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* Multiplicity of large positive solutions in a class of one-
dimensonal superlinear indefinite problems.

* Multiplicity and uniqueness of large positive solutions
in a class of one-dimensional sublinear problems.

* Uniqueness of large positive solutions for sublinear
problems in a multidimensional context.



(Molina-Meyer, Tellini, Zanolin and LG)
The problem: The weight function:

—u'’' = Au+a(x)u? in (0,1),
u(0) = u(1) = oo,

where p > 1lisfixed, A, b are two
parameters, and a(x) is the
function plotted on the right.




Bifurcation diagram for A = =70

The value of u(a), in ordinates, @ Some solutions along the
versus the value of b, in abcisas bifurcation diagram on the left.




Symmetry breaking of the first loop of solutions. Four pieces of
the bifurcation diagram for A=-140, -141, -142 and -145.
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Bifurcation diagram for A = —300

Global bifurcation diagram Magnification of a turning point




Bifurcation diagrams for A = —750, —760
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Bifurcation diagrams for A = —800,—1300
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Bifurcation diagram for A = —2000.

Every half rotation a new loop of
asymmetric solutions emanates
from the primary curve; it is
persistent for smaller values of A.

In particular, for some particular
values of the parameter b, the
number of large positive solutions
increases to infinity as A | —oo.




The simplest model:

w' = f(w
(P) u'(0)=0
u(T) =

where f € C1[0, ) satisfies

f(0)=0  fZ£0.

Associated Cauchy problem:

w' = fu)
u'(0)=0
u@0)=x>0

The solution is (globally) defined
in [0, T,,, 4, (x)) for some
Tnax(x) < 0.

[t is explosive if T, (x) < oo.



(Maire-LG)[JMAA 2018]:

The singular problem (P) has a solution if, and only if, there exists
x € (0,0) \ f~1(0) such that

do

T = Tmax(x) = -
I, f

1
\/_Efxoo < 00,

Thus, impossing the Keller-Ossermann condition, KO, is impossing
that the maximal existence time of the solution, T,,,,(x), is finite.



(Maire-LG) Suppose that f(0) =0, f(u) is
increasing and T,,,,,(xy) < oo for some x, > 0. Then, the problem
(P) has a unique positive solution for every T > 0.

By continuous dependence, T,,,,(x) T o as x | 0. Moreover, T,,,.
is strictly decreasing, and T,,,,,(x) | 0 as x T oo, by a result of
Dumont, Dupaigne, Goubet & Radulescu

Since T,,,, decays strictly, one can
construct examples of non-increasing
functions, f,,(u), for which the problem
(P) possesses a unique positive large
solution.

Thus, the strict monotonicity of
f(u) is far from necessary for the
uniqueness.




(Maire-LG)[JMAA 2018]: Suppose that f € C'[0, ),
f_l(o) — {xO — Ol X1, ---;xp}9 f(u) > 0 for all u € (O) OO) \ {le ---;xp}9
and T,,,,(y;) < « for some y; € (xj,xj,1),j €{0,1,...,p} (xp41 = ).
Then, there exist T, < T" such that:
a) (P) has at least 2p + 1 positive solutions for every T > T

b) (P) has a unique positive solution for every T < T,

A paradigmatic example is provided by the function

p
f =u| |@-x)?
j=1
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Fig. 3.1. The time map T (z) for f(u) = uwlu J Fig. 3.2. Bifurcation diagram for f{u)
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Now, () stands for a bounded sub-domain of RV, N > 1,
with Lipschitz boundary, 32, f € C'[0,») is an increasing
function such that f(0) = 0, satisfying the Keller-
Osserman condition, and a € €() is a non-negative

function which is positive on a neigbourhood of d12.
Open problem: Should be unique the positive solution of

Au = a(x) f(u) in £,
u =0 on O0J.



LG [JDE-2006]
Cano-Casanova & LG [JMAA-2009]

Suppose that:
a) 2 is a ball or an annulus,

b)H—llmf()>O for some p > 1,

u 0.0) u
1 p+1
c) the function A(t) = |, & f ar+1) r-1ds, t € (0,n], satisfies
lim 24 O _f < .

tlo (A'(1)?
Then,
+1 P2

L(x) — (TP _1 1 :
Jim o = U H)» ( — )1 Uniqueness




Superhomogeneous of degreep > 1 LG [DCDS 2007]
f(yu) = y?P f(u) forall y >1 and u > 0.
fw)

[t implies that f(u) satisties KO and —— Is increasing.

Superaditive with constant C > 0 Marcus -Véron [JEE 2004]
f(u+v)=f(uw)+ f(v)—C forall u,v=>0.

It is weaker than the superhomogeneity. It is extremelly sharp.



Maire & LG [ZAMP 2017]

Suppose that:

a) £ is starshaped with respect to x, € {2,

b) f(u) is superhomogeneous of degree p > 1,

c) a(x) is nonincreasing near df2 along rays from x,.

Then, the singular problem has a unique positive solution.

It is also valid for general domains obtained by substracting
finitely many star-shaped disjoint domains to a given star-
shaped domain of R".

The proofs are based on the SMP. They adapt the old proof
of the uniqueness in the radially symmetric case by

LG [DCDS-2007]



Impossing the regularity of the domain
one can relax the requirements on f(u)

Maire-LG

Suppose that:
a) 2is a bounded domain of class C?,
b) f(u) satisfies KO and it is superaditive of constant C> 0,

c) a(x) decays along the normal directions on 9.2

Then, Au=a(x)f(u) has a unique large positive solution.



Associated to the function f, according to Maire-Véron-LG
one can also consider the function

glx, &) Linf{ f(x,£+u) — f(x,u): u=>0}, (x,£)€NX][0,0).

There always holds g < f and g(x,-) is monotone non-
decreasing as f(x,-) is. Thus, if g satisfies the KO-condition,
then also f satisfies it, thought the converse can be false.



Following Marcus-Véron [CPAM 2003], it is said that Au = g(x,u)
possesses a strong barrier at some z € 92 if for sufficiently small r > 0
there exists a positive supersolution u,, of Au=g(x,u) in QN B,.(z
such that u,, € C(QN B.(z)) and

lim u,,(y) =0 forall x € 2naB,(z).

y—x
y€n n B.(2)

The function u, , also is a supersolution of Au = f(x,u) because g < f.
By a result of Marcus-Véron (CPAM 2003/, this condition holds at every

z € 0Q) provided 9Q is C?% and, for some a > 0 and every (x, u)
g(x,u) = d*(x)uP.

It also holds when 012 satisfies the local graph condition and
gx,u) = a(x)G(u) with a > 0 on 92, and G(u) satisfies KO.



Maire-Véron-LG [ZAMP 2020]

Suppose that 2 is Lipschitz continuous and f € (2 x R)
satisfies f(x,0) = 0, u =~ f(x,u) is nondecreasing for all

x € O, f(-,u) decays nearby 0, and the associated
function g € C(2 x R) is positive on a neighborhood, U, of
d(), and, for every compact subset K c U there exists a
continuous nondecreasing function hgi: R, — R, such that
g(x,u) = hg(u) = 0 for all x € K and u = 0, where hy satisfies
the KO condition. If the equation Au = g(x,u) possesses
a strong barrier at every z € d/2, then Au = f(x,u) admits
a unique large positive solution.



This result relaxes the superaditivity condition of Marcus-

Veron. Therefore, it generalizes the previous results of

Marcus-Véron and Maire-LG. Indeed, by the superaditvity,
fx,u+?®)=f(x,u)+f(x,£)—C forallxe 2 and u,f=>0.

As this condition implies that

gx,O) =inf(f(x,u+?) - f(x,u) = f(x,£) - C,

it is apparent that g(x,u) satisfies KO-loc if f(x,u) does it.



» Step 1: Under the assumptions of
the theorem, the next problem has,
at least, one positive solution

Al =g(x,¥) in 0,
£=0 on Iy
{ = o on Iy

Figure 2.2: The domain O,



Step 2: For sufficiently small € > 0, the function
U, (x) =upmx+evy) +€(x+evy) forall x € O,
is a supersolution of Au = f(x,u) in O, such that

U, =00 on 00,



Proof of step 2:

e —Au (x) = AU,y (x + €vy) — AL(x + €vy)

—f(x + €V, Upin (X + EvN)) —g(x + evy, £(x + evy))

—f (%, Umin(x + €vy)) — g(x, £(x + €vy))

—F (2, Umin (X + €Vy)) — F (%, Uppin(x + €vy) + £(x + €vy))
+ £ (x, Upin (X + €Vy))

AVARN AV

= —f(x, ue(x)),

which ends the proof of Step 2.



Step 3: Ending the prootf:

Since u_ (x) is bounded on d0,, by the maximum principle,
Upar(X) S U (X) =upp(x +evy) +(x+€evy), x€EB,.
Thus, letting € | 0, yields to
0 < umax(x) I umin(x) S f(x)» X € @O'

Therefore,

lim (umax(x) I umin(x)) = 0.
x—>I"0,0

As this holds in a neighborhood of each P € 9(), we find that

dl(ixl)lfo(umax (x) — Umin (x)) = 0.



Set L=u,i,— Uns < 0. By the monotonicity of f(x, u),
it is apparent that

—AL = f(X, Wmax) — F(X, Uppin) 20 in 0.

Thus, since L = 0 on 0(, we can infer that L = 0 in (.
Equivalently,

Umax = Unin

Our second result, valid under , requires
an



Maire-Véron-LG [ZAMP 2020]

Assume that () satisfies the local graph condition and f(x,u)
and g(x,u) satisfy the conditions of the previous theorem.
Suppose, in addition, that there is ¢ € C*(R,) such that
$(0)=0, ¢p(r)>0 for r>0,

¢'(r)=0 and ¢'"'(r) <0 forall r =0,
and, for sufficiently small € > 0,

fx, 1+ €p(r))
f(x,T)

>1+ep'(r) forall r>0 and x € 0.

Then, Au = f(x,u) has, at most, a unique large positive solution.



When ¢(r) =r, the condition on f(x,u) becomes

fxuw)

u

u —

is nondecreasing on (0, x).

Being much stronger than the one of our theorem, it is a
rather usual condition imposed by many authors to get
uniqueness of large positive solutions in a number of settings.

For the choice ¢(r) = Log (1 + r), our condition is weaker!






Happyseventies I




