An intrinsic approach to kernels in general categories

Ülo Reimaa (ulo.reimaa@ut.ee) University of Tartu

Abstract. Given a nice epimorphism $p: A \to B$, one would hope to be able to recover it from the data of its kernel. With that goal in mind, we consider a category \mathbb{C} equipped with a coreflective subcategory \mathbb{Z} , so that a pullback square

$$\begin{array}{ccc} K & \longrightarrow d(B) \\ \downarrow & & \downarrow \\ A & \stackrel{p}{\longrightarrow} B, \end{array}$$

where $d(B) \to B$ is the coreflection of B into \mathbb{Z} , exhibits the span $d(B) \leftarrow K \to A$ as the kernel of p. (Kernels in the classical sense are recovered when \mathbb{Z} is the zero subcategory of a pointed category and d(B) = 0.) We require this pullback square to also be a pushout for every nice epimorphism p, which means asking that a nice epimorphism should be the cokernel of its kernel.

If we don't want the subcategory \mathbb{Z} to be extra structure on top of \mathbb{C} , we can suppose that the smallest such subcategory \mathbb{Z} (possibly satisfying some extra niceness conditions) exists, thus equipping the category \mathbb{C} with a certain *intrinsic* notion of kernel. Additionally, under niceness assumptions, the data of the span $d(B) \leftarrow K \rightarrow A$ can be encoded into a pair (ρ, K) , with ρ an equivalence relation (internal to \mathbb{Z}) on d(A), and $K \mapsto A$ a subobject. This is in essence similar to $star\ kernels\ [1]$ which also tie together kernels as subobjects with kernels as equivalence relations.

The intuition is that we try to minimize the subcategory \mathbb{Z} , so that the ρ component of the pair (ρ, K) is as trivial as possible. For a semi-abelian category \mathbb{C} , since the minimal \mathbb{Z} is the zero subcategory, the equivalence relation ρ contains no information, meaning the kernel of $A \to B$ is solely encoded into a subobject $K \rightarrowtail A$.

On the other hand, for $\mathbb{C} = \mathsf{Set}$, the minimal \mathbb{Z} is Set itself. In this case the kernel of $p \colon A \to B$ is (ρ, A) , with ρ the kernel pair of p and $A \rightarrowtail A$ always the largest subobject, therefore containing no information.

A motivating example that lies somewhere in-between is the category of inverse monoids, in which \mathbb{Z} is not the zero subcategory, but instead the subcategory of semilattices, with $d(S) \subseteq S$ the semilattice of idempotent elements of the inverse monoid S. This approach then recovers the classical *kernel-trace* description [2, Section 5.1] of a surjective morphism of inverse monoids.

With \mathbb{C} the category of unital rings, \mathbb{Z} consists of the initial object, but note that $d(B) \to B$ and therefore $K \to A$ no longer need to be subobjects.

Finally we analyze this approach through the behavior of pullback squares of categories

$$\mathbb{K} \longrightarrow \mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\xi \xrightarrow{\text{cod}} \mathbb{C},$$

pulling back a coreflective subcategory \mathbb{Z} along the codomain fibration of nice epis.

References

- [1] M. Gran, Z. Janelidze, A. Ursini, A good theory of ideals in regular multi-pointed categories, J. Pure Appl. Algebra 216 (2012), no. 8–9, 1905–1919.
- [2] L. M. Lawson, Inverse semigroups, World Scientific Publishing Co., Inc., River Edge, NJ, 1998.