Eckmann-Hilton Arguments in Weak ω -categories

(Extended Abstract for arxiv:2501.16465)

W. Offord

Thibaut Benjamin (thibaut.benjamin@polytechnique.edu)
Department of Computer Science and Technology, University of Cambridge, UK

 ${\bf Ioannis\ Markakis\ (ioannis.markakis@cl.cam.ac.uk)}$ Department of Computer Science and Technology, University of Cambridge, UK

Wilfred Offord (wgbo2@cam.ac.uk)

Department of Computer Science and Technology, University of Cambridge, UK

Chiara Sarti (cs2197@cam.ac.uk)

Department of Computer Science and Technology, University of Cambridge, UK

Jamie Vicary (jamie.vicary@cl.cam.ac.uk)
Department of Computer Science and Technology, University of Cambridge, UK

Abstract. We prove generalisations of the Eckmann-Hilton argument in the context of globular weak ω -categories [6]. Given a strict monoidal category, the classical Eckmann-Hilton argument [2] shows that, for any endomorphisms a, b of the monoidal unit:

$$a \circ b = a \otimes b = b \circ a$$

This argument immediately generalises to strict higher categories to show the commutativity of all compositions of cells with sufficiently degenerate boundary. We further generalise this to weak ω -categories, producing a family of equivalences witnessing these commutativity results. In this setting, the proofs become significantly more complex. In particular, $a \circ b$ and $a \otimes b$ are no longer parallel due to weak unitality. This forces us to introduce a *padding* construction, similar to those of Finster et al. [3] and Fujii et al. [5], to compare non-parallel cells. The work has been implemented in the proof assistant CATT [4] for ω -categories, and can be exported to HOTT [1].

References

- [1] T. Benjamin, Generating Higher Identity Proofs in Homotopy Type Theory, preprint arXiv:2412.01667, 2024.
- [2] B. Eckmann and P. J. Hilton, Structure maps in group theory, Fundamenta Mathematicae 50 (1961), 207–221
- [3] E. Finster and D. Reutter and J. Vicary and A. Rice, A Type Theory for Strictly Unital ∞ -Categories, Proceedings of LICS 2022, 1–12
- [4] E. Finster and M. Samuel, A type-theoretical definition of weak ω -categories, Proceedings of LICS 2017, 1–12
- [5] S. Fujii and K. Hoshino and Y. Maehara, ω -weak equivalences between weak ω -categories, preprint arXiv:2406.13240, 2024.
- [6] T. Leinster, Higher operads, higher categories, Cambridge University Press, 2004.