Pos-pretoposes and compact ordered spaces

L. Reggio (joint work with Jérémie Marquès)

Luca Reggio (luca.reggio@unimi.it)
Dipartimento di Matematica "Federigo Enriques", Università degli Studi di Milano, Italy

Abstract.

A characterisation of the category KH of compact Hausdorff spaces and continuous maps was provided in [4] (see also [1] for a constructive approach). The key notion is that of filtrality: let us say that a (bounded, distributive) lattice L is filtral if it is isomorphic to the lattice of filters on the Boolean algebra of complemented elements of L. By extension, an object X in a category is filtral if its poset of subobjects is a filtral lattice. Filtral objects in KH are exactly the Stone spaces.

A weaker version of the main result of [4] can be stated as follows.

Theorem. Let E be a non-trivial pretopos with terminal object 1. Suppose that:

- 1. 1 is a regular generator and, for every set S, the copower $S \cdot 1$ exists in E;
- 2. for every set S, the copower $S \cdot \mathbf{1}$ is filtral.

Then E is equivalent to KH.

In a nutshell, condition 1 implies that E is equivalent to the category of algebras for the monad on Set induced by the adjunction $-\cdot \mathbf{1} \dashv \mathsf{E}(\mathbf{1}, -)$, and it follows from condition 2 that the latter is the *ultrafilter monad*. Manes' Theorem [5] then entails that E is equivalent to KH.

In this talk, I shall discuss an extension of the previous result to the category KOrd of Nachbin's compact ordered spaces and continuous monotone maps, regarded as a Pos-pretopos enriched in the category Pos of posets and monotone maps. The poset-variant of Manes' Theorem, due to Flagg [3], identifies KOrd with the category of algebras for the *prime filter monad* on Pos.

Our approach is based on the observation that a Pos-pretopos, and more generally a Pos-lex-category, can be identified with a category of internal partial orders in an ordinary lex-category. This allows us to use the internal logic to describe order-enriched variants of ordinary notions, such as filtrality. For example, in the same way that regular categories correspond to regular theories, Pos-regular categories correspond to monotone regular theories. Here, a theory T is monotone if for every sort X there is a binary relation symbol $\leq_X :: X \times X$ such that T proves that (i) \leq_X is a partial order and (ii) every function symbol is monotone with respect to these orders.

If time permits, I will also discuss the Pos-enriched analogue of *extensive* categories and the connection with the study of two-dimensional exactness conditions in [2].

References

- [1] C. Borlido, P. Karazeris, L. Reggio, and K. Tsamis, Filtral pretoposes and compact Hausdorff locales, Theory Appl. Categories 41 (2024), no. 41, 1439–1475.
- [2] J. Bourke, R. Garner, Two-dimensional regularity and exactness, J. Pure Appl. Algebra 218 (2014), no. 7, 1346–1371.
- [3] B. Flagg, Algebraic theories of compact pospaces, Topol. Appl. 77 (1997), no. 3, 277–290.
- [4] V. Marra, L. Reggio, A characterisation of the category of compact Hausdorff spaces, Theory Appl. Categories 35 (2020), no. 51, 1871–1906.
- [5] E. G. Manes, Algebraic theories, Grad. Texts in Math., vol. 26, Springer, 1976.