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The Keller-Segel system in R?.

up =Au—V - (uVv) in R? x (0, 00),

1 1
(=AY ty = — log ———u(z, t) d.
v=(—A)"u 27T/RZ og‘X_Z‘u(z,)z
u(-,0)=up >0 inR2
is the classical diffusion model for chemotaxis, the motion of a
population of bacteria driven by standard diffusion and a nonlocal

drift given by the gradient of a chemoatractant, a chemical the
bacteria produce.

u(x, t)= population density.

v(x, t)= the chemoatractant



Basic properties.
For a regular solution u(x, t) defined up to a time T > 0,

uy=V-(uV(logu—v)) inR2x(0,7)
—Av=u

e Conservation of mass

d
at Joo u(x, t)dx = Rli_r>noo /83R uV(logu —v)-vdo
= lim / (Vu-v)—u(Vv-v)do = 0
R—o0 9Br

e The second moment identity. Let M = [, u(x, t) dx, then

d

M
I 2 — -
dt Jre |x|“u(x,t) dx = 4M (1 )

8w



d/ Ix[2u(x, t) dx = / Ix[2(Au -V - (uVv))dx
dt Jpo R2

= [ A(x|?)udx + / (2x - Vv)udx
R2 R?

—4I\/I—|—2/ u(x - Vv)dx.
R2

From v(-,t) = & Iogﬁ «u(-, t) we get

—2/ u(x-Vv)dx = = // (x, t)u yt x (x 2)dxdy
R? R2 JR? x =yl

_1 uix Dl )XY (x =)
— 50 [ [ ety 0= gy
M2

= o

Hence )
M

2
t)dx = 4M — —
xPu(x, £) dx -

qa
dt R2



Then, if the initial second moment is finite we have
‘ 2 ' 2 M
/ u(x, t)|x|“dx = / u(x,0)|x|“dx +4M(1 — —) t.
R2 R2 87T

As a consequence,
e If M > 8m the solution cannot remain smooth beyond some
time. u(x, t) blows-up in finite time.

e If M = 8w The second moment of the solution is preserved in
time.

e If M < 8w second moment grows linearly in time while mass is
preserved (as in heat equation): the solution “diffuses”



e If M < 87 the solution exists classically at all times t € (0, c0).

o If M < 8w then u(x, t) goes to zero and spreads in self-similar
way. (Blanchet-Dolbeault-Perthame (2006); Jager-Luckhaus
(1992).)



e If M > 8w blow-up is expected to take place by aggregation
which means that at a finite time u(x, t) concentrates and forms a
set of Dirac masses with mass at least 87 at a blow-up point.

e Examples of blow-up with precise asymptotics, and mass slightly
above 871 were found by

e Herrero-Veldzquez (1996), Veldzquez (2002, 2006) Raphael and
Schweyer (2014).

e Collot-Ghoul-Masmoudi-Nguyen (2019): New method, precise
asymptotics and nonradial stability of the blow-up phenomenon.




ur =V - (uV(logu — (—A)"tu))

What special thing happens exactly at the critical mass 877

E(u) = /]1%2 u(logu — (—A)~u) dx

is a Lyapunov functional for (KS). Along a solution u(x, t),
OtE(u(-,t)) = — /%2 ulV(log u — (—A)1u)|?dx < 0.
and this vanishes only at the steady states v = log u or
—Av=e"=u inR2
the Liouville equation.



~Av=¢e"=u inR?

All solutions with finite mass fRQ u < +oo are known:

U/\’E(X)dx = 871', E(U)\,f) = E(Uo) for all )\,5,
R2

and Uy¢ — 8md¢ as A — 0.



The functions U, ¢ are the extremals for the log-HLS inequality

min  E(u) = E(Up)

Jg2 u=87

The functional E(u) loses the P.S. condition along this family,
which makes possible the presence of bubbling phenomena along
the flow. The problem is critical.




The critical mass case fR2 Uup = 8w

e Blanchet-Carlen-Carrillo (2012), Carlen-Figalli (2013):
Asymptotic stability of the family of steady states under finite
second moment perturbations.

e Lopez Gomez-Nagai-Yamada oscillatory (2014) instabilities.

e Blanchet-Carrillo-Masmoudi (2008) If in addition to critical mass
we assume finite second moment

/ x|2ug(x) dx < +o0
R2

then the solution u(x, t) aggregates in infinite time: for some
A(t) — 0 and some point g we have that (near q)

1 X —
u(x,t) ~ NGE Uo ( )\(t)q> as t — +00

no information about the rate.



e Chavanis-Sire (2006), Campos (2012) formal analysis to derive
the rate \(t).

e Ghoul-Masmoudi (2019) Construction of a radial solution with
this profile that confirms formal rate

1
Vl0ogt

Stability of the phenomenon inside the radial class is found. Full
stability left as an open problem.

A(t) ~

as t — +00.



Theorem (D4vila, del Pino, Dolbeault, Musso, Wei, Arxiv
2019)

There exists a function uj(x) with

/ ug(x)dx = 8, / Ix[2ug(x)dx < +oo
R? R?

such that for any initial condition in (KS) that is a small
perturbation of ugj and has mass 87, the solution has the form

1 xX—q
u(x, t) = NOE Uo < o) ) +0o(1)
1

A(t) = Jiogt (1+0o(1)),

as t — +o00.



Let us explain the mechanism in Theorem 1. We look for a
solution of

S(u):=—u+V - (uV(logu — (-A)"tu)) =0

which is close to %Uo(y), y =3 where 0 < A(t) = 0Oisa
parameter function to be determined. Let

« X

2 Uo(y)x. y= T

Here x(x, t) = xo(|x|/V/t), where xo is smooth with xo(s) = 1
fors <1land =0 fors>2and a(t) =1+ O()‘—:) is such that
f]'RQ Udx = 8r.

We look for a local correction of the form u = U + ¢ where

U(x,t) =

> %

1,
plx,t) = 50 t), y=



We compute for p(x, t) = % (v, t),

S(U+ ) = S(U) + Lulel = ¢ + O(llol|)

Lylp] = Bp = VV -V = VU -V(=A) T~ A Lo[g]
and for |x| < v/t we have (Vo = log Up )
Lo¢] = Byd = VVo - V= VUp - V(-A) ¢

We will have obtained an improvement of the approximation if we
solve

Lol[g] + A*S(U) =0, ¢(y,t) = O(ly|™*~")



Let us consider the elliptic problem

Lo[¢] = E(y) = O(ly|®7?) inR?

Which can be written as

V- (hVg)=E(y), g= U~ (—A)to

Assume E radial E = E(|y|) and [, E = 0. We solve as

_ [T dp - rrdr = I
n= [ i | Ewmer = o)




Now we solve, setting 1) = (—A) 1,
A+ Upp = —Upg  in R2.

It can be solved for ¢» = O(|y|~2~7) (Fredholm alternative) iff

/ gZo =0,
JR2

where Zy = (y - VU + 2Up). Now,

/ YPE()dy = / V- (Ue¥y[?)gdy = 2 / Zogdy
R2 RQ R2



Hence we can solve as desired (¢ = O(|y|*7) if

/ Y[PE(y)dy =0 =/ E(y)dy
R? R2
Now, the equation we need to solve is

Lolg] + A*S(U) =0, ¢(y,t) = O(ly|™*7")

So we need

/ S(U)xPdx = [ S(U)dx = 0.
R2 R2



S(U)=-U;+V-(UV(logU — (-A)'U) =51 + S,

We clearly have [, S(U) = 0.
A direct computation (that uses [, U = 8) gives

/2 x2S, = 0.
R

/ SixP = — / Udlx? = at(/ UIx2) = 0
. R2 . ]R2 . R2

if and only if [z, U[x|? = constant.

Finally



We have

/ U(x, £)|x2dx = /X Yo(s/VOU(p/NA 2 p3dp
JR2 0
AV

N/ U(r)ridr ~ X2 log(v/t/))
0

Thus the requirement is A% log(v/t/A\) = c?, and we get

_c log(log t)
0= et 0 (Mgt




For the actual proof:
We let \(t), a(t) be parameter functions with

1
Vl0ogt

The function U = a\™? U0(§)X is defined as before. We look for
a solution of the form

At) = (1+0(1)), aft)=1+o(t™).

u(x,t) = U\ o]+

ol 1) = myg6” (5.8) + 67 (x, )
where 7(x, t) = xo (‘\/‘)

The pair (¢™, $°V) is imposed to solve a coupled system, the
inner-outer gluing system that leads to u(x, t) be a solution



The system involves the main part of the linear operator near the
core and far away from it.

Lyle] = Dxp — ViV - Vo -V, U-V(-A) 1y
Near 0, Ly[p] = A *Lo[¢] for o = A2¢(y, 1), y = X. Away:

4 4)2
—VyV ~ 7X’ ViU ~ X
|x|2 x>

So, setting r = |x|, far away from the core the operator looks like

4
Luyle] = Dxp + ;CMD

5

(for radial functions ¢(r), Ly[e] = ¢” + 2¢', a 6d-Laplacian).



The inner-outer gluing system is, up to lower order terms,

4 .
09 = D™ + — 0,6 + G(N, a, ¢")

)\)\ qu 4 gbin

G\ 6") = (L =m)F +2VnVag + (A + ~0m) 15 + -

2at¢in _ Lo[gbin] + H()\./(y,gbO”t) in R2
H(\, @, ¢ = AU +y - V, U(y)) — AV, Up - Vy (—Ay) 1ot

where Lo[¢] = Ayp — V, Vo - Vyd — Vy Uy - Vy(=Ay) 1o, We
couple this system with the “solvability” conditions

LIy PHO a6 ) dy = [ HOL a6y, 0) b

R2

for all t > 0.



Key step: Building up a linear operator that nicely inverts
Noe = Lol¢] + h(y,t)  in R? x (0,00),

|h(y, )] < ~(t)ly] >, v = |AoAo| under the conditions

/ yPh(y, t)dy = 0 = / by, t) dy
JR2 JR2

producing a “rapidly decaying solution”

|6y, )] S v (B)ly[ 777

The decay makes the system essentially decoupled.



Blow-up in a finite time T > 0

Theorem 2 Given points g1, ... gk € R?, there exists an initial
condition up(x) with

/ up(x)dx > 8k,
R2

such that the solution of (KS) satisfies for some T > 0

k
1 X —4q;
u(x, t) = Z ¥ OL Uo < /\j(t(; ) + 0(1)

(T — t)%e_% Hoe(T=6)l (1 4 o(1)).

<
—~
~
~
I
2

ast— T.
Previous results: Velazquez 2004, Raphael-Schweyer, 2014,
Collot-Ghoul-Nguyen-Masmoudi Arxiv 2019.



In the previous result, as t — T,

k

u(x,t) = Z 8mdg; + a small function
j=1

Multiple Blow-up at a single point:

Theorem
There exists a solution to (KS) such that ast — T,

u(x,t) = 8kmdo(x) + a small function



The profile looks at main order for some o, 3 > 0
k
1 x—aivyT —t
t) = U d o(1

A(t) = B(T — t)2e oV IB(T=01(1 1 o(1)),

Jj=1

aj's are vertices of a k-regular polygon, such that

a; = 2vk — 12"k

Formal-numerical asymptotics for this solutions were previously
found by Seki-Sujiyama-Veldzquez (2013)



A related problem: The harmonic map flow R? s S?



The harmonic map flow from R? into S°.
u:R2x[0,T)— S

ur = Au+ |[VulPu inR?x(0,7)
u(-,0) = up in R?

e We have that |up| =1 = |u| = 1.

e (HMF) is the L2-gradient flow of the Dirichlet energy:

0 ' 2 2
at/RQVuc,m ——2/R2ut



Finite energy harmonic maps R? — S2: critical points of Dirichlet
energy. Solutions of

Au+|VulPu=0 inR? |u=1, / |Vul?> < 400
R2

Example:

2y 5

1+

Uly) = <y|2y|1> , yeR%
1+]y[?

the canonical 1-corrotational harmonic map.



Known :

e Blow-up must be type Il, it can only take place at isolated
points, by bubbling of finite-energy harmonic maps (Struwe, Tian,
F.H. Lin, Topping 1985-2008).

eContinuation after blow-up, uniqueness: Struwe, Topping, Freire,
Rupflin.

e Examples known: in the radial 1-corrotational class only.
Chang-Ding-Ye 1991, Raphael-Schweyer 2013.



Our main result: For any given finite set of points of Q and
suitable initial and boundary values, then a solution with a
simultaneous blow-up at those points exists, with a profile
resembling a translation, scaling and rotation of U around each
bubbling point. Single point blow-up is codimension-1 stable.



The functions

Usga(x) = QuU (X . ") |

With/\>0,q€R2anda€]R{and

0. [l - {eia()/1+iy2)]
a | Y2 = v3 ’
Y3

is the a-rotation around the third axis.
All these are least energy harmonic maps:

/R2 ‘VU,\g‘u,‘z = 47.



Theorem (D4vila, del Pino, Wei, 2020)

Let us fix points qi, ..., qx € R2. Given a sufficiently small T > 0,
there exists an initial condition uy such the solution u(x,t) of
(HMF) blows-up as t 1 T in the form

k P
ug(x; t) = z_; Qai(t) u < Ai(t) ) + u(x) + o(1)

J
in the energy and uniform senses where u, is a regular function,

I<L,'(T — t)

N = hog(T o)

k
Vg (-, )7 = |Vu? + 47 " dg,
j=1



Construction of a bubbling solution k =1
Givena T >0, g € Q, we want

S(u) == —ur+ Au+|VulPu=0 inQx(0,T)

—&(t
u(x, t) = U(x, ) 1= Une)g(0),00) (%) = Quiey U (X A(ig )>

for certain functions £(t), A(t) and w(t) of class C*[0, T] such
that
f(T) =q, )‘( T) =0,

so that u(x, t) blows-up at time T and the point g. We want to
find values for these functions so that for a small remainder v we
have that u = U + v solves the problem.



x=¢(t)
NGB

We want, for y =

ur U(x, t) +1nQud(y, t) + My [®°(x, t) + W*(x, t)] |,

for a function ¢(y, t) with ¢(-,t) - W =0, and that vanishes as
t — T and that has space decay in y. 7 is a cut-off function
concentrated near the blow-up point,

Ny.[Z]:=2Z—(Z-U)U.

e $0 is a function that depends on the parameters and basically
eliminates at main order the error far away.

e U*(x, t) is close to a fixed function Zj(x) that we specify below.



We require for x = & + re'®, p(t) = \(t)e™(D),

0 __ 0o_“|P o
o — AP ; [ 0 ] =



We take

Z5(q) =0, divz(q) + icurlz5(q) # 0

For the ansatz

U~ Ux, t)4+0Qud(y, t)+My [0%(x, )+ (x, 1)], y = —— £(1)

with W*(x,0) close to Z;(x) we need the parameters to satisfy
specific relations.



In fact ¢(y, t) should approximately satisfy an equation of the form

Ao+ VU)o +2(VU-Vo)U(y) = E(y,t) = O(ly|3)
oy, t)-Uly) =0 inR?
o(y,t) =0 as|y| —

where E(y, t) is the error of approximation.
e E(y,t) depends non-locally on p(t) = \e™ through ®q(x, t).

e We need for solvability conditions of the form

| Ev.0-2in)dy = 0

where Z;(y) are generators of invariances under A- dilatons and
w-rotations for the harmonic map problem

AU+ |VUPU=0



These conditions lead to p(t) = A(t)e™(t) approximately satisfying

t=\(t)?
/ tp(S)S ds = 2(div z5(q) + icurl z3(q))) =: ag.
Jo -

We recall that a5 # 0 This implies that
[

3 = —lagle

for a unique w, € (—m, 7). It turns out that the following function
is an accurate approximate solution:

[log T|

w(t) = wy, Mt) = —|div z(q) + icurl z* _—
(¥ (8) = ~Jdiv 3(a) + ieurl 5 (0) o




Happy Birthday Marie Francoise and Laurent



