φ -limit-preserving functors $\mathcal{C} \to \mathbf{Set}$.

A technical condition on Φ – that of being *sound* (a notion introduced in [1]) – guarantees a duality between the 2-category Φ -cat of small Φ -complete categories and that of locally Φ -presentable categories (defined much like locally finitely presentable categories, with all instances of "finite limits" swapped with " Φ -limits"). The bi-equivalence is given in one direction by taking models in **Set**, and in the other by taking (the opposite category of) Φ -presentable objects. The general theorem was proved in [2].

In this talk, we will investigate the extent to which soundness is necessary to obtain some form of duality $\Phi[-, \mathbf{Set}]$: Φ - $\mathbf{Cat} \to \mathcal{K}^{\mathrm{op}}$. When \mathcal{K} is the 2-category of locally Φ -presentable categories and the inverse 2-functor is that of taking Φ -presentable objects, it quickly follows that Φ is sound. We first drop the second requirement, showing that if $\Phi[-, \mathbf{Set}]$ is an equivalence with $\mathcal{K} = \mathbf{L}\Phi\mathbf{P}$ then Φ must still necessarily be sound. This is done by exhibiting a (relative) right adjoint to $\Phi[-, \mathbf{Set}]$ for an arbitrary doctrine (essentially via the cartesian closedness of \mathbf{Cat}). We then drop the assumption that \mathcal{K} consists of the locally Φ -presentable categories. In this general situation, the existence of a duality (potentially "abstract", i.e. with \mathcal{K} not defined explicitly) for Φ turns out to depend precisely on whether there are limits not present in Φ -complete categories that are nonetheless preserved by Φ -continuous functors (much like the existence of limits preserved by all functors). Indeed, the relevant condition on Φ - \mathbf{Cat} concerns the nature of the lax epimorphisms therein, which in \mathbf{Cat} are shown in [3] to be precisely the absolutely (co)dense functors.

References

- [1] J. Adámek, F. Borceux, S. Lack, J. Rosický, A classification of accessible categories, 2002.
- [2] C. Centazzo, E. Vitale, A duality relative to a limit doctrine, 2002.
- [3] J. Adámek, R. El Bashir, M. Sobral, J. Velebil, On functors which are lax epimorphisms, 2001.