Semilinear elliptic problems involving Leray-Hardy and measure data

Huyuan Chen

We discuss isolated singular solution of nonhomogeneous elliptic problem with the operator $u \mapsto \mathcal{L}_{\mu}u = -\Delta u + \frac{\mu}{|x|^2}u$, and then we show the existence and uniqueness of weak solutions for

 $\mathcal{L}_{\mu}u + g(u) = \nu$ in Ω , u = 0 on $\partial\Omega$,

where $\Omega \subset \mathbb{R}^N$ is a bounded smooth domain such that $0 \in \Omega$, $\mu \geq -\frac{(N-2)^2}{4}$ is a constant, g a continuous nondecreasing function satisfying some integral growth condition, ν is a Radon measure in Ω .

We show that the situation differs according ν is diffuse or concentrated at the origin. When g is a power we introduce a capacity framework to find necessary and sufficient condition for solvability.