Large solutions for some nonlinear equations with Hardy potential.

Moshe Marcus

Department of Mathematics, Technion F-mail: marcusm@math.technion.ac.il

Conference in honor of Marie-Francoise Bidaut-Véron and Laurent Véron on the occasion of their 70th birthday

The problem

$$-L_{\mu}u+f(u)=0$$
 in $\Omega,$ $L_{\mu}:=(\Delta+rac{\mu}{\delta^2}),$ (Eq1)

 $\mu \in \mathbb{R}$, Ω a bounded domain in \mathbb{R}^N

$$\delta(x) = \operatorname{dist}(x, \partial\Omega),$$

The nonlinear term is an *absorption term*: positive, monotone increasing, superlinear.

We shall discuss the question of existence and uniqueness of *large* solutions of (Eq1) for arbitrary $\mu > 0$.

Some previous works on large solutions of (Eq1)

- Bandle, Moroz and Reichel (2008) studied positive solutions of (Eq1), in smooth domains, in the case $f(u) = u^p$, p > 1. They established:
- (i) An extension of the Keller Osserman inequality and
- (ii) the existence of large solutions when either $0 \le \mu \le 1/4$, or $\mu < 0$, $p > 1 \frac{2}{\alpha}$, $\alpha_- := \frac{1}{2} (\frac{1}{4} \mu)^{1/2}$.

Some previous works on large solutions of (Eq1)

- Bandle, Moroz and Reichel (2008) studied positive solutions of (Eq1), in smooth domains, in the case $f(u) = u^p$, p > 1. They established:
- (i) An extension of the Keller Osserman inequality and
- (ii) the existence of large solutions when either $0 \leq \mu \leq 1/4$, or $\mu < 0$, $p > 1 \frac{2}{\alpha_-}$, $\alpha_- := \frac{1}{2} (\frac{1}{4} \mu)^{1/2}$.
- \bullet Du and Wei (2015) studied the same problem and proved existence and uniqueness of large solutions for *arbitrary* $\mu>0$.

Some previous works on large solutions of (Eq1)

- Bandle, Moroz and Reichel (2008) studied positive solutions of (Eq1), in smooth domains, in the case $f(u) = u^p$, p > 1. They established:
- (i) An extension of the Keller Osserman inequality and
- (ii) the existence of large solutions when either $0 \leq \mu \leq 1/4$, or $\mu < 0$, $p > 1 \frac{2}{\alpha_-}$, $\alpha_- := \frac{1}{2} (\frac{1}{4} \mu)^{1/2}$.
- \bullet Du and Wei (2015) studied the same problem and proved existence and uniqueness of large solutions for *arbitrary* $\mu>0$.
- Some related questions, for $f(u) = u^p$, including the case 0 , have been studied by Bandle and Pozio (2019).

- Bandle, Moroz and Reichel (2010) studied equation (Eq1), in smooth domains, in the case $f(u) = e^u$. (In this case large solutions may become negative away from $\partial\Omega$.) They showed that, for $0 < \mu < c_H(\Omega)$ (= Hardy constant in Ω) there exists a unique large solution.
- Positive solutions of equation

$$-\Delta u - \frac{\mu}{|x|^2}u + u^p = 0, \quad x \in \Omega \setminus 0, \quad \mu \le (N-2)^2/4$$

including the behavior of large solutions, have been studied by Guerch and Veron (1991), Cirstea (2014), Du and Wei (2017) a.o. The latter investigated the case $\mu > (N-2)^2/4$.

• More recently several papers dealt with b.v.p.'s for (Eq1), $f(u) = u^p$: M and P.T. Nguyen (2014, 2017, 2019), Gkikas and Veron (2015), Gkikas and P.T. Nguyen (2019) a.o.

Conditions on f

$$f \in C^{1}[0,1), \quad f(0) = 0,$$

 $f' > 0 \text{ and } f \text{ convex on } (0,\infty).$ (F1)

 $\exists a^{\#} > 0$ such that,

$$h(u(x)) \le a^{\#}\delta(x)^{-2} \quad \forall x \in \Omega,.$$
 (F2)

for every positive solution u of

$$-\Delta u + f(u) = 0. (Eq0)$$

These conditions hold for a large family of functions including

$$f(u) = u^p, \ p > 1, \qquad f(u) = e^u - 1.$$

Some useful facts

I. Condition (F2) implies the Keller – Osserman condition:

$$\psi(a) = \int_{a}^{\infty} \frac{ds}{\sqrt{2F(s)}} < \infty \quad \forall a > 0,$$
 (KO)

where $F(s) = \int_0^s f(t) dt$.

Some useful facts

I. Condition (F2) implies the Keller – Osserman condition:

$$\psi(a) = \int_{a}^{\infty} \frac{ds}{\sqrt{2F(s)}} < \infty \quad \forall a > 0,$$
 (KO)

where $F(s) = \int_0^s f(t)dt$.

II. Condition (F1) implies:

If Ω is a bounded Lipschitz domain then, equation (Eq0) possesses a unique large solution. (M and Veron, 2006). We denote this solution by U_f^{Ω} .

III. Conditions (F1), (F2) imply:

If Ω is smooth then,

$$\lim_{\delta \to 0} \frac{U_f^\Omega}{\phi} = 1, \qquad \phi := \psi^{-1},$$

(Bandle and M 1992, 1998)

IV. Condition (F2) for (Eq0) implies that a similar inequality holds for (Eq1):

 $\exists a_1, a_0 > 0$:

$$h(u/a_1) \le a_0 \delta^{-2}$$
 in Ω , (F2')

for every positive solution of (Eq1). (M and P.T. Nguyen 2018)

V. Condition (F1) implies that the function h(t) := f(t)/t, t > 0, is monotone increasing.

Main results

Theorem (A)

Let Ω be a bounded Lipschitz domain. Assume that f satisfies (F1) and (F2).

Then for every $\mu \geq 0$, there exists a large solution U of (Eq1) such that $U > U_f^{\Omega}$.

Theorem (B)

Let Ω be a bounded C^2 domain. Assume that f satisfies (F1) and (F2). If $0 \le \mu < 1/4$ then (Eq1) has a unique large solution.

Theorem (C)

Let Ω be a bounded C^2 domain. Assume that f satisfies (F1), (F2). In addition assume:

For every a > 1 there exist $\alpha > 1$ and $t_0 > 0$ such that

$$ah(t) \leq h(\alpha t), \quad t > t_0.$$
 (1)

For every $b \in (0,1)$ there exist $\beta > 0$ and $t_0 > 0$ such that

$$h(\beta t) \leq bh(t), \quad t > t_0.$$
 (2)

Finally assume that, $\exists A > 1$ such that

$$h(\phi) \le A\delta^{-2} \tag{3}$$

Then, for every $\mu > 0$, (Eq1) has a unique large solution in Ω .

The above assumptions are satisfied by, among others, superlinear powers $f(u) = u^p$, p > 1 and exponentials e.g. $f(u) = e^u - 1$, $f(u) = u e^u$.

Recall that Du and Wei (2015) proved that (Eq1) has a unique large solution for every $\mu > 0$ in the case of powers and their proof was strongly dependent on special features of this case.

Theorem C - which applies to a much larger family of nonlinearities - is based on an entirely different approach.

The result of Bandle, Moroz and Reichel (2010) for $f(u) = e^u$, may be compared to our Theorem B. In the latter we consider $f(u) = e^u - 1$ (in which case large solutions are positive everywhere) and allow $0 < \mu < 1/4$ rather then the more restrictive $0 < \mu < c_H$. Surprisingly, there is a difference in the behavior of the large solution near the boundary.

If $f(u) = e^u$, $0 < \mu < c_H$ the large solution V behaves as follows:

$$V(x) \sim \log \delta(x)^{-2}$$
 as $\delta(x) \to 0$,

i.e.

$$h(V(x)) \sim \delta(x)^{-2}/\log \delta(x)$$
.

If $f(u) = e^u - 1$, $0 < \mu < 1/4$ the large solution U fluctuates between the bounds,

$$c_2 \, \delta(x)^{-2}/\log \delta(x) \le h(U(x)) \le c_1 \, \delta(x)^{-2}$$

and the upper bound is achieved for arbitrarily small δ .

On proof of Thm. A

The existence result is a consequence of the fact that U_f^{Ω} is a subsolution of (Eq1) and condition (F2).

If $\{\Omega_n\}$ is an exhaustion of Ω and u_n satisfies

$$-\Delta u - \frac{\mu}{\delta^2} u + f(u) = 0 \quad \text{in } \Omega_n,$$
$$u = U_f^{\Omega} \quad \text{on } \partial \Omega_n$$

then $U_f^\Omega < u_n$ and $\{u_n\}$ increases. In addition by (F2) -or (F2')- $\{u_n\}$ is uniformly bounded in compact subsets of Ω .

Thus $U = \lim u_n$ is a large solution of (Eq1).

On proof of Thm. B

Let u_1 , u_2 be two large solutions. We may assume $u_1 \leq u_2$. We show that,

$$\limsup_{x\to\partial\Omega}\frac{u_2}{u_1}\leq 1$$

and therefore $u_1 = u_2$.

The main step is a construction that is reminiscent of one used in M and Veron (1997) – to prove uniqueness for (Eq0) – but is essentially different in the present case.

Notation: Let $P \in \partial \Omega$ and let $\xi = \xi_P$ be an orthogonal set of coordinates with origin at P and ξ_1 -axis in the direction of \mathbf{n}_P (quasi-normal into the domain). Let T_P be a cylinder with axis along the ξ_1 axis:

$$T_P = \{ \xi = (\xi_1, \xi') : |\xi_1| < \rho, |\xi'| < r \}.$$

Since Ω is Lipschitz $\exists \rho, k$ such that, for every $P \in \partial \Omega$:

 $\exists \ F_P \in Lip(\mathbb{R}^{N-1})$ with Lip constant k s.t. $F_P(0) = 0$ and

$$Q_P := T_P \cap \Omega = \{ \xi : F_P(\xi') < \xi_1 < \rho, \ |\xi'| < r = \rho/10k \}.$$

We construct a subsolution w of (Eq1) in

$$Q' := \{ \xi : F_P(\xi') < \xi_1 < \rho/2, \ |\xi'| < r/2 \},$$

such that:

$$w \in C(\bar{Q}' \cap \Omega), \quad w = 0 \quad \text{on } \partial Q' \cap \Omega,$$

$$\frac{w}{u_2} \to 1 \quad \text{as } \xi \to \partial Q' \cap \partial \Omega.$$

We construct a subsolution w of (Eq1) in

$$Q' := \{ \xi : F_P(\xi') < \xi_1 < \rho/2, \ |\xi'| < r/2 \},$$

such that:

$$w \in C(\bar{Q}' \cap \Omega), \quad w = 0 \quad \text{on } \partial Q' \cap \Omega,$$

$$\frac{w}{u_2} \to 1 \quad \text{as } \xi \to \partial Q' \cap \partial \Omega.$$

The construction is based on two facts:

- (a) L_{μ} has a Green function in $\Omega_{
 ho}$ and
- (b) The boundary Harnack principle applies to L_{μ} .

These follow from the assumptions that Ω is Lipschitz and that $0 \le \mu < 1/4$.

Note that we do not require $\mu < c_H(\Omega)$. As the construction is within a thin boundary strip, $\mu < \frac{1}{4}$ is sufficient (M + Mizel + Pinchover (1998)).

Let $\beta \in (0, \rho/10)$, denote:

$$w_{\beta}(\xi) := w(\xi_1 + \beta, \xi') \quad \forall x \in Q'_{\beta},$$

$$Q_{\beta}' := \{ \xi : F_P(\xi') < \xi_1 < \frac{1}{2}\rho - \beta, \ |\xi'| < \frac{1}{2}r \}.$$

Then, as $\mu > 0$,

$$-L_{\mu}w_{eta} + f(w_{eta}) < 0 \quad ext{in } Q_{eta}'$$
 $w_{eta} < u_1 \quad ext{on } \partial Q_{eta}'.$

Hence: $w_{\beta} < u_1$, in Q'_{β} which implies

$$w \leq u_1$$
 in Q' .

Since $\frac{w}{u_2} \to 1$ as $\xi \to \partial Q' \cap \partial \Omega$:

$$\limsup_{\xi_1 \to F_P(\xi'), |\xi'| < r/4} u_2/u_1 \le 1.$$

On proof of Thm. C

We describe main steps.

ullet Exists maximal solution U_{max}^{Ω} of (Eq1).

$$U_f^\Omega < U_{max}^\Omega, \qquad U_{max}^\Omega \le A ilde{\phi}, \qquad ilde{\phi} = h^{-1}(\delta^{-2}).$$

• If *U* is a large solution then:

$$\mu \leq \limsup_{x \to \partial \Omega} h(U) \delta^2.$$

- If Ω is a ball $B_R(0)$ or the exterior of a ball $B_R'(0) = \mathbb{R}^N \setminus B_R(0)$ then,
- (i) U_{max}^{Ω} is a r.s. large solution, unique in the class of r.s. solutions.

(ii)
$$\exists \delta_n \downarrow 0$$
: $\frac{\mu}{\delta_n^2} \leq h(U_{max}^{\Omega}(x)),$ $|x| = R - \delta_n$ if $\Omega = B_R(0),$ $|x| = R + \delta_n$ if $\Omega = B_R'(0).$

The sequence $\{\delta_n\}$ may depend on R.

- Given $P \in \partial \Omega$, let B_R^P be a ball such that $\bar{B}_R^P \cap \bar{\Omega} = \{P\}$. Let U_R^P be the r.s. large solution of (Eq1) in $\mathbb{R}^N \setminus B_R^P$.
- Since $\Omega \subset \mathbb{R}^N \setminus B_R^P$,

 U_R^P is a subsolution of (Eq1) in Ω .

Therefore, if U large solution of (Eq1) in Ω then

$$U_R^P \leq U$$
, in Ω .

- Given $P \in \partial \Omega$, let B_R^P be a ball such that $\bar{B}_R^P \cap \bar{\Omega} = \{P\}$. Let U_R^P be the r.s. large solution of (Eq1) in $\mathbb{R}^N \setminus B_R^P$.
- Since $\Omega \subset \mathbb{R}^N \setminus B_R^P$,

 U_R^P is a subsolution of (Eq1) in Ω .

Therefore, if U large solution of (Eq1) in Ω then

$$U_R^P \leq U$$
, in Ω .

• Since Ω is smooth, we may choose R independent of P. Then,

$$W := \max_{P \in \partial \Omega} U_R^P \le U, \quad \text{in } \Omega.$$
 (*)

W is a subsolution of (Eq1) in Ω . The smallest solution dominating W is a large solution. By (*) it is the smallest large solution of (Eq1). Denote it: U_{\min}^{Ω} .

• There exists sequence $\delta_n \downarrow 0$ such that,

$$\mu h(\tilde{\phi}(\delta_n)) = \frac{\mu}{\delta_n^2} \le h(W) \le h(U_{min}^{\Omega}(x))$$

on
$$\Gamma_n := [x \in \Omega : \delta(x) = \delta_n], \quad n = 1, 2, \dots$$

• There exists sequence $\delta_n \downarrow 0$ such that,

$$\mu h(\tilde{\phi}(\delta_n)) = \frac{\mu}{\delta_n^2} \le h(W) \le h(U_{min}^{\Omega}(x))$$

on
$$\Gamma_n := [x \in \Omega : \delta(x) = \delta_n], \quad n = 1, 2, \dots$$

• $\exists M > 1$ s.t. $U_{max}^{\Omega} \leq M U_{min}^{\Omega}$ on Γ_n . Hence,

$$U_{max}^{\Omega} \leq M U_{min}^{\Omega}$$
 in Ω .

By an argument based on convexity of f (M+Veron 1998),

$$U_{max}^{\Omega} = U_{min}^{\Omega}$$
.

THANK YOU FOR YOUR ATTENTION.