Semilinear elliptic problems involving
Leray-Hardy potential and measure data

Huyuan Chen

Jiangxi Normal Univeristy

Workshop: Singular Problems associated to Quasilinear Equations
In celebration of Marie Francoise Bidaut-Véron and
Laurent Véron’s 70th birthday



Dear Prof. Bidaut-Véron and Prof. Véron, it is a great pleasure for me to participate in
this wonderful meeting to celebrate such an important birthday.

| would like to take this opportunity to express my gratitude to you for your guidance
and lots of assistance. | was most fortunate to be your and Prof. Felmer’s PhD student.



We will talk about

o elliptic equation with absorption nonlinearity and measure data, and elliptic
equations with Hardy operators

e Isolated singular solutions of nonhomogeneous Hardy problem

ﬁuu::—Au—&—Lu:f in Q\{0}, u=0 on 90

|z[?

e semilinear Hardy equation involving measures

Luu+g(u)=v in Q)\{0} u=0 on 99

e solutions of nonhomogeneous Hardy problem with the origin on the
boundary
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Laplacian operator

e Benilan-Brezis-Crandall, Ann Sc Norm Sup Pisa (1975); Brezis, Appl Math
Opim (1984)
Forp > 1, f € L},.(R"), the problem

—Au+uffu=f in RY (1.1)
has a unique solution . Moreover, u > 0 if f > 0.

e Lieb-Simon, Adv. Math (1977)
The Thomas-Fermi equation, Thomas-Fermi theory of atoms, molecules

3
—Au+(u—MN)3 = Zmz a; In ]RS (1.2)

where A > 0, m; > 0 and é,, is the Dirac mass at a; € R®. The distributional
solution of (1.2) is a classical solution of

—Au—|—(u—)\)_%:() in R*\ {a1, - ,a}. (1.3)



Backgrounds
0@000

Laplacian operator

A nature question is what difference between Dirac mass source and L!
source.
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Laplacian operator

A nature question is what difference between Dirac mass source and L!
source.

e Benilan-Brezis, J. Evol. Eq. (2004) (finished 1975) answered this

question, when N > 3, p > - | k > 0, the problem

—Au+|ufffu=kl in Q  uwu=0 on 80N (1.4)
has no solution.
e Brezis-Véron, ARMA (1980): when N > 3, p > N/(N — 2), the basic model
— Au+ulfrfu =0 in Q\ {0}, u=0 on 99 (1.5)

admits only the zero nonnegative solution.



Backgrounds
00000

Laplacian operator

e Veron, NA (1981)

For singularities of positive solutions of (1.5) for 1 < p < N/(N —2)
(I<p<ocif N=2),(when(N+1)/(N—-1)<p<N/(N—2)the
assumption of positivity is unnecessary) and that two types of singular
behaviour occur:

o either u(z) ~ exklz)> ™™ if N > 3 u(z) ~ (—enxkIn|z|) if N =2as |z| — 0
and k can take any positive value; u is said to have a weak singularity at 0,
and actually u = ug, uy is a distributional solution of (1.4 );

2 . . . 5
ooru(z) ~cnplz|” P-T as z — 0; w is said to have a strong singularity at 0,
and u = U = limg_s00 Uk.
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Laplacian operator

e Chen-Matano-Veron, JFA (1989): Anisotropic singularities
When1 <p < (N +1)/(N — 1), uis a solution of (1.5 ), then
o either r7-1 u(r, ) ~ w(0), where w is a solution of

SN-1,

—Agnv—1w + WP lw =lw in ;

o or there exists an integer k < %3 and 6 € [0, 2) such that
u(r,0) ~ cn,gkrF sin(k0 + 6o) as r = |z| — 0;
ooru(z) ~ —cykln|z| as |z| — 0.
e Veron, Handb. Differ. Eq., North-Holland 2004:
For N > 3, the problem
—Au+g(u) =v in Q, u=0 on 9N (1.6)

has a unique distributional solution w, if v is a bounded Radon measure, g is
nondecreasing locally Lipchitz continuous, g(0) = 0 and

/100(9(5) — g(=8))s ¥ 2 ds < +oo.
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Laplacian operator

e Vazquez, Proc. Royal Soc. Edinburgh. A (1983)
When N = 2, introduced the exponential orders of growth of g defined by

B+(g9) = +inf {b >0: / lg(£t)|e " dt < oo} (1.7)
1
if v is any bounded measure in 2 with Lebesgue decomposition
V="U+ Zaj(saj,
JEN

where v, is part of v with no atom, a; € Q2 and «; € R satisfy

4 4
o) = S ) 9
then
—Au+gu)=v in Q, u=0 on 9N (1.9)

admits a unique weak solution.

e Baras and Pierre , Ann Inst Fourier Grenoble (1984)
When g(u) = |u["~"u for p > 1 and they discovered that if p > *the
problem is well posed if and only if v is absolutely continuous with respect to

the Bessel capacity ¢, with p’ = 5.
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Hardy operator

Hardy inqualities

The Hardy inequalities

S22 [ Erdo< [ vean, ve e mi@)

4 |z[?

Improved Hardy inequality

2 2
M/ f—dw+c/£2dx§/ \VelPde, Ve € HY(Q);
Q Q Q

4 ||

Denote
__(N-2)
po = T
Note that o < 0if N > 3 and po = 0 if N = 2. Let Hardy operator be defined
by

o
L= A+ 1.1
‘Cl + |17|2 ( 0)
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Hardy operator

Singular radial solutions of £,

When p > po
Lyu=0 in R\ {0} (1.11)

has two branches of radial solutions with the explicit formulas that

T (1) if

T 1 <

D)= | AR and T = e,
— a2 i p=po

(1.12)
where

N -2 N

-2
T-(n) = ——5— —Vu—po and Ti(u) =——5—+Vp - po.

Here the 7— (u) and 7 (u) are the zero points of 7(7 + N —2) — = 0. In the
following, we use the notations 7— = 7_ (u) and 7 = 74 (p).
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Hardy operator

semilinear Hardy problem

e Dupaigne, JAM (2002)
the strong, H{ and distributional solutions of

Lou=uP +tf, >0 inQ, u=0 on 0NQ. (1.13)

o a classical solution  is a C2(Q \ {0}) function verifies the equation pointwise in
Q\ {0} and u(z) < cI';, for some ¢ > 0;

o a H' solution u is a H}(Q) function verifies the identity
[ vuve-Loue) = [@rrene vee i@
Q || Q
o a distributional solution w, if u € L1(£2), ﬁ € L1(, pdx) and u verifies that
/ uly€ = / (uP +tf)E, VE € C%(Q)NCo(Q),
Q Q

where p(z) = dist(z, 0Q).
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Hardy operator

Dupaigne’s main results

Assume that N > 3, u € [1o,0), f is a smooth, bounded and nonnegative function and

2
—74 (1)

*

q, =1+

Forl < p < g, there exists to such that

(4) if0 < t < to, problem (1.13 ) has a minimal classical solution;
(i2) ift = to, problem (1.13 ) has a minimal distributional solution;
(i14) ift > to, problem (1.13 ) has no distributional solution.

e Brezis-Dupaigne-Tesei Sel Math (2005)

When t = 0, (1.13 ) has a nontrivial nonnegative solution of for p < g;;and does not
have nonnegative distributional solutions for p > g;;.
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Hardy operator

e Guerch and Véron, Rev mat Iberoamericana 1991
o u > po, g : R — Ris a continuous nondecreasing function such that g(0) > 0

T_—2

oo —-1-—"
[ = a-ansT T ds < (1.14)
1
ou=po, k>0,N>3, g:R— Risa continuous nondecreasing function such that
g(0) > 0and
oo N-—2
/ g (kt NT2 lnt> t72dt < oo, (1.15)
1
semilinear Hardy problem
Lou+g(u)=01in Q\ {0}, w=0 on I (1.16)

has a classical solution uj, € C?(2\ {0}) such that lim | _,o ;ki((z)) =k.
©
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Hardy operator

e Cirstea, American mathematical society 2014

The positive solution of semilinear Hardy equation £,,u + g(u) = 0in Q\ {0} has
three possible singularities at the origin:

. . u(x) . u(=)
either zhgb B(e) 400 or glino B, () € (0,4+00), (1.17)
- u(z)
or g}% e € (0, +00). (1.18)

Related elliptic problem with boundary Hardy potential:

e Gkikas-Véron, NA 2015

e Nguyen, CVPDE 2017:

e Marcus-Nguyen, Math Ann 2019;

e Bandle-Marcus-Moroz, Israel Journal of Mathematics 2017
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Hardy operator

Some questions

e When y = 0, &g(z) = |z|>~N if N > 3and ', = 1, function & verifies the
distributional identity

[/, BoLogde = cot(0), V6 € CERY)
R
e For i1 € [p0,0), there holds that
/ O, L6 dx = / TuLuéde =0, V¢eCERY) (1.19)
RN RN

For 1 € [po,0), the Dirac mass can not be used to express the singularities of the
function ®,, or I', in the traditional distributional sense.

o Especially, when 1 > 0 large enough, the distributional identity (1.19 ) for &, is not
well-defined.



Isolated singular solutions
°

Outline

e Isolated singular solutions
@ Fundamental solution
@ Nonhomogeneous problem
@ |dea of proofs



Isolated singular solutions
€000

Fundamental solution

New distributional identity

When p > po, ®, and T',, satisfy £,u = 0in RV \ {0}.

Theorem

Let dyu(z) = T'u(z)dzand

c;__A_zTr;E(‘gO v (2.1)
Then
[ #uLi© v = cut0), Ve e CARY), @2)
R
where

2V — o SN i > o,
G =
s if p=po.

e H. Chen, A. Quaas and F. Zhou, On nonhomogeneous elliptic equations with the
Hardy-Leray potentials, Accepted by JAM, arXiv:1705.08047.
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Fundamental solution

e In fact we show that
Ly Lu(Pu) = cudo. (2.4)
In particular, for u =0, ', = 1, £}, = —A and (2.4 ) reduces to

—Adg = codp.

e Observation: 7— () + 74+ (1) = 2 — N, for ¢ € C2(RY), we use test function T',,¢,

0 /  L(®,)Tuéda
RN\B, (0)
.

* xX
/ L PuLi () dy +/ (V‘I)u sl = VT - ‘i’u) & dw
RN\ B,.(0) 8B,.(0) || ||

—/ 3,7, (ve i) dw.
8B,(0) ||

e Here @, is said to be a fundamental solution of £,,. We note that the fundamental
solution ®,, keeps positive when 1 < o and changes signs for p = po.
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Fundamental solution

Bounded domain

In the bounded C? domain € containing the origin,

Lou=0 in Q\ {0},
u=0 on S, (2.5)
Yz)=1

ill}l%) u(z)®,

has a unique solution ¢, .

Let ®, o be the solution of (2.5 ), then

[ BunLi© = ck0), vEeH @) (2.6)
Q
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Fundamental solution

Approximation of the fundamental solution

Let {6}~ be a sequence of nonnegative L> functions that
supp d, C B, (0), where r,, — 0 as n — +o0,

0n — 0o as mn — +oo in the distributional sense.
For any n, the problem
Luu=cudn /T, in Q\{0},
u=0 on 0f, (2.7)
iig%u(x)'@;l(x) =0
has a unique solution w,,.

Then
lim wn(z) = Pua(z), Ve {0}

n——+oo
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Nonhomogeneous problem

We consider nonhomogeneous problem
Lyu=f in Q\ {0}, u =0 on 0. (2.8)

Theorem

Let > po, f be a function in C% (X \ {0}) for some 6 € (0,1).
(i) Assume that
/Q |f] dyu < 400, (2.9)

then problem (2.8 ), subject to lim0 u(w)q);l (z) = k with k € R, has a unique solution
z—

uy, which satisfies the distributional identity
[ uti©dv= [ fean ekt veedy@. @10

(it) Assume that f verifies (2.9 ) and u is a nonnegativesolution of (2.8 ), then u
satisfies (2.10 ) for some k > 0.

(it2) Assume that f > 0 and

lim fdyu = +oo, (2.11)
r—0t JO\B,.(0)

then problem (2.8 ) has no nonnegativesolutions.




Isolated singular solutions
00000

Idea of proofs

Part 1: existence for f € L' (Q,dv,)

Lemma

Assume that f € C?(Q) for some 6 € (0,1), then

L:Mu:f an\{0}7
u=0 on 0, (2.12)

3 —1 _
3310 uw(z)®, " (z) =0

has a unique solution v satisfying the distributional identity:

Justp©dn = [ fean., veeci@. (2.19)
e The case p1 > po. Indeed, for i > o, we can choose 7o € (7— (1), min{2, 7 (u)}),
and denote
Vo(z) = |z|™, VzeQ)\{0}.
Then

LuVo(x) = ex|z|™72,

where ¢, = p—710(70 + N — 2) > 0.
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Idea of proofs

Since f is bounded, there exists ty > 0 such that
|f(@)] < tocr 2|72, Vo € Q\ {0},

then toVp and —toVy are supersolution and subsolution of (2.12) respectively.

eThe case u = po and N > 3.
o u +— uy is decreasing in [uo, 0).
o a uniformly bound for u,, for p > po

V(x) = [2|7+#0) — (sola])?, VaeQ\{0},
where sp > 0and V > 0in Q \ {0}. Then there exists ty > 0 such that
uy <tV in Q\ {0}
For ¢ € C3-1(9), there exists ¢ > 0 independent of 4 such that
L5 < cliéllopria) + |N|H€||c(1)(n)\x\71-

o From the dominate monotonicity convergence theorem, there exists u,, < toV such
that

Uy = upy as p— pd ae in Q andin LYK, |z| 7 dy,)
and

_/Qum)ﬁ;o (&) dypo = /Qfgdfyuo
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Idea of proofs

Part 2: nonexistence for f ¢ L*(Q, dv,.)
e From (2.11) and the fact f € C?(Q\ {0}), for any r,,, we have that
lim f(z)dy, = 400,
70" /B, (0\Br(0)

then there exists Ry, € (0,rn) suchthat [ 0\ 5, (o) fdru = n-
Letd, = %F”fXBTn<O)\BR¢ (0)» then the problem
Lyu-T'y =0n in Q\ {0},
u=0 on 09,
lim u(x)@;l(x) =0

x—0

has a unique positive solution w,, satisfying

/wnﬁﬂ(l“uf)dm:/ Sntde, VEe€CH(Q).
Q Q
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Idea of proofs

e Forany &€ € C3-1(2), we have that

/ wn Ly, (§) dy, = / dnédx — £(0) as n — 4oo.
Q Q
Therefore for any compact set K C Q \ {0},

lwn — 2pallcr(xy =0 as n— +oo.

Fix zo € Q\ {0} and r¢ = w and K = Br, (o), then there exists
no > 0 such that for n > ng,

wn 2 P i K, (2.14)

o Let u,, be the solution of
Lyu-Ty =ndy, in Q\ {0},
u=20 on 0L,

: —1() —
g!m)u(x)@u () =0,

thus, together with (2.14 ), we have that
Up = NWp > gq),u,ﬁ in K

and
uf(zo) > un(wo) = 400 as n — +oo,
which contradicts that ¢ is classical solution of (2.8 )
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Idea of proofs

Part 3: nonexistence when p < o

Assume that i < po and f is a measurable nonnegative function, then problem (2.8 )
has no nontrivial nonnegative solutions.

Sketch of the proof. Let up be a nontrivial nonnegative solution of (2.8 ).

XBr (z0)

)

Uy
Luguo = (ko — H)W +f > (ko — Keo EE

When N > 3, for z € By (0) \ {0},
 N-2
uo(z) = (ko — w)e0Guo X B, (w)] = colzl™ 2,

then

U _
/ (1o — 1) o5 + fldyug > Co/ ||~ da
Q\B,(0) || Brg (0)\Br(0)

— 400 as r— 0T,
We obtain that

Lpu = (po — ) 2+f in Q\ {0}, w=0 on 90 (2.15)

has no nonnegative solution.
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@ Main results
@ The ideas of the proofs
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Main results
The nonlinear Poisson equation
Lou+g(u)=v in Q, u=0 on 99, (3.1)

where 1 > po, g : R — R is a continuous nondecreasing function such that
g(0) > 0 and v is a Radon measure in Q.

e we denote by M(Q*;T",.), the set of Radon measures v in Q* such that

/*Fud|z/| ;= sup {/Q*(d\u\ 1 CeC(N7),0<(¢< FH} < 00, (8.2)

where Q" = Q\ {0}.

e we denote by M(;T',) the set of measures v on Q2 which coincide with the
above natural extension of v|q«€ M (Q%;T,). fv € M (Q;T,) we define
the measure I",v in the following way

/Cd(I‘uy) = sup{/ nludv :m e Ce(7),0<n < C} forall ¢ € C.(R2), ¢ > 0.
; v (3.3)
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Main results

o We denote by 9(; T',.) the set of measures which can be written under
the form
V= VLS)*+I€6(), (34)

where v|qo-€ M(2;T,) and k € R.
e We denote Q":= Q \ {0}, p(x) = dist(z, dQ) and

Xu(Q) = {€ € QU@ N C' @) : |alLig € L¥(@) }. (3.5)

Clearly, C;' (Q) C X,.(Q).

Definition

o We say that u is a weak solution of (3.1 ) with v € M(Q; T,,) such that
v =v|ao«+kdo if u € L' (Q, |z| " dy.), g(u) € L' (Q, pdry,) and

/ [ulst + g(u)e] dy, = / €d(T,v) + c,ke(0) forall € € X,(Q). (3.6)
Q Q
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Main results

e the Dirac mass at 0 does not belong to M(2; T',,) although it is a limit of
{vn} CM(Q;T,).

Definition

o A continuous function g : R — R such that rg(r) > 0 for all » € R satisfies
the weak A,-condition if there exists a positive nondecreasing function
t € R — K (t) such that

lg(s + )| < K(t) (lg(s)| + |g(t)]) forall (s,t) € R xR s.t. st >0. (3.7)

It satisfies the Ax-condition if the above function K is constant.

e Critical exponent

" 2
pp=1——. (3.8)

T—

Note that p;, < pg if u > 0and p;, > pg if u < 0.
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Main results

e H. Chen and L. Véron, Weak solutions of semilinear elliptic equations with
Leray-Hardy potential and measure data, Mathematics in Engineering 1, (2019).

Theorem

Letp>0ifN=2,u>uoif N >3andg:R — R be a Hélder continuous
nondecreasing function such that g(0) = 0. Then for any v € L*(Q,dv,),
problem (3.1 ) has a unique weak solution u, such that for some c¢1 > 0,

Hu’/HLl(Q,lz\*ldv“) <a HVHLl(Q,d'yu) :

Furthermore, if u,, is the solution of (3.1 ) with right-hand side v’ € L*($, dv,), there

holds
[ uwlcie + lgtule] d < [ ()sgntu)ed (3.9)
Q Q
and
/Q [(uo) 4 L3€ + (9(uw))+E] dyu < /S]VSgn+(uy)£d'yu (3.10)
forall¢ € X, (), & > 0, wheresgn(t) = 1 ift > 0, sgn(0) = 0 and sgn(t) = —1 if
t <O0.

e Remark: (3.9 ) and (3.10 ) are Kato’s type Inequalities; these inequalities plays an
important role in the derivation of uniqueness.
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Main results

Now we state the existence of weak solution in the subcritical case with 1 > .

Theorem

Let i > o and g : R — R be a nondecreasing continuous function such that
g(r)r > 0 for any r € R. If g satisfies the weak A, -condition and

/ (g(s) — 9(_5))5_1_““{@21«173}0{3 < 0. (8.11)
1

Then forv € M. (Q;T,,) problem (3.1 ) admits a unique weak solution u,, .
Furthermore, the mapping: v — w, is increasing.

o Forv =v|o« + cukdo € M4 (Q;T,.) and g(t) = [¢t[P~'¢, problem (3.1 ) has a
unique solution if

()1 <p<p)inthe case v o+ =0;

(i) 1 < p < pg inthe case k = 0;

(i) 1 < p < min {p};, p5 } in the case k # 0 and v |~ # 0.

e Examples: Lete; = (1,0,---,0) e RN and v = >2% | andey + kdo, where

T

an > 0is suchthat >°° | ant < +o0.
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Main results

Theorem

Assume that N > 3, u = uo and g : R — R is a continuous nondecreasing
function such that g(r)r > 0 for any r € R satisfying the weak A2-condition
and

+oo
/ (9(s) — g(—5))s™ '~ F=2ds < +o0. (3.12)
1
Then forany v = v|q« + ¢, kdo € M (4 T,.) problem (3.1 ) admits a unique

weak solution w,, .
Furthermore, if v| o~ = 0, condition (3.12 ) can be replaced by the following

weaker one
o N42 __ N+42
(g(t) —g(—=t)) (Int)v=—2¢ N=2dt < co. (3.13)
1
. Nt oo aN .
e Examples: v = kdp and g(t) = t V-2 (Int)” with 7 > =5, (3.1) has an isolated

singular solution u; > 0.
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Main results

In the supercritical case, we set gp(u) = |u|P~ 1y, i.e.

Luu+gp(u)=v in Q, u=0 on o, (3.14)

Assume that N > 3. Thenv = v|qox € M(;T,,) is gp-good if and only if
forany e > 0, ve = vx . IS absolutely continuous with respect to the c, ,, -Bessel
capacity.

Finally we characterize the compacts removable sets in €.

Theorem

Assume that N > 3, p > 1 and K is a compact set of Q). Then any weak solution of
Luu+gp(u) =0 in Q\ K (3.15)

can be extended a solution of the same equation in whole Q2 if and only if

(i) copr (K) =01if0 ¢ K;

(i) p > p}, if K = {0},

(i) co pr (K) = 0 if . > 0,0 € K and K \ {0} # {0},

(iv) ca pr (K) = 0 andp > p;, ifu < 0,0 € K and K \ {0} # {0}.
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The ideas of the proofs

Part 1: linear problem

Ifv € M(T,), then

Lyu=v in Q, u=0 on 9. (3.16)

admits a unique solution in L* (2, |z|~1d~.), denoted by G, [v], and this defines the
Green operator of L,, in Q with homogeneous Dirichlet conditions.

o Let {vn} C L1(Q, pdv,) be a sequence such that v, > 0 and
/gFuundx - /fd(FHu) forall ¢ € X, (),
Q Q
with n € N, the weak solution of

Lyun =vy in Q, u, =0 on 9N (3.17)

satisfies that for any open sets O verifying O \ B.(0) for some ¢ > 0 independent of
n but dependent of O’

Hun”Wl-,q(o) <c ||V||sm(sz,1“,,,) :

That is, {un} is uniformly bounded in W29 (2 \ {0}).

loc
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The ideas of the proofs
e Let w C Q be a Borel set and the solution v, of

Liy =z xew in €,
o = lal " in 518)
Y =0 on Of)
has the property

lim ¢, (z) =0 uniformly in B
|w[—0

and

/&dvﬂ(m) = /l/nF,ﬂZdew < supww/unrudz — 0 as |w| — 0.
w |(£‘ w Q w

This shows that {ux} is uniformly integrable for the measure |z|~1d~,.
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The ideas of the proofs
Part 2: Isolated singular solutions

Letk € R and g : R — R be a continuous nondecreasing function such that rg(r) > 0
for allr € R. Then problem

Lyu~+ g(u) =kdp in Q,
. ) (3.19)
u=20 on 0f)
admits a unique solution v := uys, if one of the following conditions is satisfied:
(i) N =2, p > po and g satisfies
/ (9(s) — g(—s)) s~ Pids < oo; (3.20)
1

(i) N > 3, p = po and g satisfies (3.13 ).

o For u > po [Guerch-Veron 1991] for any k € R there exists a radial function vy, ;
(resp. vy, r) defined in BT (resp. By,) satisfying

Luv+gv)=0 in Bf (resp.in By), (3.21)
vanishing respectively on 9B, and 9B and satisfying

oy V1@ o vkR(2) R (3.22)
0 <I’IL("E) z—0 fI)!L(:E) Cp
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The ideas of the proofs

e For pn = po, [Guerch-Veron 1991] shows the existence of isolated singular solution if
for some b > 0 there holds

oo N-—-2 2
I ;:/ g (bt NF2 1nt> t72dt < oo, (3.23)
1

set s = t N3 and 8 = £2b, then
N+2 [
I= + / g(Bslns)s™ e 2ds

Set 7 = Bslns, then

Inlns Ing
Ins Ins

1n7':1ns(1+ ):>lns:1n’r(1+o(1)) as s — oo.

We infer that for € > 0 there exists s > 2 and 7« = s¢ In s such that

N / g(Bslns)s e st N
(1-e)BN-2 < 5" T3 <(14e)pN-2
/ g(r)(InT)N=2 7 N-2dr

€

Thus, I < +oco is equivalent to (3.13).

(3.24)
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The ideas of the proofs

Part 3: Measures in Q*
Lyou+g(u)=v in Q, u=0 ond2 (3.25)

Lemma

(¢) Let N =2, u >0, 8—(g) <0< B+(g), where

B+(g) = inf {b >0: /wg(t) e~Pdt < 00} ;
! (3.26)

B—(g9) = sup{b <0: /_:g(t) ebtdt > foo} .

then forv € M(Q*;T,) problem (3.25 ) admits a unique weak solution.

(it) Let N > 3, u > po and g satisfy (3.12 ), then forv € Mm(Q*;T',,) problem (3.25 )
admits a unique weak solution.

e Examples: Lete; = (1,0,---,0) € RN and v = 3°°° | andey , where a,, > 0is

such that 3°°° | an™ < 4oo.
The critical exponent - is sharp in this case.
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The ideas of the proofs

e The case that v > 0. For o > 0 small, we set Q° = Q\ {B,} and v, = vx,, and
for 0 < e < o we consider the following problem in Q¢
Luu+g(u) =vs in QF,

u=0 ondLQ, (3.27)

u=20 on OBe.
By monotonicity of e — u. and uniform upper bound, we can pass to the limit to obtain
a weak solution u,,, of

Lyu+g(u) =vs in Q, u=0 ondQ. (3.28)

Using monotone convergence theorem we infer that w,,, — w in L (€, |=|~'d~,) and
9(uv,) — g(uy) in LY(Q, dv,). Hence u = u,, is the weak solution of (3.25).

e The case that a signed measure v = v — v_. We approximate the solution by
uniform bounds and the argument of uniform integrability.
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The ideas of the proofs

Part 4: Reduced measure

If k € N, we set
min{g(r), g(k)} if »>0,
9k (r) = . (3.29)
max{g(r),g(—k)}  if r>0.
for any v € M4 (£;T,) there exists a unique weak solution u = wu,, 5, of
Luu+gp(uw)=v in Q,
pt + gr(u) (3.30)
u=0 on ON).

Proposition

Letv € M4 (Q;T,,). Then the sequence of weak solutions {u,, 1.} of

{ Lou+ gp(u) =v in Q,

(3.31)
u=20 on 992

decreases and converges, when k — oo, to some nonnegative function v and there
exists a measure v* € M (Q;T,) suchthat0 < v* < v andu = u,».

The proof is similar to Proposition 4.1 in Bidaut-Véron and L. Véron, Inventiones Math.
(1991).
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The ideas of the proofs
olety, v/ € My (QT,). Ifv <vandv =v*, thenv' = v/*

e Assume that v = v| g« +kdg € M4 (Q;Ty), then v* = v* | o= +k*5o € M4+ (Q;T,)
with v* | o+ < v+ and k* < k. More precisely,

(i) If w > po and g satisfies (3.11), then k = k*.
(ii) If u = po and g satisfies (3.13 ), then k = k*.
(i) If & > po (resp. u = o) and g does not satisfy (3.20 ) (resp. (3.13)), then £* = 0.

o If v € My (T ,), then v* is the largest g-good measure smaller or equal to v.
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Outline

e Singular point on the boundary
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2
o Forpu > ::—NT,

2

IV¢|? + C—dxzo forall ¢ € C§°(RY). (4.1)
N N |z]? *

R+ JRJr

e £,,-harmonic functions vanishing on 9RY \ {0},

ré=11 (o) if > pa,
Yu(r,o) =r+1(o) and ¢u(r,o) = { N3
T2 (o) i =,
(4.2)
where 41 (o) = 72 generates ker(—A’ + (N — 1)I) in H} (S} "), and where

||

2—N : 2—N
ay = aq(p) = — +4/n+N2/4 and a_ :=a_(u) = — \/u+ N2 /4.
(4.3)

o Put dv,(z) = vy, (x)dx. We define the ~,-dual operator Ly, of L, by

2 _
L1¢=—A¢ - 7<vw,vg> forall ¢ € C2(®Y), (4.4)
I
and we prove that ¢, is, in some sense, the fundamental solution of

Lyu=0 inR_‘]\_f, u = dg on ﬁRf
in the sense that

/ buLlCdyu(z) = buC(0) forall ¢ € C(RY) N CHH(RY)
RY
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e Brezis-Vazquez, Rev. Mat. Complut. 1997
In a bounded domain €2, satisfying the condition

(c-1) 0€0Q, QCRY and (z,n) =O(|z|?) forall = € 0%,
Hardy inequality

? _C 4 foral o 4
/\VC\ +u1/‘ B /szln (MRal)dz orall ( € C°(Q),  (45)

o let
£} .= inf |Vv\2+—v dz:v € CHQ), [ vidz =1} >0.
g Q |2 Q

This first eigenvalue is achieved in HJ(Q) if > 1, or in the space H(Q2) which is the
closure of C1(£2) for the norm

v ||U||H(Q) = \// |V |2 + WvZ)

when = py. We set

HI(Q) Iflu>.u’17
H,(Q) = 0
w(@) { H($) if p=p1.
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Chen-Veron JDE 2020
o Under the assumption (C-1) the imbedding of H,,(£2) in L2(£2) is compact. We
denote by vff the positive eigenfunction, its satisfies

Lyvl =01y in @, ] =0 on 9Q\ {0}. (4.6)
o there exist ¢; = ¢;(Q, 1) > 0, j = 1,2, such that
(4) 12 (x) = crp(@)|a|*+ (1 +o(1)) as = — 0, @)
(4) \V'yf}(xﬂ < 0278 (z)/p(x) forall =z e Q. .

o We first characterize the positive £,,-harmonic functions which are singular at 0.

Theorem

Let Q2 be a C? bounded domain such that0 € 9Q and . > 1. If u is a nonnegative
L,,-harmonic function in @ vanishing on By, (0) N (02 \ {0}) for some ro > 0, then
there exists k > 0 such that

. u(x) .
e
and
2
|22 u(@) _ T
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e Existence:

Theorem

Let Q be a C? bounded domain satisfying (C-1) and p > uy. Then there exists a
positive L,,-harmonic function in 2, which vanishes on 92 \ {0}, which satisfies

i (@) = p(@)|2|*~ "' (L +0(1)) as & — 0, (4.8)
ifp > p1, and

62, (@) = p(@)le|~ % (|Infal] + 1)(1 +o(1)) as @ -0, (49)

ifp=pa.

o ¢S} is the unique function belonging to L* (€2, p~*d~f}), which satisfies
/ﬂuﬁ;gdyf} = ke, (0) forall ¢ € X, (Q), (4.10)
where d~i? = ~f}dz, here and in the sequel the test function space
Xu(©) = {¢ € C@) : 7 € Hu(®) and pL;¢ € L=}

Furthermore, if  is a nonnegative £,,-harmonic function vanishing on 92 \ {0}, there
exists k > 0 such that u = k¢S
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e Denote by M(Q; 7{}) the set of Radon measures v in €2 such that

sup {/Cd|)\| :CEC(N),0< (¢ < 'yff} = /'yf}d|u| < +o0.
Q Q

Ifv e My (2 wf}) the measure wf}u is a nonnegative bounded measure in . Put

o 2@ A2—tnn) AR —tn)
5“ (@) = Onx - tg%l+ t B t—1>r(§1+ p*(x — l‘,nz))7 Vo € 9\ {0}
(4.11)
and then
clzjo+r 1 < Bf}(z) < cieslz|*+~1 forz € 9Q\ {0}. (4.12)
o Denote
Bu(z) = |z|*+~1 forz € RN \ {0}. (4.13)

Denote M(0$2 \ {0}; B.) the set Radon measures A in 92\ {0} such that

sup {/ CdIAl: ¢ € Ce(82\ {0}), 0 < ¢ < ﬁu} :/ BudIA| < +oo.
oQ\{0} oQ\{0}
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o the existence and uniqueness of a solution to

{ Lyu=v in Q,

4.14
u=M\+kdo on 0. ( )

Theorem

Let Q2 be a C* bounded domain satisfying (C-1) and pu > p1. If v € MMy (Q;+2),
A € M(0Q; B,) and k € R, the function

u =G V] + KT\ + k¢l := H[(v, \, k)] (4.15)

is the unique solution of (4.14 ) in the very weak sense thatu € L' (%, p*ldwf}) and

/Q wCi¢dy? = /Q cd(v2) + /8 C(BN) + heuC(0)  foralC € X,(@). (4.16)

Theorem

Let Q be a 0% bounded domain such that 0 € 0Q satisfying (C-1), u > 1 andu be a
nonnegative L,,-harmonic functions in Q2. Then there exist X € M(9Q; B,) and k > 0,
such that o o o

u=K2[N + k¢2 = H2[(0, A, k)].
The couple (X, kdo) is called the boundary trace of u.




Thank you!
Happy birthday!!!
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