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My personal greetings!

Dear Marie and Laurent, it is a great pleasure for me to participate in this wonderful
meeting to celebrate such an important birthday.

And | would like to take this opportunity to express to you my infinite gratitude, not
only for your inmense generosity in sharing your mathematics with me, but also for our
wonderful friendship.
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The problem

The purpose of this talk is to give some results concerning a-priori bounds and
existence / nonexistence of positive solutions in a domain Q C RN of the equations

— Au=|ulP~ru|Vuld (1)
where p4+ g > 1 and
—Au=|ulP"tu+ M|Vul9, (2)

where p > 1, g>1and M € R.
We address the questions of
@ Upper estimates of solutions

o Existence or nonexistence of solutions in all RV,
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These equations have been the subject of many works, starting with the well known

Emden-Fowler equation
—Au=uP, p>1, 3)

and then extended to much more general nonlinearities and also to systems, see for
example the pioneering works of Gidas-Spruck (1980), Caffarelli (1989), Bidaut-Véron
and Véron (1991), Serrin-Zou (2002), Farina (2008) among many others, including
Mitidieri, Pohozaev and BV-V for quasilinear equations and systems, where mainly
results of Liouville type are obtained when the problem is “sub-critical’. The study of
equations involving a gradient term is more recent, see for example the works Alarcén,
Garcia-Melian Quaas (2013) Filippucci (2008-2011), Burgos, Garcia-Melian, Quaas
(2016) among others.

We start with a short listing of known results for the Emden Fowler equation (3) and
some more recent results for the equation

—Au=|Vu|?, g>1. (4)
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The radial study of the Emden Fowler equation (3) involves the existence of two
critical values for p, the so called Serrin's exponent, and the so-called Sobolev
exponent

N . N2
N—2 P TNZ2

_ 2
(i) The equation has a particular radial solution u(x) = Cy p|x| P~ if and only if
P> ps.
(i) If 1 < p < p*, there are no ground states.

(iii) If p > p*, there exists a one parameter family of ground states which are explicit
for p = p*:
N—2
4

(N(N = 2)A)

u(x) = ux(x) = e
A+Ix—al?) =

(iv) If 1 < p < p*, there exists a universal constant Cp,, such that in any bounded
domain €2, any positive solution satisfies

2

u(x) < Cp pdist(x,0Q) r-1.

(v) If 1 < p < p*, all the positive solutions are symmetric with respect to some xg.
(Moving planes method, CG-S 1989).
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The proof for the universal estimate follows from Serrin’s work (1964-1965) when
1 < p < ps writing

—Au=du, d=uvP?
ue MN/(N=2)(Q) and then d € L,lotN/z(Q). The difficult case is when ps < p < p*,
done by (Bernstein method) differentiating the equation and look at the equation
satisfied by z = |[Vv|?, where v = u” for a negative ~, by Gidas & Spruck (1980)[2]
and Véron Bidaut-Véron (1991)[4]. It uses the Béchner-Weizenbdck formula

%Az = |D?v|]2 +(V(Av),VV) (5)

which, since |D?v|? > L(AV)2, gives the inequality
N g

Az > —(Av)? + (V(AV), V). (6)

NI+
=2~

Then, after multiplying by a new power of v, a careful integration by parts in a ball
B(0, R) we obtain

/ d%dx = / uP—Dgx < ¢ RN-20
B(0,R) B(0,R)

for some appropriate o > N/2.
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Problem (4), g > 1, is not variational. We summarize our recent results (BV-GH-V,
2014)[2].

@ Since constants are solutions, there is no universal estimate for the solutions.

@ Any solution in Q satisfies the universal estimate of the gradient

IVu(x)| < Cqdist(x, 992) 71 .

e Any solution in RV is constant.

We prove our estimate by using the Bernstein method: The function z = |Vu(x)|?
satisfies the inequality
|Vz[?
Az 4+ CO< D(— + 1),
z

1+

hence a sufficiently large power of z, v := z!*K satisfies

gtk
—Av + Covitk < Dy
and thus v satisfies the Keller Osserman type of estimate
2(1+K)

v(x) < Cdist(x,0Q) -1,

implying |Vu(x)| < Cdist(x, 39)7;71.
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Study for —Au = |u|P~tu|Vul?, p+q > 1.

A first critical case appears when

(N=2)p+(N—-1)g=N. (M)
Indeed, if we look for radial positive solutions of the form u(x) = A |x|™” we find, if
2—
g<2and p+qg—1>0, that y:=p4 = le and
A=A _ lerxv%‘?l(N 2p+gq )’”371 (8)
= \N,p,g = Ip,q p+qg—1 .

However, this last quantity exists if and only if the exponents belong to the
supercritical range, that is when

(N=2)p+(N—-1)g > N. (9)
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In the subcritical range of exponents i.e. when
(N=2)p+(N—-1)g <N, (10)

we prove that Serrin's classical results (Acta Math. 1964-65)[7, 8] can be applied. We
obtain a local Harnack inequality and an a priori estimate for positive solutions u in
Bgr \ {0} under the form

u(x) + x| [Vu(x)] < c|xP7"  ¥xst 0< x| <

(11)

NJE

with a constant ¢ depending on u. We have

Theorem Al

Let Q C RN be a domain containing 0, N >3, p >0, 0 < q < 2 and assume (p, q)
lies in the sub-critical range (10). If u € C3(Q\ {0}) is a positive solution of (1) in
Q\ {0}, then estimate (11) holds in a neighborhood of 0.
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Indeed, assume By C Q. By Brezis-Lions's result, there holds
N N
u€ MNV=2(By), Vu € MV-1(By), uP|Vul? € }(By), (12)

where M" = L"°° denotes the Marcinkiewicz space or Lorentz space of index (r, o),
and there exists a > 0 such that

— Au=uP|Vul?+ado in D(By). (13)
We assume first pg # 0. Then
|0 |V ul] < Jul?® + [Vul®® = c|u] + d |V, (14)

where 6,6’ > 1, 2+ 5 =1, =uP’1 d = [Vu|? "1 If 0 > max{L, —} and
$ ____ N
0" > max{1, 1} then ¢ € MV=2)(p6-1) and d € M (N-1)( @D . We claim that we

can choose 6 > 1 such that
N N N
—_ > — d ————— > N.
W-2pr-1 2 ™ WD -1 (15)
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These inequalities are respectively equivalent to

N N

< ———— and 0/ < ———, 16
b(N —2) gV —1) (16)
which is clearly possible from the subcritical assumption (10) by taking 6 = :JV(%:;;

for £ > 0 small enough. Because M"(By) G- L'~9(By) for any § > 0, we infer that

ce L%'*"s(Bl) and ¢ € LN*9(By) and u verifies Harnack inequality in B \ {0} by
Serrin’s result. This implies

1
max u(x) < K Imin u(x) Vre (0, 5] for some K > 0. (17)

|x|=r x|=r

The spherical average @ of u on {x : |x| = r} is superharmonic. Hence there exists
some m > 0 such that
a(r) < mr2=N, (18)

Combined with (17) it yields u(x) < Km |x|>~V. The estimate on the gradient is
standard, see eg [10, Lemma 3.3.2]. O
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Main Results

Our main results deal with the supercritical range. We prove a priori estimates of
positive solutions of (2) in a punctured domain and existence of ground states in RV,
There are two approaches for obtaining these results. The direct Bernstein method
and the integral Bernstein method popularized by Lions [5] and Gidas and Spruck in
[2] respectively. Both methods are based upon differentiating the equation. The direct
Bernstein method relies on obtaining pointwise estimates of the gradient through
comparison principles via algebraic computations, an intensive use of Young's
inequality and without any integration. Our main result in this framework is the
following:
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Theorem Bl

Let N>2,0<qg<2andp >0 be such that p+q—1 > 0. If u is a positive solution
of (1) in Bgr and one of the following assumptions is fulfilled,

()p+a—-1<gty,
- (p+1)?
(io<p<landp+qg—1< p(N=1)"
Then there exist positive constants a = a(N, p, q) and c1 = c1(N, p, q) such that

.
IVu(0)] < R %rra 1. (19)

The value of the exponent a is not easy to compute, however, in several applications
this difficulty can be bypassed.
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The proof of this result is long and very technical, and we will use the following result:

Lemma Bl

Let ¢ > 1 and a, R > 0. Assume v is continuous and nonnegative on Bg and C* on
the set Uy = {x € Bg : v(x) > 0}. If v satisfies

Vol?
—AU-‘r'IJan‘ vl (20)
v
on each connected component of U, there holds
_ 2
v(0) < ey gaR 1. (21)
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Proof of Theorem B1, a scketch

First we set v = u~1/8 for some parameter 8 # 0 to be found, and also set
z=|Vv|?. Then

IVV\

= (14 8)—— + 8|92 Byi=9-Flpta-1) |7y |9

(22)
- (1+/3)§ 18172 puezd,

where s =1 — g — B(p+ g — 1). Using now the Weizenbdck inequality (6) that we
recall

1 1
EAZ 2 N(Av)2 +(V(Av),Vv),
and by developing it can be seen that
2 22
].A +((1+ﬁ) (1+B)>7+ 52q 1)V2szq
2 N
+ (252 v ) ez pvat it 1 e BRI 4 D2 et 1wz vy
0.

<
(23)
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Next we set Y = v*z for some parameter ), and then, after multiplication by v we
get

(14 8)?
N

—%AY+( —(1+,3)—%(,\+5+2)) vAT2y?2

n (2(1; B) ts— )\(q2— 1)) 1692 ﬂvs—1—¥ yi+l 4 %62(q71)v257)\q+)\ ya

A A+1
< (g 18|92 B~ T HAYy3I-1 Atdl ) (VY,Vv).
v
As a second step we estimate Y. To this end we let g € (0,1). For any € > 0 one has

2
_ 1Y
T4 Y

+ev A 2y2
v

'(VY,VV)

By choosing e appropriately we obtain
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1 1+ B)?
‘5AY+(‘7V*

. ) L-A—2y2
" (2(1 + B8)

-1
. +57/\(q )

A
5 > B2 B T Im R VIR (g
2(q—1)
+ <ﬁ \ e ) V2sf)\q+)\ yd S C(€0)|V\\//|27
with C(eo) = (525 +

above so that our inequality reads

627N 1 H equal to the red i
16 )—0. ext we put equal to the red expression

1 [VY|?
——~AY+H<ZC —_
FAY HH < Cleo)—
and consider the trinom ( Note t = v5+1+’\% Ygfl)
2(q—1)
nan-(ﬂ

—ao> t2 + (2(1; ﬁ) +s— >\(q2— 1)> |5|q725t
1+ pB)? MB +A+2—eo)
+ (T—(lJr,B)—




Teo(t) > at? + 1), hence

If its discriminant is negative there exists « = a(N, p, q, 8, A, €0) > 0 such that

H>a ( “A-2y2 L 25— AgHA Yq) )
Assuming A # —2, we introduce

(25)
2s —Ag+ A 26(p+qg—1
- —1-q-2razl) (26)
A+2 A+2
then, if S > max{0,1 — g}, we have 25:1‘7 > 1 and
25+4q Y2 Siﬂ. (A+2)S g (A+2)S va Y2

Y 5+1 = (W) v S+1 Y S+1 SW + v Y9 = e

and thus we deduce

4 v25—>\q+)\ %
25+q VY2
—AY +2aY 51 §2C(50)T.

(27)



Using Lemma B1, we derive

_ 2(5+1) _ 2(s+1)—A(g—1) +w
Y(0) < cR Sta-1 =cR stq—1 — cR™ Blpta—1) |

from which follows

2+ )\‘ NG _1+<2+>\)(2 a)

’vu‘ 25 (0)‘ 2(pta—1) | (28)

Therefore, Theorem B1 will follow with a = —>‘2—4232 and a will be positive if we can
choose A # —2 and 3 # 0 so that S > max{0,1 — q}. After some very lengthy and
delicate estimates we can prove that under the assumptions of Theorem B we can
always choose such 3, A.
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An important Corollary

Corollary B1

Under the assumptions on N, p and q of Theorem B1, any positive solution of (2) in
RN is constant.

Our next result is an improvement of Theorem B.

Theorem C1

Assume p > 0, 0 < g < 2 and define the polynomial G by
G(p,q) = (N —1)2q + N —2) p + b(q)p — Ng?,
where b(q) = N(N —1)g®> — (N> + N —1)g— N — 2.

(29)

If the couple (p, q) satisfies the inequality G(p, q) < O, then all the positive solutions
of (1) in RN are constant.

In the range of p and g, the condition Gn(p, g) < 0 is equivalent to

_ —b(a) + /BP(@) + AN (N —1)%g T N —2)

0<p<pclq):= 2(N—1)2g + N —2) (30)
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It is proven by using the integral Bernstein method. The aim of the integral Bernstein
method is to obtain estimates of the L"-norm of the gradient of the solutions in balls
for r large enough. Combined with the work of Serrin this leads in Gidas-Spruck to a
Harnack inequality. Here we use these integral estimates to prove the non-existence of
non-constant global solutions.

We start with the following Weizenbdck inequality already used in the proof of
Theorem B, but taken here in the weak sense, namely

v 2
L. (§<vz, vo) + B av((vy, ve) + ¢>Av)) dx <0,

for all ¢ € C&(RN), ¢ > 0, hence

1 N-1
/RN (E(Vz,qu) - T(1>(A\/)2 - Av(Vv,Vd))) dx < 0. (31)
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Essentially, we choose ¢ = v*z°1 where n € C3(RV), n > 0, and derive a series of
integral inequalities that will yield, under the assumption that G(p, q) < 0, that
[Vu(x)| = 0.
Computations are very hard, and the results depend on the choice of e, it works if e is
large enough, but not too large, in our result we have set e = %q, which seemed to
give the largest region.
Notice that the minimum of p on the curve G(p,q) =0, 0 < g < 2 is smaller that 1
whenever N > 9. If ¢ = 0, the above reads reads
N+ 2

0<p<pe(0):= 5, (32)
which is the well known condition obtained by Gidas and Spruck. Furthermore, it can
be verified that the domain of (p, g) in which Theorem B applies is included into the
set of (p, q) where G(p, q) < 0. Our proof is extremely technical and necessitates of
many algebraic computations.
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— — The first critical relation (N-2)p+(N-1)q=N, see Theorem A
""" The curve of homogeneity p+q=1
2
. The separatrix curve for Theorem B: (N—l)(pm»l):% and (N-1)
(ptq-1) =4
— The separatrix curve for Theorem C: G(p,q)=0

Do
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An existence result

If we just look for radial solutions we obtain an optimal result, namely:

Theorem D1

There exist non-constant radial positive solutions of (2) in RN if and only if p > 0,
0<g<1and

p(Nf2)+q(N71)2N+%Z. (33)

If equality holds in (33), there exists an explicit one parameter family of positive radial
solutions of (2) in RN under the form

_(N=2)(1=gq)

(2—q)? 2—gq
uc(r)y=c KCN21‘7+I’1‘7 ) (34)

for any ¢ > 0 and some K = K(N, q) > 0.
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Radial study

Our equations takes the form
N—-1
- (u“ + 7ul) =uP|d|9, u'(0) = 0. (35)
r
From this equation we see that u can be written under the form
r S
u(r) = u(0) +/ 51*“’/ uP(t) |/ ()] VTt Ve > 0. (36)
0 0

If g > 1, the solution satisfying u(0) = a > 0 is the unique fixed point of the mapping
v — T[v] defined in the set of functions in C([0, ro]) with value a for r = 0 by

TVI(r) :=a+ /orsl_N/Osvp(t) V()| t""tdt  vr>o.

Clearly T is a strict contraction if rp > 0 is small enough. Since u = a is a solution in
RV, it is the unique one.
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Thecase 0 < g<1

Let now g € [0,1). We search for nonconstant solutions by dividing equation (35) by
|u’|9, which gives

-1
_((‘ul|m—2ul)/ + v |u/‘m72ul> — (1 _ q)up
r

where m=2—q and v = N — (N — 1)q, that means v = (1 — q)u is a radial solution
of

—Amv =div(|]Vv|" 2 V) = VP

in dimension v, where m > 1 for g < 1. We now apply results by Bidaut-Véron in

N(p—1
(1989): for this problem the critical Sobolev exponent is (recall %)
-p
« vim=1)+m
p = 7( ) )
v—m
hence a second critical case appears when
2—q
(N=2)p+(N-1)g=N+ ; (37)

1-¢q
and (33) and (34) follow.
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Another method

Following the work of Giacomini-Bidaut-Véron in 2010, equation (35) can be reduced
to a quadratic system (2010)): set

!

t=lnr,  X(t)=-r—,  Z(t) =P |2
u
then
Xe = X(X — (N —2)+ 2)
Ze=2Z(N—(N-1)g—pX+(q-1)Z

where a new value v = N — (N — 1)q appears playing the role of dimension. Then we
can make a complete study by phase-plane analysis.
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Summary picture for N = 6

2
N+3)N-1) \

NV \ \\
1 -.\ \

T NN NDIN2)  p
P

— — The first critical relation (N-2)p+(N-1)q=N, see Theorem A
----- The curve of homogeneity ptg=1

2

. The separatrix curve for Theorem B: (N-1}(p+g-1)= %
=4

——— The separatrix curve for Theorem C: G(p,q)=0
The second critical relation in the radial case : p(N-2)}+g(N-1)=N+(2-q)/(1-q), see
Theerem D

and (N-1)(p+q-1)
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Study for —Au = |u|P~tu+ M |Vu|?

Equation (2) has been the subject of many works in the radial case when M < 0,
where the two terms |u|P~u and M |Vu|? are in competition. The first work in that
case is due to Chipot and Weissler [15] who, in particular, solved completely the case
N = 1. Then Serrin and Zou [20] performed a very detailed analysis. Very little is
known in the case M > 0. Under the scaling transformation T defined for k > 0 by

2

ug = Trlu]l(x) = kp=1 u(kx), (38)
(2) becomes
1 2p—q(p+1)
—Aug = |ulP R+ kPt MV, (39)
and thus, if g 75 7+ (2) can be reduced to
—Au=|uP7lu£|Vu|7. (40)

Observe that when g <
Lane-Emden equation

+1' the limit equation of (39) when k — 0 is the

— Au=|u]P7y, (41)

and thus the exponent p is dominant.
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The other scaling transformation

2
Vi 1= Slu](x) = ka1 u(kx), (42)
transforms (2) into
(p+1)g—2p
—Avi=k T |y Py 4+ M|V |9, (43)

and if g > %, the limit equation of (43) when k — 0 is the Riccati equation

—Av=M|Vv|9, (44)

thus the exponent q is dominant. In [15] and [20] most of the study deals with the
2p_
case q # il
In the critical case i.e. when
2 (45)
q - R
p+1
then not only the sign of M but also its value plays a fundamental role, with a delicate
interaction with the exponent p. Notice that an equivalent form of (2) is

—Av=Av]P v £ |Vy)? (46)

with A > 0. The case N > 2 was left open by Serrin and Zou [20] and the first partial
results are due to Fila and Quittner [17] and Voirol [23, 24]. The case M > 0 was not
considered.
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The techniques we used to prove the following results are based upon a delicate
extension of the ones already introduced above in the case of the product. Our first
nonradial result dealing with the case g > % is the following:

Theorem A2

Let N>1,p>1andq> pzfp. Then for any M > 0, any solution of (2) in a domain
Q C RN satisfies

p+1 1

[Vu(x)| < enp,q (M (Pr1)a=2p 4 (Mdist (X,BQ))_ﬁ) for all x € Q.  (47)
As a consequence, any ground state has at most a linear growth at infinity:

___p1
[Vu(x)| < cy,p,gM  PHha—2p for all x € RV, (48)

Our proof relies on a direct Bernstein method combined with Keller-Osserman’s
estimate applied to \Vu\z. It is important to notice that the result holds for any
p > 1, showing that, in some sense, the presence of the gradient term has a
regularizing effect.
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A nonexistence result

In the case g < % we prove a non-existence result:

Theorem A'2

Let N>1,p>1,1<qg< % and M > 0. Then there exists a constant cy,p, 4 > 0

such that there is no positive solution of (2) in RN satisfying

2
u(x) < cn,p,qgM2p—(PF1)a for all x € RV, (49)

This is done by reducing by scaling to the case M = 1: We set u = o2/(P~Dy(ax)

p—1
with @ = M2=(#+1)d and using Lemma B1 applied to z = |Vv|?. Hence a radial
ground state has to start large at 0.
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The critical case g = p+1

When gq is critical with respect to p the situation is more delicate since the value of M
plays a fundamental role. Our first statement is a particular case of a more general
result given by Alarcén, Garcia-Melian and Quaas.

Theorem B2

Let N > 2, p>11fN—2or1<p<—lfN—3 q——andl\/l> —u* where

W= () = (oot 1) (FEZ2R) 7 (50)

Then there exists no nontrivial nonnegative supersolution of (2) in an exterior domain.
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Concerning ground states, we prove their nonexistence for any p > 1 provided M > 0
is large enough: indeed

Theorem C2

Let Q C RN, N > 1, be a domain, p > 1, q_Tp For any

I (=

and any v > 0 such that (1 — v)M > M;, there exists a positive constant cy, ., such
that any solution u in S satisfies

+1

[Vu(x)| < enyp, (1 —v)M — Mf) (dist (x,0Q)) P~  forall x € Q. (52)

Consequently there exists no nontrivial solution of (2) in RN.
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The next result, based upon an elaborate Bernstein method, complements Theorem C
under a less restrictive assumption on M but a more restrictive assumption on p.

Theorem D2

Letl < p< N+3 ,N>2,1<g< N+2 and Q C RN be a domain. Then there exist
a> 0 and 4:/\/7,,7‘7 > 0 such that for any M > 0, any positive solution u in Q) satisfies

2a
[Vl (x)| < en,p,q (dist (x, 89))_P*71_1 for all x € Q. (53)

Hence there exists no nontrivial nonnegative solution of (2) in RV,

It is remarkable that the constants a and cy p,q do not depend on M > 0, a fact

which is clear when g ;é by using the transformation Ty, but much more delicate

p+1
to highlight when g = m since (2) is invariant.
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When |M] is small, we use an integral method to obtain the following result which
contains, as a particular case, the previous estimates by Gidas and Spruck and ours.
The key point of this method is to prove that the solutions in a punctured domain
satisfy a local Harnack inequality.

Theorem E2

Let N>3,1<p< x‘% q= %. Then there exists eg > 0 depending on N and p

such that for any M satisfying |M| < o, any positive solution u in Bg \ {0} satisfies
_ 2
u(x) < cnp x| P~t  forall x € Bg \ {0}. (54)
2

As a consequence there exists no positive solution of (2) in RN, and any positive
solution u in a domain QQ satisfies

u(x) + \Vu(x)|P721 < ey, (dist (x, E)Q))fPTZ1 for all x € Q. (55)

Note that under the assumptions of Theorem E, there exist ground states for |M| large
enough when 1 < p < 2,oranyp>1|fN_12
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Radial solutions

The radial solutions of (2) are functions r — u(r) defined in (0, c0) where they satisfy

N-1

r

2
U = |ulP~Yu+ M |u,|PT (56)

— Uy —

Because of the invariance of (56) under the transformation T} there exists an
autonomous variant of (2) obtained by setting

2

u(r)=r p=1x(t) with t=Inr. (57)
Then
K 2K P
Xet + Lxe — X+\X|pflx+M' X — Xt =0 (58)
-1 p—1
with
N—-2)p—N N—-2)p—(N+2 2
K:%and L:w:;(_i_ (59)
p—1 p—1 p—1
+1
Setting y(t) = —rpi ur(r), then (x(t), y(t)) satisfies the system
xe = Hi(x,y) = x—y
' p—1 (60)

2p
ye = Ha(x,y) = =Ky + |x|[P71x + M |y|»+T

and we denote by H the vector field of R2 with components Hy and Ho.
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We are mainly interested in the trajectories of the system which remain in the first
quadrant Q={(x,y) € R? : x > 0,y > 0}. Among these trajectories, the ones
corresponding to ground states, i.e. positive C2 solutions u of (56) are defined on
[0,00). They verify u,(0) = 0 and actually they are C> on (0, o). Using the
invariance of the equation under T all the ground states can be derived by scaling
from a unique one which satisfies u(0) = 1. Since it is easy to prove that such a
solution u is decreasing, in the variables (x, y), a ground state is a trajectory of (60) in

y(t)

Q, defined on R and satisfying lim ——= = 0. The corresponding trajectory is
t——o00 x(t)
denoted by Teg.

Contrarily to the case of the Lane-Emden equation (41), there exists no natural
Lyapunov function when M # 0. This makes the study much more delicate and ours is
based upon a phase plane analysis. The solutions of (56) invariant under T} for any
k > 0 correspond to constant solutions of (58) and have the form

2
U(r)=Xr 71 forall r >0, (61)

where X is a positive root of

XP_1+I\/I< 2 1>”+1x'ﬁlfi:o. (62)
-
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Explicit singular solutions

This equation, which correspons to finding the fixed points of the system, plays a
fundamental role in the description of the set of solutions of (56). The following
constant, defined for N =1,2and p>1or N >3 and 1< p< % has an

important role in the description of the set roots of (62),

N—(N—2)p>p#

B= u*(N)=(p+1)( 2

(63)

This set is described in the following proposition.

Proposition 1 1- If M > 0, equation (62) admits a unique positive root if and only if
N >3 andp > %

2-IfM <0 andp > N% equation (62) admits a unique positive root Xy.

3-If M < 0 and either N =1,2 and p>1orN>3and1 <p< % there exists
no positive root of (62) if —p* < M < 0, a unique positive root if M = —p* < 0 and
two positive roots Xy py < Xo m if M < —p*.

We also set Yy = 25 Xy and Py = (Xu, Yu) (resp. Yjm = 527 Xj,m and

Pi.m = (Xj,m, Yj,m), for j=1,2) and define the corresponding singular solutions

2 2
Um(r) = Xyr »=1 (resp. Ujm(r) = Xjmr »=1).
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The geometry of the vector field H

The vector field is inward in (resp. outward of) Q on the axis {(x,y) : x > 0,y = 0}
(resp. {(x,y):x =0,y > 0}). We set

C::{(x,y)eQ:y:%} and C:{(x,y)EQ:X(Ky—My;ﬂ)P}

(64)
1
and ¢¥(y) = (Ky — Myﬁ%> " Then xt =0on L and yt =0 on C. The curves L
and C have , one or two intersections in Q according the value of
K= (N_pzﬂ and M.
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Graphic representation of the vector field H

N
Figure: M > 0, p > (0,0) is a saddle point M<O0,p> N3’ (0,0) is a source.

N—2'

In these two cases, whenever u is a regular solution, it either changes sign, and if not,
either u ~ r>=N or u ~ Up(r) at oo, or u has an w-limit cycle surrounding Py.
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Graphic representation of the vector field H

AN

\

A

Figure: —p* < M <0,1<p<

N—2

There are no ground states and no positive singular solutions
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Graphic representation of the vector field H

Figure: M = —p*, 1 < p <

, M< —p* 1 _
N—2 T v

In the last case Py p is a saddle point, if M < M < —p* then P> 1 is a source and if
M < M, then P> v is a sink. P, ; is a weak source.
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Recall briefly the description of the positive solutions of the Lane-Emden equation
(41), i.e. M = 0: there exists radial ground states if and only if N > 3 and p > %
If p= %
lim, 00 rN=2u(r) = ¢ > 0. There exist infinitely many singular solutions u ondulating
around Upy. Note that a ground state corresponds to a homoclinic orbit at 0 for
system (60) and these singular solutions are cycles surrounding Py. We recall that an
orbit of (60) which connects two different equilibria (resp. the same equilibrium) when
t € R is called heteroclinic (resp. homoclinic).

these ground states are explicit and they satisfy

We describe next the ground states and the singular global solutions of (56) in
RN\ {0}. We present first the results for M > 0. The following value of M appears
when we linearize the system (60) at the equilibrium Py,
S p+1)(N=2)p—(N+2
W i, p) — PN =Dp—(N+2)
(4p) 71 (N = 2)(p — 1) + 4) P2

(65)

Then M is positive (resp. negative) if p > % (resp. p < %) It is easy to see
that if M = M then the characteristic values of the linearized operator at Py, are
purely imaginary.
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The case M > 0

Theorem A2r
Let N>1, p>1and M > 0.

1I-Ifl1< p < % if N> 3, and any p > 1 if N = 1,2, then equation (56) admits no
ground state.

2-If N >3 and p > =5, there exist constants Momin, Mmax verifying

0< M < Mpin < Mmax  such that

-if0< M < Mimin there exist ground states u satisfying u(r) ~ Uy(r) when r — oo.
- if M = Mpin or IVI Mmax there exists a ground state u minimal at infinity, that is
satlsfymg I|m N=2u(r) =c > 0.

- for M > Mmax there exists no radial ground state.

The values of My, and Mpax appear as transition values for which the ground state
still exists but it is smaller than the others at infinity; it is of order r2~N instead of
riﬁ. They are not explicit but they can be estimated as functions of N and p. It is
a numerical evidence that My, = Mmax in the phase plane analysis of system (60)
and we conjecture that this is true. When M = I\7Im,-,, of Mpmax, the system (60) admits
homoclinic trajectories.
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The case M < 0

When M is negative, the precise description of the trajectories of (60) depends also on
the value of p with respect to % It is proved in [8, Th. B, E] that for N > 3 and

l<p< N+2
positive squtlon in RN, The same conclusion holds if N > 3, 1 <p< L (or N =2

there exists €g > 0 such that if |M| < ¢p equation (2) admits no

and p > 1) and M > —pu*. We first consider the case p > 5 for wh|ch there exists

a unique explicit singular solution Uy, and the results present some similarity with the
ones of Theorem A.

Theorem B2r

Let N >3, p> M and M < 0. Then

1- If p > N+2 , then equation (56) admits ground states u. Moreover they satisfy
u(r) ~ UM(r) as r — oo.
2 If g <p< N+2 , there exist numbers fimi, and fimax verifying

0< |W‘ < fimin < fimax < M*(l) such that

(i) for M < —[imax there exist ground states u such that u(r) ~ Up(r) when r — co.
(ii) for M = —[ipmin or for M = —[imax there exist ground states minimal at infinity in
the sense that u(r) ~ cr>=N when r — oo, ¢ > 0.

(iii) for —fimin < M < O there exists no radial ground state.

Here also the value of [in,, fimax are not explicit and we conjecture that they coincide.
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The situation is more complicated when 1 < p < % and M < —p* because there
exist two explicit singular solutions Uy p and Us py which coincide when M = —p*.

Theorem C2r

Let M <0, N>3and1l<p< %,orN:2andp>l. Then there exist two

constants fimin and fimax verifying
p* < M| < fimin < fimax < p*(1),
such that

1- If M < —fimax then equation (56) admits ground states u either ondulating around
U, v or such that u(r) ~ Us p(r) as r — oo.

2- If M = —[ipmin or M = —[imax there exists a ground state u such that
u(r) ~ Up,m(r) as r — oo.

3- If —fimin < M < O there exists no radial ground state.

Here again [imi, and fimax appear as transition values for which the ground state still
exists but it is smaller than the others at infinity: it behaves like Uy y instead of Us .
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The proof of this theorem is very elaborate in particular in the case N = 2. In the case
N =1 the result is already proved by Chipot-Weissler in [15]. The nonexistence of
ground state, not necessarily radial for M > —p* is proved by Alarcén et al in [1] and
independently in [8] with a different method. In the radial case it was obtained much
before in the case N =1 in [15] and then by Fila and Quittner [17] who raised the
question whether the condition — i, < M < 0 is optimal for the non-existence of
radial ground state. This question received a negative answer in the work of Voirol
[23] who extended the domain of non-existence to —p* —e < M < —p*.
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Map for the ground state solutions.

\\

=2
Ju~ XyreT at oo

Figure: Theorems A2r, B2r and C2r.
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Positive singular solutions for M > 0, N > 3.

We prove that the system (60) admits a Hopf bifurcation when M = M. When
p> % we also prove the existence of different types of positive singular solutions.

Theorem A'2r
Let N > 3.
1-If % <p< % for any M > O there exists a unique (always up to scaling

2
transformation) positive singular solution u of (56) satisfying IimD rP=Tu(r) = Xy and
r—r

lim rN=2u(r)=c > 0.

r—o0
2-If p> NE2, then

(i) If M > Mmax, there exists a unique singular solution u of (56) with the same
behaviour as in 1._

(i) If M < M < Mp,;, there exist positive singular solutions u ondulating around Uy,
on R.

In terms of the system (60) the 1- and 2-(i) correspond to the existence of a
heteroclinic orbit in Q connecting Py to (0,0) and (ii) to the existence of a cycle in Q
surrounding Py.
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Positive singular solutions for M < O,N 5 <p< N+2 . N> 3.

The next result is the counterpart of Theorem B for singular soulutions.

Theorem B'2r

N N+2
LetN23andm<p<m

(i) If M < M < 0 there exists a unique (up to scaling) positive singular solution u of
(56), such that u(r) ~ Up(r) when r — 0 and u(r) ~ cr>=N when r — oo for some
c>0.

(ii) If —fimin < M < O there exist positive singular solutions u ondulating around Uy,
on [0,00) and singular solutions ondulating around Uy, in a neighbourhood of 0 and
satisfying u(r) ~ cr>=N for some ¢ > 0 when r — oo.

In terms of the system (60), (i) corresponds to a heteroclinic orbit connecting Py, and
(0,0), while (ii) to the existence of a periodic solution in Q around Py, and the
existence of a solution in Q converging to (0,0) at oo and having a limit cycle at

t = —oo which is a periodic orbit around Py,.
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Positive singular solutions for M < 0,1 < p < % N > 3.

The next result is the counterpart of Theorem C when dealing with singular solutions.

Theorem C'2r

Let M<0, N>3andl<p< % Then there exist positive real numbers
M| < fimin < fimax < fimin < fimax < p*(1) with the following properties

(i) If M < —p* there exist positive singular solutions u such that u(r) ~ cr?>=N with
c >0 when r — 0 and u(r) ~ Uy m(r) as r — oc.

(i) If M < M < —u* there exists a unique up to scaling positive singular solution u,
such that u(r) ~ Us m(r) as r — 0 and u(r) ~ Uy m(r) as r — oo. Furthermore
u(r) > Uy m(r) for all r > 0.

(iii) If —fimin < M < —|M| there exist positive singular solutions u ondulating around
Uz m at 0 and such that u(r) ~ Uy m(r) as r — oo, and positive singular solutions u
ondulating around U p on R.

(iv) If M = —[ipmin or M = —[imax there exists a positive singular solution u different
from Uy such that u(r) ~ Uy y(r) when r — 0 and r — oc.

(V) If —fimin < M < —[imax there exists a positive singular solution u such that
lim rN=2u(r) = ¢ > 0 and either ondulating around Uy p or such that

r—0
u(r) ~ Uz m(r) when r — oo.
(vi) If N > 3 and M = —p*, there exist positive singular solution u satisfying

lim rN=2u(r) = ¢ > 0 and u(r) ~ U_,x(r) as r — oo.
r—0




Map for the singular positive solutions

M
MynarT
My, at 0
at 0o
i+ S unUnar at0
e 4 5
1z e u~ Uy at 0 4
. i et Ve
-1 I
{Fuond. arround Uas on [0,00),' 3 4 ond. arround Uy on [0, )
ar ond. arround Uy p;  at 0 ‘\ wond. arround Up; at 0 |
S u~ Uiy at 00 1| ¥ g 2N atoo |
B i
- L -
“fmin T | |
D T
I u~e at 0 |
13 uond. arround Uz yy  at x‘\ gu~Ulim at0
- oru~ Uy n at 0o u~ Uy atoo
—pint ———
—pr() T | |

Figure: Theorems A'2r, B'2r and C'2r.
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