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General Scheme of the talk

•Multiplicity of large positive solutions in a class of one-
dimensonal superlinear indefinite problems. 

•Multiplicity and uniqueness of large positive solutions
in a class of one-dimensional sublinear problems. 

•Uniqueness of large positive solutions for sublinear
problems in a multidimensional context.  



A superlinear indefinite problem
(Molina-Meyer, Tellini, Zanolin and LG)  

The problem: 

−𝒖′′ = 𝝀𝒖 + 𝒂(𝒙)𝒖𝒑 in  (0,1), 
𝒖 𝟎 = 𝒖 𝟏 = ∞,

where 𝑝 > 1 is fixed, λ, b  are two
parameters, and  a(x)  is the
function plotted on the right. 

The weight function:  
a(x):



Bifurcation diagram for 𝜆 = −70

The value of 𝑢(α), in ordinates, 
versus the value of 𝑏, in abcisas

Some solutions along the
bifurcation diagram on the left.



Symmetry breaking of the first loop of solutions. Four pieces of

the bifurcation diagram for λ=-140, -141, -142 and -145.. 



Bifurcation diagram for 𝜆 = −300
Global bifurcation diagram Magnification of a turning point



Bifurcation diagrams for 𝜆 = −750, −760



Bifurcation diagrams for 𝜆 = −800,−1300



Bifurcation diagram for 𝜆 = −2000.

Every half rotation a new loop of

asymmetric solutions emanates

from the primary curve; it is

persistent for smaller values of λ.

In particular, for some particular 

values of the parameter 𝑏, the

number of large positive solutions

increases to infinity as 𝜆 ↓ −∞.



A one-dimensional sublinear problem

The simplest model: 

𝒖′′ = 𝒇 𝒖
(P) 𝒖′ 𝟎 = 𝟎

𝒖 𝑻 = ∞

where 𝑓 ∈ 𝒞1 0,∞ satisfies

𝑓 0 = 0, 𝑓 ≩ 0.

Associated Cauchy problem: 

𝒖′′ = 𝒇 𝒖

𝒖′(𝟎) = 𝟎

𝒖 𝟎 = 𝒙 > 𝟎
The solution is (globally) defined
in [0, 𝑇𝑚𝑎𝑥 𝑥 ) for some 

𝑇𝑚𝑎𝑥 𝑥 ≤ ∞.

It is explosive if 𝑇𝑚𝑎𝑥 𝑥 < ∞.



Theorem (Maire-LG)[JMAA 2018]: 

The singular problem (P) has a solution if, and only if, there exists
𝑥 ∈ 0,∞ ∖ 𝑓−1 0 such that

𝑻 = 𝑻𝒎𝒂𝒙 𝒙 ≡
𝟏

𝟐
𝒙׬
∞ 𝒅𝜽

𝒙׬
𝜽
𝒇

< ∞.

Thus, impossing the Keller-Ossermann condition, KO,  is impossing
that the maximal existence time of the solution, 𝑻𝒎𝒂𝒙 𝒙 ,  is finite. 



Theorem (Maire-LG)[JMAA 2018]: Suppose that 𝒇 𝟎 = 𝟎, 𝒇 𝒖 is

increasing and 𝑻𝒎𝒂𝒙 𝒙𝟎 < ∞ for some 𝒙𝟎 > 𝟎. Then, the problem

(P) has a unique positive solution for every 𝑻 > 𝟎.

By continuous dependence, 𝑻𝒎𝒂𝒙 𝒙 ↑ ∞ as 𝒙 ↓ 𝟎. Moreover, 𝑻𝒎𝒂𝒙

is strictly decreasing, and 𝑻𝒎𝒂𝒙 𝒙 ↓ 𝟎 as 𝒙 ↑ ∞, by a result of

Dumont, Dupaigne, Goubet & Radulescu [ANS 2007]

Since 𝑇𝑚𝑎𝑥 decays strictly, one can 

construct examples of non-increasing

functions, 𝑓𝑛 𝑢 , for which the problem

(P) possesses a unique positive large

solution. 

Thus, the strict monotonicity of

𝒇 𝒖 is far from necessary for the

uniqueness.  



Theorem (Maire-LG)[JMAA 2018]: Suppose that 𝒇 ∈ 𝓒𝟏 𝟎,∞ ,
𝒇−𝟏 𝟎 = {𝒙𝟎 = 𝟎, 𝒙𝟏, … , 𝒙𝒑}, 𝒇 𝒖 > 𝟎 for all 𝒖 ∈ 𝟎,∞ ∖ {𝒙𝟏, … , 𝒙𝒑}, 

and 𝑻𝒎𝒂𝒙(𝒚𝒋) < ∞ for some 𝒚𝒋 ∈ (𝒙𝒋,𝒙𝒋+𝟏), 𝒋 ∈ 𝟎, 𝟏, … , 𝒑 (𝒙𝒑+𝟏 = ∞).

Then, there exist 𝑻∗ < 𝑻∗ such that: 

a) (P) has at least 𝟐𝒑 + 𝟏 positive solutions for every 𝑻 > 𝑻∗

b)  (P) has a unique positive solution for every 𝑻 < 𝑻∗

A paradigmatic example is provided by the function

𝒇 𝒖 = 𝒖ෑ

𝒋=𝟏

𝒑

(𝒖 − 𝒙𝒋)
𝟐







𝒇 𝒖 = 𝒖ෑ

𝒋=𝟏

𝒑

[(𝒖 − 𝒙𝒋)
𝟐 + 𝝐]





The multidimensional problem:

Now, Ω stands for a bounded sub-domain of ℝ𝑁, 𝑁 ≥ 1,
with Lipschitz boundary, 𝝏𝜴, 𝑓 ∈ 𝒞1[0,∞) is an increasing

function such that 𝑓 0 = 0, satisfying the Keller-

Osserman condition, and 𝒂 ∈ 𝓒(ഥ𝜴) is a non-negative

function which is positive on a neigbourhood of 𝝏𝜴.
Open problem:  Should be unique the positive solution of

𝜟𝒖 = 𝒂 𝒙 𝒇 𝒖 in  𝜴,
𝒖 = ∞ on   𝝏𝜴.



Theorem LG [JDE-2006]
Cano-Casanova & LG [JMAA-2009]

Suppose that:

a) 𝜴 is a ball or an annulus,

b) 𝑯 = 𝐥𝐢𝐦
𝒖↑∞

𝒇(𝒖)

𝒖𝒑
> 𝟎 for some 𝒑 > 𝟏,

c) the function 𝑨 𝒕 = 𝒕׬
𝜼
𝟎׬)

𝒔
𝒂

𝟏

𝒑+𝟏)
−
𝒑+𝟏

𝒑−𝟏 𝐝𝐬, 𝐭 ∈ 𝟎, 𝜼 , satisfies

𝐥𝐢𝐦
𝒕↓𝟎

𝑨 𝒕 𝑨′′(𝒕)

(𝑨′ 𝒕 )𝟐
=𝑰𝟎 > 𝟎.

Then,         

𝐥𝐢𝐦
𝒅(𝒙)↓𝟎

𝑳(𝒙)

𝑨(𝒅 𝒙 )
= (𝑰𝟎

𝒑
𝑯)

−
𝟏

𝒑−𝟏 (
𝒑+𝟏

𝒑−𝟏
)
𝒑+𝟏

𝒑−𝟏 ⇒ Uniqueness

Localizing on 𝝏𝛀⇒ Uniqueness on 𝓒𝟐 𝛀′𝒔



Some special conditions on 𝒇(𝒖)

Superhomogeneous of degree 𝒑 > 𝟏 LG [DCDS 2007]

It implies that 𝑓(𝑢) satisfies KO and  
𝑓(𝑢)

𝑢
is increasing. 

Superaditive with constant 𝑪 ≥ 𝟎 Marcus -Véron [JEE 2004]

𝒇 𝒖 + 𝒗 ≥ 𝒇 𝒖 + 𝒇 𝒗 − 𝑪 for all 𝒖, 𝒗 ≥ 𝟎.

It is weaker than the superhomogeneity. It is extremelly sharp. .

𝒇 𝜸𝒖 ≥ 𝜸𝒑 𝒇 𝒖 for all 𝜸 > 𝟏 and 𝒖 > 𝟎.



Theorem Maire & LG [ZAMP 2017]
Suppose that:

a) 𝜴 is starshaped with respect to 𝒙𝟎 ∈ 𝜴,

b) 𝒇(𝒖) is superhomogeneous of degree 𝒑 > 𝟏,

c) 𝒂(𝒙) is nonincreasing near 𝝏𝜴 along rays from 𝒙𝟎.

Then, the singular problem has a unique positive solution. 

It is also valid for general domains obtained by substracting
finitely many star-shaped disjoint domains to a given star-
shaped domain of ℝ𝑵.

The proofs are based on the SMP. They adapt the old proof
of the uniqueness in the radially symmetric case by

LG [DCDS-2007]  



Theorem Maire-LG [ZAMP 2017]

Suppose that:

a)  𝜴 is a bounded domain of class 𝓒𝟐,

b) 𝒇(𝒖) satisfies KO and it is superaditive of constant C≥ 𝟎,

c) 𝒂(𝒙) decays along the normal directions on 𝝏𝜴.

Then,  ∆𝒖 = 𝒂 𝒙 𝒇 𝒖 has a unique large positive solution. 

Impossing the regularity of the domain

one can relax the requirements on 𝒇(𝒖)



The sharpest multidimensional results

Associated to the function 𝑓, according to Maire-Véron-LG
[ZAMP 2020],  one can also consider the function

𝒈 𝒙, ℓ ≝ 𝐢𝐧𝐟 𝒇 𝒙, ℓ + 𝒖 − 𝒇 𝒙, 𝒖 : 𝒖 ≥ 𝟎 , 𝒙, ℓ ∈ ഥ𝜴 × 𝟎,∞ .

There always holds 𝒈 ≤ 𝒇 and 𝒈 𝒙,∙ is monotone non-
decreasing as 𝒇 𝒙,∙ is.  Thus, if 𝒈 satisfies the KO-condition, 
then also 𝒇 satisfies it, thought the converse can be false. 

[If 𝒇(𝒙,∙) is convex for all 𝒙 ∈ ഥ𝜴, then 𝒇 = 𝒈]



Following Marcus-Véron [CPAM 2003], it is said that ∆𝒖 = 𝒈(𝒙, 𝒖)
possesses a strong barrier at some  𝒛 ∈ 𝝏𝜴 if for sufficiently small 𝑟 > 0
there exists a positive supersolution 𝑢𝑟,𝑧 of ∆𝑢 = 𝑔(𝑥, 𝑢) in   Ω ∩ 𝐵𝑟(z)   

such that 𝑢𝑟,𝑧 ∈ 𝒞(ഥΩ ∩ 𝐵𝑟 𝑧 ) and

𝐥𝐢𝐦
𝒚→𝒙

𝒚 ∈ ഥ𝜴 ∩ 𝑩𝒓(z)

𝒖𝒓,𝒛 𝒚 = ∞ for all 𝒙 ∈ 𝜴 ∩ 𝝏𝑩𝒓(𝒛).

The function 𝒖𝒓,𝒛 also is a supersolution of ∆𝒖 = 𝒇(𝒙, 𝒖) because 𝒈 ≤ 𝒇.

By a result of Marcus-Véron [CPAM 2003], this condition holds at every

𝑧 ∈ 𝜕Ω provided 𝜕Ω is 𝒞2 and, for some 𝛼 > 0 and every 𝑥, 𝑢
𝑔(𝑥, 𝑢) ≥ 𝑑𝛼(𝑥)𝑢𝑝.

It also holds when 𝝏𝜴 satisfies the local graph condition and 

𝒈 𝒙, 𝒖 = 𝒂 𝒙 𝑮(𝒖) with 𝒂 > 𝟎 on 𝝏𝜴, and 𝑮(𝒖) satisfies KO.  



Theorem Maire-Véron-LG [ZAMP 2020]

Suppose that 𝜴 is Lipschitz continuous and 𝒇 ∈ 𝓒(ഥ𝜴 × ℝ)
satisfies 𝒇 𝒙, 𝟎 = 𝟎, 𝒖 ↦ 𝒇(𝒙, 𝒖) is nondecreasing for all

𝑥 ∈ ഥΩ, 𝑓(∙, 𝑢) decays nearby 𝜕Ω, and the associated

function 𝒈 ∈ 𝓒(ഥ𝜴 × ℝ) is positive on a neighborhood, 𝓤, of

𝜕Ω, and, for every compact subset 𝑲 ⊂ 𝓤 there exists a 

continuous nondecreasing function 𝒉𝑲: ℝ+ → ℝ+ such that

𝒈(𝒙, 𝒖) ≥ 𝒉𝑲(𝒖) ≥ 𝟎 for all 𝑥 ∈ 𝐾 and 𝑢 ≥ 0,where 𝒉𝑲 satisfies

the KO condition. If the equation ∆𝒖 = 𝒈(𝒙, 𝒖) possesses

a strong barrier at every 𝒛 ∈ 𝝏𝜴, then ∆𝒖 = 𝒇(𝒙, 𝒖) admits

a unique large positive solution. 



This result relaxes the superaditivity condition of Marcus-

Véron. Therefore, it generalizes the previous results of

Marcus-Véron and Maire-LG. Indeed, by the superaditvity,  

𝒇 𝒙, 𝒖 + ℓ ≥ 𝒇 𝒙, 𝒖 + 𝒇 𝒙, ℓ − 𝑪 for all 𝒙 ∈ 𝜴 and 𝒖, ℓ ≥ 𝟎.

As this condition implies that

𝒈 𝒙, ℓ = 𝒊𝒏𝒇 𝒇 𝒙, 𝒖 + ℓ − 𝒇 𝒙, 𝒖 ≥ 𝒇(𝒙, ℓ) − 𝑪,

it is apparent that 𝒈(𝒙, 𝒖) satisfies KO-loc if 𝒇(𝒙, 𝒖) does it. 



Sketch of the proof: 

• Step 1: Under the assumptions of 
the theorem, the next problem has, 
at least, one positive solution 

∆ℓ = 𝒈 𝒙, ℓ 𝒊𝒏 𝜣𝟎
ℓ = 𝟎 𝒐𝒏 𝜞𝟎,𝟎
ℓ = ∞ 𝒐𝒏 𝜞∞,𝟎



Step 2: For sufficiently small 𝝐 > 𝟎, the function

𝒖𝝐 𝒙 = 𝒖𝒎𝒊𝒏 𝒙 + 𝝐𝝂𝑵 + ℓ 𝒙 + 𝝐𝝂𝑵 𝐟𝐨𝐫 𝐚𝐥𝐥 𝒙 ∈ 𝚯𝝐

is a supersolution of ∆𝒖 = 𝒇(𝒙, 𝒖) in 𝚯𝝐 such that

𝒖𝝐 = ∞ 𝒐𝒏 𝝏𝚯𝝐



Proof of step 2:

• −∆𝑢𝜖 𝑥 = −∆𝒖𝒎𝒊𝒏 𝒙 + 𝝐𝝂𝑵 − ∆ℓ 𝒙 + 𝝐𝝂𝑵

• = −𝑓 𝑥 + 𝜖𝜈𝑁 , 𝒖𝒎𝒊𝒏 𝒙 + 𝝐𝝂𝑵 − 𝑔(𝑥 + 𝜖𝜈𝑁 , ℓ 𝒙 + 𝝐𝝂𝑵 )

• ≥ −𝑓 𝑥, 𝒖𝒎𝒊𝒏 𝒙 + 𝝐𝝂𝑵 − 𝑔(𝑥, ℓ 𝒙 + 𝝐𝝂𝑵 )

• ≥ −𝑓 𝑥, 𝒖𝒎𝒊𝒏 𝒙 + 𝝐𝝂𝑵 − 𝑓 𝑥, 𝒖𝒎𝒊𝒏 𝒙 + 𝝐𝝂𝑵 + ℓ 𝒙 + 𝝐𝝂𝑵

• + 𝑓 𝑥, 𝒖𝒎𝒊𝒏 𝒙 + 𝝐𝝂𝑵

• = −𝑓(𝑥, 𝑢𝜖 𝑥 ),

which ends the proof of Step 2. 



Step 3: Ending the proof: 

Since 𝒖𝝐 𝒙 is bounded on 𝝏𝜣𝝐, by the maximum principle, 

𝒖𝒎𝒂𝒙 𝒙 ≤ 𝒖𝝐 𝒙 = 𝒖𝒎𝒊𝒏 𝒙 + 𝝐𝝂𝑵 + ℓ 𝒙 + 𝝐𝝂𝑵 , 𝒙 ∈ 𝜣𝝐.

Thus, letting 𝝐 ↓ 𝟎, yields to

𝟎 ≤ 𝒖𝒎𝒂𝒙 𝒙 − 𝒖𝒎𝒊𝒏 𝒙 ≤ ℓ 𝒙 , 𝒙 ∈ 𝜣𝟎.

Therefore, 
𝐥𝐢𝐦
𝒙→𝜞𝟎,𝟎

(𝒖𝒎𝒂𝒙 𝒙 − 𝒖𝒎𝒊𝒏 𝒙 ) = 𝟎.

As this holds in a neighborhood of each 𝑷 ∈ 𝝏𝛀, we find that

𝐥𝐢𝐦
𝒅(𝒙)↓𝟎

(𝒖𝒎𝒂𝒙 𝒙 − 𝒖𝒎𝒊𝒏 𝒙 ) = 𝟎.



Set 𝑳 ≡ 𝒖𝒎𝒊𝒏 − 𝒖𝒎𝒂𝒙 ≤ 𝟎.  By the monotonicity of 𝒇 𝒙, 𝒖 ,
it is apparent that

−∆𝑳 = 𝒇 𝒙, 𝒖𝒎𝒂𝒙 − 𝒇(𝒙, 𝒖𝒎𝒊𝒏) ≥ 𝟎 in  𝜴.

Thus, since 𝑳 = 𝟎 on 𝝏𝛀, we can infer that 𝑳 = 𝟎 in 𝛀. 
Equivalently,  

𝒖𝒎𝒂𝒙 = 𝒖𝒎𝒊𝒏 ⊞

Our second result, valid under less regularity on 𝜴,  requires
an additional condition on 𝒇 𝒙, 𝒖 .



Theorem Maire-Véron-LG [ZAMP 2020]
Assume that 𝜴 satisfies the local graph condition and 𝒇(𝒙, 𝒖)
and  𝒈(𝒙, 𝒖) satisfy the conditions of the previous theorem. 

Suppose, in addition, that there is 𝝓 ∈ 𝓒𝟐(ℝ+) such that

𝝓 𝟎 = 𝟎, 𝝓 𝒓 > 𝟎 for  𝒓 > 𝟎,   

𝝓′ 𝒓 ≥ 𝟎 𝒂𝒏𝒅 𝝓′′ 𝒓 ≤ 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒓 ≥ 𝟎,

and, for sufficiently small 𝝐 > 𝟎,

𝒇(𝒙, 𝒓 + 𝝐𝝓 𝒓 )

𝒇(𝒙, 𝒓)
≥ 𝟏 + 𝝐𝝓′ 𝒓 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒓 ≥ 𝟎 𝒂𝒏𝒅 𝒙 ∈ ഥ𝜴.

Then, ∆𝒖 = 𝒇(𝒙, 𝒖) has, at most,  a unique large positive solution.



When   𝝓 𝒓 = 𝒓,  the condition on 𝒇 𝒙, 𝒖 becomes

𝒖 ⟼
𝒇 𝒙,𝒖

𝒖
is nondecreasing on 𝟎,∞ .

Being much stronger than the one of our theorem, it is a 

rather usual condition imposed by many authors to get

uniqueness of large positive solutions in a number of settings.

For the choice 𝝓 𝒓 = 𝑳𝒐𝒈 𝟏 + 𝒓 , our condition is weaker!





Happy seventies !!


