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Laurent Véron’s 70th birthday



Backgrounds Isolated singular solutions semilinear Hardy problem Singular point on the boundary

Dear Prof. Bidaut-Véron and Prof. Véron, it is a great pleasure for me to participate in
this wonderful meeting to celebrate such an important birthday.

I would like to take this opportunity to express my gratitude to you for your guidance
and lots of assistance. I was most fortunate to be your and Prof. Felmer’s PhD student.
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We will talk about

• elliptic equation with absorption nonlinearity and measure data, and elliptic
equations with Hardy operators

• Isolated singular solutions of nonhomogeneous Hardy problem

Lµu := −∆u+
µ

|x|2 u = f in Ω \ {0}, u = 0 on ∂Ω

• semilinear Hardy equation involving measures

Lµu+ g(u) = ν in Ω \ {0}, u = 0 on ∂Ω

• solutions of nonhomogeneous Hardy problem with the origin on the
boundary
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Laplacian operator

• Benilan-Brezis-Crandall, Ann Sc Norm Sup Pisa (1975); Brezis, Appl Math
Opim (1984)

For p > 1, f ∈ L1
loc(RN ), the problem

−∆u+ |u|p−1u = f in RN (1.1)

has a unique solution u. Moreover, u ≥ 0 if f ≥ 0.

• Lieb-Simon, Adv. Math (1977)

The Thomas-Fermi equation, Thomas-Fermi theory of atoms, molecules

−∆u+ (u− λ)
3
2
+ =

l∑
i=1

miδai in R3, (1.2)

where λ ≥ 0, mi > 0 and δai is the Dirac mass at ai ∈ R3. The distributional
solution of (1.2 ) is a classical solution of

−∆u+ (u− λ)
3
2
+ = 0 in R3 \ {a1, · · · , al}. (1.3)
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Laplacian operator

A nature question is what difference between Dirac mass source and L1

source.

• Benilan-Brezis, J. Evol. Eq. (2004) (finished 1975) answered this
question, when N ≥ 3, p ≥ N

N−2
, k > 0, the problem

−∆u+ |u|p−1u = kδ0 in Ω, u = 0 on ∂Ω (1.4)

has no solution.

• Brezis-Véron, ARMA (1980): when N ≥ 3, p ≥ N/(N − 2), the basic model

−∆u+ |u|p−1u = 0 in Ω \ {0}, u = 0 on ∂Ω (1.5)

admits only the zero nonnegative solution.
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Laplacian operator

• Veron, NA (1981)

For singularities of positive solutions of (1.5 ) for 1 < p < N/(N − 2)
(1 < p <∞ if N = 2) , (when (N + 1)/(N − 1) ≤ p < N/(N − 2) the
assumption of positivity is unnecessary) and that two types of singular
behaviour occur:

◦ either u(x) ∼ cNk|x|2−N if N ≥ 3 u(x) ∼ (−cNk ln |x|) if N = 2 as |x| → 0
and k can take any positive value; u is said to have a weak singularity at 0,
and actually u = uk, uk is a distributional solution of (1.4 );

◦ or u(x) ∼ cN,p|x|−
2
p−1 as x→ 0; u is said to have a strong singularity at 0,

and u = u∞ := limk→∞ uk.
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Laplacian operator

• Chen-Matano-Veron, JFA (1989): Anisotropic singularities

When 1 < p < (N + 1)/(N − 1), u is a solution of (1.5 ), then

◦ either r
2
p−1 u(r, θ) ∼ ω(θ), where ω is a solution of

−∆SN−1ω + |ω|p−1ω = lpω in SN−1;

◦ or there exists an integer k < 2
p−1

and θ0 ∈ [0, 2π) such that
u(r, θ) ∼ cN,qkrk sin(kθ + θ0) as r = |x| → 0;

◦ or u(x) ∼ −cNk ln |x| as |x| → 0.

• Veron, Handb. Differ. Eq., North-Holland 2004:

For N ≥ 3, the problem

−∆u+ g(u) = ν in Ω, u = 0 on ∂Ω (1.6)

has a unique distributional solution uν if ν is a bounded Radon measure, g is
nondecreasing locally Lipchitz continuous, g(0) = 0 and∫ ∞

1

(g(s)− g(−s))s−1− N
N−2 ds < +∞.
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Laplacian operator

• Vàzquez, Proc. Royal Soc. Edinburgh. A (1983)
When N = 2, introduced the exponential orders of growth of g defined by

β±(g) = ± inf
{
b > 0 :

∫ ∞
1

|g(±t)|e−btdt <∞
}

(1.7)

if ν is any bounded measure in Ω with Lebesgue decomposition

ν = νr +
∑
j∈N

αjδaj ,

where νr is part of ν with no atom, aj ∈ Ω and αj ∈ R satisfy

4π

β−(g)
≤ αj ≤

4π

β+(g)
, (1.8)

then
−∆u+ g(u) = ν in Ω, u = 0 on ∂Ω (1.9)

admits a unique weak solution.

• Baras and Pierre , Ann Inst Fourier Grenoble (1984)
When g(u) = |u|p−1u for p > 1 and they discovered that if p ≥ N

N−2
the

problem is well posed if and only if ν is absolutely continuous with respect to
the Bessel capacity c2,p′ with p′ = p

p−1
.
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Hardy operator

Hardy inqualities

The Hardy inequalities

(N − 2)2

4

∫
Ω

ξ2

|x|2 dx ≤
∫

Ω

|∇ξ|2dx, ∀ ξ ∈ H1
0 (Ω);

Improved Hardy inequality

(N − 2)2

4

∫
Ω

ξ2

|x|2 dx+ c

∫
Ω

ξ2dx ≤
∫

Ω

|∇ξ|2dx, ∀ξ ∈ H1
0 (Ω);

Denote

µ0 = − (N − 2)2

4
.

Note that µ0 < 0 if N ≥ 3 and µ0 = 0 if N = 2. Let Hardy operator be defined
by

Lµ = −∆ +
µ

|x|2 . (1.10)
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Hardy operator

Singular radial solutions of Lµ

When µ ≥ µ0

Lµu = 0 in RN \ {0} (1.11)

has two branches of radial solutions with the explicit formulas that

Φµ(x) =

{
|x|τ−(µ) if µ < µ0

− |x|τ−(µ) ln |x| if µ = µ0

and Γµ(x) = |x|τ+(µ),

(1.12)
where

τ−(µ) = −N − 2

2
−
√
µ− µ0 and τ+(µ) = −N − 2

2
+
√
µ− µ0.

Here the τ−(µ) and τ+(µ) are the zero points of τ(τ +N − 2)− µ = 0. In the
following, we use the notations τ− = τ−(µ) and τ+ = τ+(µ).
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Hardy operator

semilinear Hardy problem

• Dupaigne, JAM (2002)

the strong, H1
0 and distributional solutions of

Lµu = up + tf, u > 0 in Ω, u = 0 on ∂Ω. (1.13)

◦ a classical solution u is a C2(Ω̄ \ {0}) function verifies the equation pointwise in
Ω \ {0} and u(x) ≤ cΓµ for some c > 0;

◦ a H1 solution u is a H1
0 (Ω) function verifies the identity∫

Ω
(∇u∇ξ −

µ

|x|2
uξ) =

∫
Ω

(up + tf)ξ, ∀ξ ∈ H1
0 (Ω);

◦ a distributional solution u, if u ∈ L1(Ω), u
|x|2 ∈ L

1(Ω, ρdx) and u verifies that∫
Ω
uLµξ =

∫
Ω

(up + tf)ξ, ∀ξ ∈ C2(Ω̄) ∩ C0(Ω),

where ρ(x) = dist(x, ∂Ω).
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Hardy operator

Dupaigne’s main results

Theorem

Assume that N ≥ 3, µ ∈ [µ0, 0), f is a smooth, bounded and nonnegative function and

q∗µ = 1 +
2

−τ+(µ)

For 1 < p < q∗µ, there exists t0 such that

(i) if 0 < t < t0, problem (1.13 ) has a minimal classical solution;
(ii) if t = t0, problem (1.13 ) has a minimal distributional solution;
(iii) if t > t0, problem (1.13 ) has no distributional solution.

• Brezis-Dupaigne-Tesei Sel Math (2005)

When t = 0, (1.13 ) has a nontrivial nonnegative solution of for p < q∗µand does not
have nonnegative distributional solutions for p ≥ q∗µ.
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Hardy operator

• Guerch and Véron, Rev mat Iberoamericana 1991

◦ µ > µ0, g : R→ R is a continuous nondecreasing function such that g(0) ≥ 0∫ ∞
1

(g(s)− g(−s))s
−1−

τ−−2

τ− ds <∞; (1.14)

◦ µ = µ0, k > 0, N ≥ 3, g : R→ R is a continuous nondecreasing function such that
g(0) ≥ 0 and ∫ ∞

1
g

(
kt
N−2
N+2 ln t

)
t−2dt <∞, (1.15)

semilinear Hardy problem

Lµu+ g(u) = 0 in Ω \ {0}, u = 0 on ∂Ω (1.16)

has a classical solution uk ∈ C2(Ω̄ \ {0}) such that lim|x|→0
uk(x)
Φµ(x)

= k.
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Hardy operator

• Cı̂rstea, American mathematical society 2014

The positive solution of semilinear Hardy equation Lµu+ g(u) = 0 in Ω \ {0} has
three possible singularities at the origin:

either lim
x→0

u(x)

Φµ(x)
= +∞ or lim

x→0

u(x)

Φµ(x)
∈ (0,+∞), (1.17)

or lim
x→0

u(x)

Γµ(x)
∈ (0,+∞). (1.18)

Related elliptic problem with boundary Hardy potential:

• Gkikas-Véron, NA 2015

• Nguyen, CVPDE 2017:

• Marcus-Nguyen, Math Ann 2019;

• Bandle-Marcus-Moroz, Israel Journal of Mathematics 2017
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Hardy operator

Some questions

•When µ = 0, Φ0(x) = |x|2−N if N ≥ 3 and Γµ = 1, function Φ0 verifies the
distributional identity ∫

RN
Φ0L0ξ dx = c0ξ(0), ∀ ξ ∈ C2

c (RN )

• For µ ∈ [µ0, 0), there holds that∫
RN

ΦµLµξ dx =

∫
RN

ΓµLµξ dx = 0, ∀ ξ ∈ C2
c (RN ) (1.19)

For µ ∈ [µ0, 0), the Dirac mass can not be used to express the singularities of the
function Φµ or Γµ in the traditional distributional sense.

• Especially, when µ > 0 large enough, the distributional identity (1.19 ) for Φµ is not
well-defined.
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Fundamental solution

New distributional identity

When µ ≥ µ0, Φµ and Γµ satisfy Lµu = 0 in RN \ {0}.

Theorem

Let dγµ(x) = Γµ(x)dxand

L∗µ = −∆− 2
τ+(µ)

|x|2 x · ∇. (2.1)

Then ∫
RN

ΦµL∗µ(ξ) dγµ = cµξ(0), ∀ ξ ∈ C2
c (RN ), (2.2)

where

cµ =

{
2
√
µ− µ0 |SN−1| if µ > µ0,

|SN−1| if µ = µ0.
(2.3)

• H. Chen, A. Quaas and F. Zhou, On nonhomogeneous elliptic equations with the
Hardy-Leray potentials, Accepted by JAM, arXiv:1705.08047.
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Fundamental solution

• In fact we show that
Γµ · Lµ(Φµ) = cµδ0. (2.4)

In particular, for µ = 0, Γµ = 1, L∗µ = −∆ and (2.4 ) reduces to

−∆Φ0 = c0δ0.

• Observation: τ−(µ) + τ+(µ) = 2−N , for ξ ∈ C2
c (RN ), we use test function Γµξ,

0 =

∫
RN\Br(0)

Lµ(Φµ)Γµξ dx

=

∫
RN\Br(0)

ΦµL∗µ(ξ) dγµ +

∫
∂Br(0)

(
∇Φµ ·

x

|x|
Γµ −∇Γµ ·

x

|x|
Φµ

)
ξ dω

−
∫
∂Br(0)

ΦµΓµ

(
∇ξ ·

x

|x|

)
dω.

• Here Φµ is said to be a fundamental solution of Lµ. We note that the fundamental
solution Φµ keeps positive when µ < µ0 and changes signs for µ = µ0.
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Fundamental solution

Bounded domain

In the bounded C2 domain Ω containing the origin,
Lµu = 0 in Ω \ {0},

u = 0 on ∂Ω,

lim
x→0

u(x)Φ−1
µ (x) = 1

(2.5)

has a unique solution Φµ,Ω.

Theorem

Let Φµ,Ω be the solution of (2.5 ), then∫
Ω

Φµ,ΩL∗µ(ξ) dγµ = cµξ(0), ∀ ξ ∈ C1.1
0 (Ω). (2.6)
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Fundamental solution

Approximation of the fundamental solution

Let {δn}n be a sequence of nonnegative L∞ functions that
supp δn ⊂ Brn(0), where rn → 0 as n→ +∞,

δn → δ0 as n→ +∞ in the distributional sense.

For any n, the problem
Lµu = cµδn/Γµ in Ω \ {0},
u = 0 on ∂Ω,

lim
x→0

u(x)Φ−1
µ (x) = 0

(2.7)

has a unique solution wn.
Then

lim
n→+∞

wn(x) = Φµ,Ω(x), ∀x ∈ Ω \ {0}.
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Nonhomogeneous problem

We consider nonhomogeneous problem
Lµu = f in Ω \ {0}, u = 0 on ∂Ω. (2.8)

Theorem

Let µ ≥ µ0, f be a function in Cθloc(Ω \ {0}) for some θ ∈ (0, 1).
(i) Assume that ∫

Ω
|f | dγµ < +∞, (2.9)

then problem (2.8 ), subject to lim
x→0

u(x)Φ−1
µ (x) = k with k ∈ R, has a unique solution

uk, which satisfies the distributional identity∫
Ω
ukL∗µ(ξ) dγµ =

∫
Ω
fξ dγµ + cµkξ(0), ∀ ξ ∈ C1.1

0 (Ω). (2.10)

(ii) Assume that f verifies (2.9 ) and u is a nonnegativesolution of (2.8 ), then u
satisfies (2.10 ) for some k ≥ 0.

(iii) Assume that f ≥ 0 and

lim
r→0+

∫
Ω\Br(0)

f dγµ = +∞, (2.11)

then problem (2.8 ) has no nonnegativesolutions.
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Idea of proofs

Part 1: existence for f ∈ L1(Ω, dγµ)

Lemma

Assume that f ∈ Cθ(Ω̄) for some θ ∈ (0, 1), then
Lµu = f in Ω \ {0},

u = 0 on ∂Ω,

lim
x→0

u(x)Φ−1
µ (x) = 0

(2.12)

has a unique solution uf satisfying the distributional identity:∫
Ω
ufL∗µ(ξ) dγµ =

∫
Ω
fξ dγµ, ∀ ξ ∈ C1.1

0 (Ω). (2.13)

• The case µ > µ0. Indeed, for µ > µ0, we can choose τ0 ∈ (τ−(µ), min{2, τ+(µ)}),
and denote

V0(x) = |x|τ0 , ∀x ∈ Ω \ {0}.
Then

LµV0(x) = cτ0 |x|
τ0−2,

where cτ0 = µ− τ0(τ0 +N − 2) > 0.
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Idea of proofs

Since f is bounded, there exists t0 > 0 such that

|f(x)| ≤ t0cτ0 |x|
τ0−2, ∀x ∈ Ω \ {0},

then t0V0 and −t0V0 are supersolution and subsolution of (2.12 ) respectively.

•The case µ = µ0 and N ≥ 3.
◦ µ 7→ uµ is decreasing in [µ0, 0).
◦ a uniformly bound for uµ for µ > µ0

V (x) = |x|τ+(µ0) − (s0|x|)2, ∀x ∈ Ω \ {0},

where s0 > 0 and V > 0 in Ω \ {0}. Then there exists t0 > 0 such that

uµ ≤ t0V in Ω \ {0}.

For ξ ∈ C1.1
0 (Ω), there exists c > 0 independent of µ such that

|L∗µ(ξ)| ≤ c‖ξ‖C1.1
0 (Ω) + |µ|‖ξ‖C1

0 (Ω)|x|
−1.

◦ From the dominate monotonicity convergence theorem, there exists uµ0 ≤ t0V such
that

uµ → uµ0 as µ→ µ+
0 a.e. in Ω and in L1(Ω, |x|−1dγµ)

and ∫
Ω
uµ0L

∗
µ0

(ξ) dγµ0 =

∫
Ω
f ξdγµ0
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Idea of proofs

Part 2: nonexistence for f 6∈ L1(Ω, dγµ)

• From (2.11 ) and the fact f ∈ Cθ(Ω \ {0}), for any rn, we have that

lim
r→0+

∫
Brn (0)\Br(0)

f(x)dγµ = +∞,

then there exists Rn ∈ (0, rn) such that
∫
Brn (0)\BRn (0) fdγµ = n.

Let δn = 1
n

ΓµfχBrn (0)\BRn (0), then the problem
Lµu · Γµ = δn in Ω \ {0},

u = 0 on ∂Ω,

lim
x→0

u(x)Φ−1
µ (x) = 0

has a unique positive solution wn satisfying∫
Ω
wnLµ(Γµξ)dx =

∫
Ω
δnξdx, ∀ ξ ∈ C1.1

0 (Ω).
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Idea of proofs

• For any ξ ∈ C1.1
0 (Ω), we have that∫

Ω
wnL∗µ(ξ) dγµ =

∫
Ω
δnξ dx→ ξ(0) as n→ +∞.

Therefore for any compact set K ⊂ Ω \ {0},

‖wn − Φµ,Ω‖C1(K) → 0 as n→ +∞.

Fix x0 ∈ Ω \ {0} and r0 =
min{|x0|, ρ(x0)}

2
and K = Br0 (x0), then there exists

n0 > 0 such that for n ≥ n0,

wn ≥
1

2
Φµ,Ω in K. (2.14)

• Let un be the solution of
Lµu · Γµ = nδn in Ω \ {0},

u = 0 on ∂Ω,

lim
x→0

u(x)Φ−1
µ (x) = 0,

thus, together with (2.14 ), we have that

un ≥ nwn ≥
n

2
Φµ,Ω in K

and
uf (x0) ≥ un(x0)→ +∞ as n→ +∞,

which contradicts that uf is classical solution of (2.8 )
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Idea of proofs

Part 3: nonexistence when µ < µ0

Theorem

Assume that µ < µ0 and f is a measurable nonnegative function, then problem (2.8 )
has no nontrivial nonnegative solutions.

Sketch of the proof. Let u0 be a nontrivial nonnegative solution of (2.8 ).

Lµ0u0 = (µ0 − µ)
u0

|x|2
+ f ≥ (µ0 − µ)ε0

χBr0 (x0)

|x|2
,

When N ≥ 3, for x ∈ Br0 (0) \ {0},

u0(x) ≥ (µ0 − µ)ε0Gµ0 [χBr0 (x0)] ≥ c0|x|−
N−2

2 ,

then ∫
Ω\Br(0)

[(µ0 − µ)
u0

|x|2
+ f ]dγµ0 ≥ c0

∫
Br0 (0)\Br(0)

|x|−Ndx

→ +∞ as r → 0+.

We obtain that

Lµu = (µ0 − µ)
u0

|x|2
+ f in Ω \ {0}, u = 0 on ∂Ω (2.15)

has no nonnegative solution.
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Main results

The nonlinear Poisson equation

Lµu+ g(u) = ν in Ω, u = 0 on ∂Ω, (3.1)

where µ ≥ µ0, g : R→ R is a continuous nondecreasing function such that
g(0) ≥ 0 and ν is a Radon measure in Ω.

• we denote by M(Ω∗; Γµ), the set of Radon measures ν in Ω∗ such that∫
Ω∗

Γµd|ν| := sup

{∫
Ω∗
ζd|ν| : ζ ∈ Cc(Ω∗), 0 ≤ ζ ≤ Γµ

}
<∞, (3.2)

where Ω∗ = Ω \ {0}.
• we denote by M(Ω; Γµ) the set of measures ν on Ω which coincide with the
above natural extension of νbΩ∗∈M+(Ω∗; Γµ). If ν ∈M+(Ω; Γµ) we define
the measure Γµν in the following way∫

Ω

ζd(Γµν) = sup
{∫

Ω∗
ηΓµdν : η ∈ Cc(Ω∗) , 0 ≤ η ≤ ζ

}
for all ζ ∈ Cc(Ω) , ζ ≥ 0.

(3.3)
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Main results

•We denote by M(Ω; Γµ) the set of measures which can be written under
the form

ν = νbΩ∗+kδ0, (3.4)

where νbΩ∗∈M(Ω; Γµ) and k ∈ R.

•We denote Ω
∗
:= Ω \ {0}, ρ(x) = dist(x, ∂Ω) and

Xµ(Ω) =
{
ξ ∈ C0(Ω) ∩ C1(Ω

∗
) : |x|L∗µξ ∈ L∞(Ω)

}
. (3.5)

Clearly, C1,1
0 (Ω) ⊂ Xµ(Ω).

Definition

•We say that u is a weak solution of (3.1 ) with ν ∈M(Ω; Γµ) such that
ν = νbΩ∗+kδ0 if u ∈ L1(Ω, |x|−1dγµ), g(u) ∈ L1(Ω, ρdγµ) and∫

Ω

[
uL∗µξ + g(u)ξ

]
dγµ =

∫
Ω

ξd(Γµν) + cµkξ(0) for all ξ ∈ Xµ(Ω). (3.6)
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Main results

• the Dirac mass at 0 does not belong to M(Ω; Γµ) although it is a limit of
{νn} ⊂M(Ω; Γµ).

Definition

• A continuous function g : R→ R such that rg(r) ≥ 0 for all r ∈ R satisfies
the weak ∆2-condition if there exists a positive nondecreasing function
t ∈ R 7→ K(t) such that

|g(s+ t)| ≤ K(t) (|g(s)|+ |g(t)|) for all (s, t) ∈ R× R s.t. st ≥ 0. (3.7)

It satisfies the ∆2-condition if the above function K is constant.

• Critical exponent

p∗µ = 1− 2

τ−
. (3.8)

Note that p∗µ < p∗0 if µ > 0 and p∗µ > p∗0 if µ < 0.
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Main results

• H. Chen and L. Véron, Weak solutions of semilinear elliptic equations with
Leray-Hardy potential and measure data, Mathematics in Engineering 1, (2019).

Theorem

Let µ > 0 if N = 2, µ ≥ µ0 if N ≥ 3 and g : R→ R be a Hölder continuous
nondecreasing function such that g(0) = 0. Then for any ν ∈ L1(Ω, dγµ),
problem (3.1 ) has a unique weak solution uν such that for some c1 > 0,

‖uν‖L1(Ω,|x|−1dγµ) ≤ c1 ‖ν‖L1(Ω,dγµ) .

Furthermore, if uν′ is the solution of (3.1 ) with right-hand side ν′ ∈ L1(Ω, dγµ), there
holds ∫

Ω

[
|uν |L∗µξ + |g(uν))|ξ

]
dγµ ≤

∫
Ω

(ν)sgn(uν)ξdγµ (3.9)

and ∫
Ω

[
(uν)+L∗µξ + (g(uν))+ξ

]
dγµ ≤

∫
Ω
νsgn+(uν)ξdγµ (3.10)

for all ξ ∈ Xµ(Ω), ξ ≥ 0, where sgn(t) = 1 if t > 0, sgn(0) = 0 and sgn(t) = −1 if
t < 0.

• Remark: (3.9 ) and (3.10 ) are Kato’s type Inequalities; these inequalities plays an
important role in the derivation of uniqueness.
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Main results

Now we state the existence of weak solution in the subcritical case with µ > µ0.

Theorem

Let µ > µ0 and g : R→ R be a nondecreasing continuous function such that
g(r)r ≥ 0 for any r ∈ R. If g satisfies the weak ∆2-condition and∫ ∞

1

(g(s)− g(−s))s−1−min{p∗µ, p
∗
0}ds <∞. (3.11)

Then for ν ∈M+(Ω; Γµ) problem (3.1 ) admits a unique weak solution uν .
Furthermore, the mapping: ν 7→ uν is increasing.

• For ν = νbΩ∗ + cµkδ0 ∈M+(Ω; Γµ) and g(t) = |t|p−1t, problem (3.1 ) has a
unique solution if

(i) 1 < p < p∗µ in the case νbΩ∗ = 0;

(ii) 1 < p < p∗0 in the case k = 0;

(iii) 1 < p < min
{
p∗µ, p

∗
0

}
in the case k 6= 0 and νbΩ∗ 6= 0.

• Examples: Let e1 = (1, 0, · · · , 0) ∈ RN and ν =
∑∞
n=1 anδ e1n

+ kδ0, where
an > 0 is such that

∑∞
n=1 a

τ+
n < +∞.



Backgrounds Isolated singular solutions semilinear Hardy problem Singular point on the boundary

Main results

Theorem

Assume that N ≥ 3, µ = µ0 and g : R→ R is a continuous nondecreasing
function such that g(r)r ≥ 0 for any r ∈ R satisfying the weak ∆2-condition
and ∫ +∞

1

(g(s)− g(−s))s−1− N
N−2 ds < +∞. (3.12)

Then for any ν = νbΩ∗ + cµkδ0 ∈M+(Ω; Γµ) problem (3.1 ) admits a unique
weak solution uν .
Furthermore, if νbΩ∗ = 0, condition (3.12 ) can be replaced by the following
weaker one ∫ ∞

1

(g(t)− g(−t)) (ln t)
N+2
N−2 t−1−N+2

N−2 dt <∞. (3.13)

• Examples: ν = kδ0 and g(t) = t
N+4
N−2 (ln t)τ with τ > 2N

N−2
, (3.1 ) has an isolated

singular solution uk > 0.
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Main results

In the supercritical case, we set gp(u) = |u|p−1u, i.e.

Lµu+ gp(u) = ν in Ω, u = 0 on ∂Ω, (3.14)

Theorem

Assume that N ≥ 3. Then ν = νbΩ∗ ∈M(Ω; Γµ) is gp-good if and only if

for any ε > 0, νε = νχ
Bcε

is absolutely continuous with respect to the c2,p′ -Bessel
capacity.

Finally we characterize the compacts removable sets in Ω.

Theorem

Assume that N ≥ 3, p > 1 and K is a compact set of Ω. Then any weak solution of

Lµu+ gp(u) = 0 in Ω \K (3.15)

can be extended a solution of the same equation in whole Ω if and only if

(i) c2,p′ (K) = 0 if 0 /∈ K;

(ii) p ≥ p∗µ if K = {0};
(iii) c2,p′ (K) = 0 if µ ≥ 0, 0 ∈ K and K \ {0} 6= {∅};
(iv) c2,p′ (K) = 0 and p ≥ p∗µ if µ < 0, 0 ∈ K and K \ {0} 6= {∅}.
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The ideas of the proofs

Part 1: linear problem

Lemma

If ν ∈M(Ω; Γµ), then

Lµu = ν in Ω, u = 0 on ∂Ω. (3.16)

admits a unique solution in L1(Ω, |x|−1dγµ), denoted by Gµ[ν], and this defines the
Green operator of Lµ in Ω with homogeneous Dirichlet conditions.

• Let {νn} ⊂ L1(Ω, ρdγµ) be a sequence such that νn ≥ 0 and∫
Ω
ξΓµνndx→

∫
Ω
ξd(Γµν) for all ξ ∈ Xµ(Ω),

with n ∈ N, the weak solution of

Lµun = νn in Ω, un = 0 on ∂Ω (3.17)

satisfies that for any open sets O verifying ŌΩ \Bε(0) for some c > 0 independent of
n but dependent of O′,

‖un‖W1,q(O) ≤ c ‖ν‖M(Ω,Γµ) .

That is, {un} is uniformly bounded in W 1,q
loc (Ω \ {0}).
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The ideas of the proofs

• Let ω ⊂ Ω be a Borel set and the solution ψω of{
L∗µψω = |x|−1χω in Ω,

ψω = 0 on ∂Ω
(3.18)

has the property
lim
|ω|→0

ψω(x) = 0 uniformly in B1

and ∫
ω

un

|x|
dγµ(x) =

∫
ω
νnΓµψωdx ≤ sup

Ω
ψω

∫
ω
νnΓµdx→ 0 as |ω| → 0.

This shows that {un} is uniformly integrable for the measure |x|−1dγµ.
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The ideas of the proofs

Part 2: Isolated singular solutions

Lemma

Let k ∈ R and g : R→ R be a continuous nondecreasing function such that rg(r) ≥ 0
for all r ∈ R. Then problem {

Lµu+ g(u) = kδ0 in Ω,

u = 0 on ∂Ω
(3.19)

admits a unique solution u := ukδ0 if one of the following conditions is satisfied:

(i) N = 2, µ > µ0 and g satisfies∫ ∞
1

(g(s)− g(−s)) s−1−p∗µds <∞; (3.20)

(ii) N ≥ 3, µ = µ0 and g satisfies (3.13 ).

• For µ > µ0 [Guerch-Veron 1991] for any k ∈ R there exists a radial function vk,1
(resp. vk,R) defined in B∗1 (resp. B∗R) satisfying

Lµv + g(v) = 0 in B∗1 (resp. in B∗R), (3.21)

vanishing respectively on ∂B1 and ∂BR and satisfying

lim
x→0

vk,1(x)

Φµ(x)
= lim
x→0

vk,R(x)

Φµ(x)
=

k

cµ
. (3.22)
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The ideas of the proofs

• For µ = µ0, [Guerch-Veron 1991] shows the existence of isolated singular solution if
for some b > 0 there holds

I :=

∫ ∞
1

g

(
bt
N−2
N+2 ln t

)
t−2dt <∞, (3.23)

set s = t
N−2
N+2 and β = N+2

N−2
b, then

I =
N + 2

N − 2

∫ ∞
1

g (βs ln s) s
− 2N
N−2 ds

Set τ = βs ln s, then

ln τ = ln s

(
1 +

ln ln s

ln s
+

lnβ

ln s

)
=⇒ ln s = ln τ(1 + o(1)) as s→∞.

We infer that for ε > 0 there exists sε > 2 and τε = sε ln sε such that

(1− ε)β
N+2
N−2 ≤

∫ ∞
sε

g (βs ln s) s
− 2N
N−2 ds∫ ∞

τε

g (τ) (ln τ)
N+2
N−2 τ

− 2N
N−2 dτ

≤ (1 + ε)β
N+2
N−2 . (3.24)

Thus, I < +∞ is equivalent to (3.13 ).
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The ideas of the proofs

Part 3: Measures in Ω∗

Lµu+ g(u) = ν in Ω, u = 0 on ∂Ω (3.25)

Lemma

(i) Let N = 2, µ > 0, β−(g) < 0 < β+(g), where

β+(g) = inf

{
b > 0 :

∫ ∞
1

g (t) e−btdt <∞
}
,

β−(g) = sup

{
b < 0 :

∫ −1

−∞
g (t) ebtdt > −∞

}
,

(3.26)

then for ν ∈M(Ω∗; Γµ) problem (3.25 ) admits a unique weak solution.

(ii) Let N ≥ 3, µ ≥ µ0 and g satisfy (3.12 ), then for ν ∈M(Ω∗; Γµ) problem (3.25 )
admits a unique weak solution.

• Examples: Let e1 = (1, 0, · · · , 0) ∈ RN and ν =
∑∞
n=1 anδ e1

n
, where an > 0 is

such that
∑∞
n=1 a

τ+
n < +∞.

The critical exponent N
N−2

is sharp in this case.
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The ideas of the proofs

• The case that ν ≥ 0. For σ > 0 small, we set Ωσ = Ω \ {Bσ} and νσ = νχ
Ωσ

and
for 0 < ε < σ we consider the following problem in Ωε

Lµu+ g(u) = νσ in Ωε,

u = 0 on ∂Ω,

u = 0 on ∂Bε.

(3.27)

By monotonicity of ε 7→ uε and uniform upper bound, we can pass to the limit to obtain
a weak solution uνσ of

Lµu+ g(u) = νσ in Ω, u = 0 on ∂Ω. (3.28)

Using monotone convergence theorem we infer that uνσ → u in L1(Ω, |x|−1dγµ) and
g(uνσ )→ g(uν) in L1(Ω, dγµ). Hence u = uν is the weak solution of (3.25 ).

• The case that a signed measure ν = ν+ − ν−. We approximate the solution by
uniform bounds and the argument of uniform integrability.
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The ideas of the proofs

Part 4: Reduced measure
If k ∈ N, we set

gk(r) =

{
min{g(r), g(k)} if r ≥ 0,

max{g(r), g(−k)} if r > 0.
(3.29)

for any ν ∈M+(Ω; Γµ) there exists a unique weak solution u = uν,k of{
Lµu+ gk(u) = ν in Ω,

u = 0 on ∂Ω.
(3.30)

Proposition

Let ν ∈M+(Ω; Γµ). Then the sequence of weak solutions {uν,k} of{
Lµu+ gk(u) = ν in Ω,

u = 0 on ∂Ω
(3.31)

decreases and converges, when k →∞, to some nonnegative function u and there
exists a measure ν∗ ∈M+(Ω; Γµ) such that 0 ≤ ν∗ ≤ ν and u = uν∗ .

The proof is similar to Proposition 4.1 in Bidaut-Véron and L. Véron, Inventiones Math.
(1991).
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The ideas of the proofs

• Let ν, ν′ ∈M+(Ω; Γµ). If ν′ ≤ ν and ν = ν∗, then ν′ = ν′∗

• Assume that ν = νbΩ∗+kδ0 ∈M+(Ω; Γµ), then ν∗ = ν∗bΩ∗+k∗δ0 ∈M+(Ω; Γµ)
with ν∗bΩ∗≤ νbΩ∗ and k∗ ≤ k. More precisely,

(i) If µ > µ0 and g satisfies (3.11 ), then k = k∗.
(ii) If µ = µ0 and g satisfies (3.13 ), then k = k∗.
(ii) If µ > µ0 (resp. µ = µ0) and g does not satisfy (3.20 ) (resp. (3.13 )), then k∗ = 0.

• If ν ∈M+(Ω; Γµ), then ν∗ is the largest g-good measure smaller or equal to ν.
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• For µ ≥ µ1 := −N
2

4
,∫

RN+
|∇ζ|2 + µ1

∫
RN+

ζ2

|x|2
dx ≥ 0 for all ζ ∈ C∞0 (RN+ ). (4.1)

• Lµ-harmonic functions vanishing on ∂RN+ \ {0},

γµ(r, σ) = rα+ψ1(σ) and φµ(r, σ) =

 rα−ψ1(σ) if µ > µ1,

r−
N−2

2 ln(r−1)ψ1(σ) if µ = µ1,

(4.2)
where ψ1(σ) = xN

|x| generates ker(−∆′ + (N − 1)I) in H1
0 (SN−1

+ ), and where

α+ := α+(µ) =
2−N

2
+
√
µ+N2/4 and α− := α−(µ) =

2−N
2
−
√
µ+N2/4.

(4.3)
• Put dγµ(x) = γµ(x)dx. We define the γµ-dual operator L∗µ of Lµ by

L∗µζ = −∆ζ −
2

γµ
〈∇γµ,∇ζ〉 for all ζ ∈ C2(RN+ ), (4.4)

and we prove that φµ is, in some sense, the fundamental solution of

Lµu = 0 in RN+ , u = δ0 on ∂RN+
in the sense that∫

RN+
φµL∗µζdγµ(x) = bµζ(0) for all ζ ∈ Cc(RN+ ) ∩ C1,1(RN+ )



Backgrounds Isolated singular solutions semilinear Hardy problem Singular point on the boundary

• Brezis-Vazquez, Rev. Mat. Complut. 1997

In a bounded domain Ω, satisfying the condition

(C-1) 0 ∈ ∂Ω , Ω ⊂ RN+ and 〈x,n〉 = O(|x|2) for all x ∈ ∂Ω,

Hardy inequality∫
Ω
|∇ζ|2 + µ1

∫
Ω

ζ2

|x|2
dx ≥

1

4

∫
Ω

ζ2

|x|2 ln2(|x|R−1
Ω )

dx for all ζ ∈ C∞c (Ω), (4.5)

• Let

`Ωµ := inf

{∫
Ω

(
|∇v|2 +

µ

|x|2
v2

)
dx : v ∈ C1

c (Ω),

∫
Ω
v2dx = 1

}
> 0.

This first eigenvalue is achieved in H1
0 (Ω) if µ > µ1, or in the space H(Ω) which is the

closure of C1
c (Ω) for the norm

v 7→ ‖v‖H(Ω) :=

√∫
Ω

(
|∇v|2 +

µ1

|x|2
v2

)
dx,

when µ = µ1. We set

Hµ(Ω) =

{
H1

0 (Ω) if µ > µ1,

H(Ω) if µ = µ1.
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Chen-Veron JDE 2020
• Under the assumption (C-1) the imbedding of Hµ(Ω) in L2(Ω) is compact. We
denote by γΩ

µ the positive eigenfunction, its satisfies

LµγΩ
µ = `Ωµγ

Ω
µ in Ω, γΩ

µ = 0 on ∂Ω \ {0}. (4.6)

• there exist cj = cj(Ω, µ) > 0, j = 1, 2, such that

(i) γΩ
µ (x) = c1ρ(x)|x|α+−1(1 + o(1)) as x→ 0,

(ii) |∇γΩ
µ (x)| ≤ c2γΩ

µ (x)/ρ(x) for all x ∈ Ω.
(4.7)

•We first characterize the positive Lµ-harmonic functions which are singular at 0.

Theorem

Let Ω be a C2 bounded domain such that 0 ∈ ∂Ω and µ ≥ µ1. If u is a nonnegative
Lµ-harmonic function in Ω vanishing on Br0 (0) ∩ (∂Ω \ {0}) for some r0 > 0, then
there exists k ≥ 0 such that

lim
x→0

u(x)

ρ(x)|x|α−−1
= k if µ > µ1

and

lim
x→0

|x|
N
2 u(x)

ρ(x) ln |x|
= −k if µ = µ1.
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• Existence:

Theorem

Let Ω be a C2 bounded domain satisfying (C-1) and µ ≥ µ1. Then there exists a
positive Lµ-harmonic function in Ω, which vanishes on ∂Ω \ {0}, which satisfies

φΩ
µ (x) = ρ(x)|x|α−−1(1 + o(1)) as x→ 0, (4.8)

if µ > µ1, and

φΩ
µ1

(x) = ρ(x)|x|−
N
2 (| ln |x||+ 1)(1 + o(1)) as x→ 0, (4.9)

if µ = µ1.

• φΩ
µ is the unique function belonging to L1(Ω, ρ−1dγΩ

µ ), which satisfies∫
Ω
uL∗µζdγΩ

µ = kcµζ(0) for all ζ ∈ Xµ(Ω), (4.10)

where dγΩ
µ = γΩ

µ dx, here and in the sequel the test function space

Xµ(Ω) =
{
ζ ∈ C(Ω) : γΩ

µ ζ ∈ Hµ(Ω) and ρL∗µζ ∈ L∞(Ω)
}
.

Furthermore, if u is a nonnegative Lµ-harmonic function vanishing on ∂Ω \ {0}, there
exists k ≥ 0 such that u = kφΩ

µ .
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• Denote by M(Ω; γΩ
µ ) the set of Radon measures ν in Ω such that

sup

{∫
Ω
ζd|λ| : ζ ∈ Cc(Ω), 0 ≤ ζ ≤ γΩ

µ

}
:=

∫
Ω
γΩ
µ d|ν| < +∞.

If ν ∈M+(Ω; γΩ
µ ) the measure γΩ

µ ν is a nonnegative bounded measure in Ω. Put

βΩ
µ (x) = −

∂γΩ
µ (x)

∂nx
= lim
t→0+

γΩ
µ (x− tnx)

t
= lim
t→0+

γΩ
µ (x− tnx)

ρ∗(x− tnx))
, ∀x ∈ ∂Ω \ {0}

(4.11)
and then

c1|x|α+−1 ≤ βΩ
µ (x) ≤ c1c3|x|α+−1 for x ∈ ∂Ω \ {0}. (4.12)

• Denote
βµ(x) = |x|α+−1 for x ∈ RN \ {0}. (4.13)

Denote M(∂Ω \ {0};βµ) the set Radon measures λ in ∂Ω \ {0} such that

sup

{∫
∂Ω\{0}

ζd|λ| : ζ ∈ Cc(∂Ω \ {0}), 0 ≤ ζ ≤ βµ

}
:=

∫
∂Ω\{0}

βµd|λ| < +∞.
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• the existence and uniqueness of a solution to{
Lµu = ν in Ω,

u = λ+ kδ0 on ∂Ω.
(4.14)

Theorem

Let Ω be a C2 bounded domain satisfying (C-1) and µ ≥ µ1. If ν ∈M+(Ω; γΩ
µ ),

λ ∈M(∂Ω;βµ) and k ∈ R, the function

u = GΩ
µ [ν] + KΩ

µ [λ] + kφΩ
µ := HΩ

µ [(ν, λ, k)] (4.15)

is the unique solution of (4.14 ) in the very weak sense that u ∈ L1(Ω, ρ−1dγΩ
µ ) and∫

Ω
uL∗µζdγΩ

µ =

∫
Ω
ζd(γΩ

µ ν) +

∫
∂Ω
ζd(βΩ

µ λ) + kcµζ(0) for all ζ ∈ Xµ(Ω). (4.16)

Theorem

Let Ω be a C2 bounded domain such that 0 ∈ ∂Ω satisfying (C-1), µ ≥ µ1 and u be a
nonnegative Lµ-harmonic functions in Ω. Then there exist λ ∈M(∂Ω;βµ) and k ≥ 0,
such that

u = KΩ
µ [λ] + kφΩ

µ = HΩ
µ [(0, λ, k)].

The couple (λ, kδ0) is called the boundary trace of u.



Backgrounds Isolated singular solutions semilinear Hardy problem Singular point on the boundary

Thank you!

Happy birthday!!!
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