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My personal greetings!

Dear Marie and Laurent, it is a great pleasure for me to participate in this wonderful
meeting to celebrate such an important birthday.

And I would like to take this opportunity to express to you my infinite gratitude, not
only for your inmense generosity in sharing your mathematics with me, but also for our
wonderful friendship.
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The problem

The purpose of this talk is to give some results concerning a-priori bounds and
existence / nonexistence of positive solutions in a domain Ω ⊆ RN of the equations

−∆u = |u|p−1u |∇u|q (1)

where p + q > 1 and
−∆u = |u|p−1u + M |∇u|q , (2)

where p > 1, q > 1 and M ∈ R.
We address the questions of

Upper estimates of solutions

Existence or nonexistence of solutions in all RN .
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These equations have been the subject of many works, starting with the well known
Emden-Fowler equation

−∆u = up , p > 1, (3)

and then extended to much more general nonlinearities and also to systems, see for
example the pioneering works of Gidas-Spruck (1980), Caffarelli (1989), Bidaut-Véron
and Véron (1991), Serrin-Zou (2002), Farina (2008) among many others, including
Mitidieri, Pohozaev and BV-V for quasilinear equations and systems, where mainly
results of Liouville type are obtained when the problem is “sub-critical”. The study of
equations involving a gradient term is more recent, see for example the works Alarcón,
García-Melián Quaas (2013) Filippucci (2008-2011), Burgos, García-Melián, Quaas
(2016) among others.
We start with a short listing of known results for the Emden Fowler equation (3) and
some more recent results for the equation

−∆u = |∇u|q , q > 1. (4)
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The radial study of the Emden Fowler equation (3) involves the existence of two
critical values for p, the so called Serrin’s exponent, and the so-called Sobolev
exponent

pS :=
N

N − 2
, p∗ :=

N + 2
N − 2

.

(i) The equation has a particular radial solution u(x) = CN,p |x |−
2

p−1 if and only if
p > pS .

(ii) If 1 < p < p∗, there are no ground states.

(iii) If p ≥ p∗, there exists a one parameter family of ground states which are explicit
for p = p∗:

u(x) := uλ(x) =
(N(N − 2)λ)

N−2
4

(λ+ |x − a|2)
N−2
2
.

(iv) If 1 < p < p∗, there exists a universal constant CN,p such that in any bounded
domain Ω, any positive solution satisfies

u(x) ≤ CN,pdist(x , ∂Ω)
− 2

p−1 .

(v) If 1 < p ≤ p∗, all the positive solutions are symmetric with respect to some x0.
(Moving planes method, CG-S 1989).
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The proof for the universal estimate follows from Serrin’s work (1964-1965) when
1 < p < pS writing

−∆u = du, d = up−1

u ∈ MN/(N−2)(Ω) and then d ∈ L
1+N/2
loc (Ω). The difficult case is when pS ≤ p < p∗,

done by (Bernstein method) differentiating the equation and look at the equation
satisfied by z = |∇v |2, where v = uγ for a negative γ, by Gidas & Spruck (1980)[2]
and Véron Bidaut-Véron (1991)[4]. It uses the Böchner-Weizenböck formula

1
2

∆z = |D2v |2 + 〈∇(∆v),∇v〉 (5)

which, since |D2v |2 = 1
N

(∆v)2, gives the inequality

1
2

∆z =
1
N

(∆v)2 + 〈∇(∆v),∇v〉. (6)

Then, after multiplying by a new power of v , a careful integration by parts in a ball
B(0,R) we obtain ∫

B(0,R)
dσdx =

∫
B(0,R)

uσ(p−1)dx ≤ C RN−2σ

for some appropriate σ > N/2.
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Problem (4), q > 1, is not variational. We summarize our recent results (BV-GH-V,
2014)[2].

Since constants are solutions, there is no universal estimate for the solutions.

Any solution in Ω satisfies the universal estimate of the gradient

|∇u(x)| ≤ CN,qdist(x , ∂Ω)
− 1

q−1 .

Any solution in RN is constant.

We prove our estimate by using the Bernstein method: The function z = |∇u(x)|2
satisfies the inequality

−∆z + Czq ≤ D
( |∇z|2

z
+ 1
)
,

hence a sufficiently large power of z, v := z1+K satisfies

−∆v + C0v
q+K
1+K ≤ D0

and thus v satisfies the Keller Osserman type of estimate

v(x) ≤ Cdist(x , ∂Ω)
− 2(1+K)

q−1 ,

implying |∇u(x)| ≤ Cdist(x , ∂Ω)
− 1

q−1 .
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Study for −∆u = |u|p−1u |∇u|q, p + q > 1.

A first critical case appears when

(N − 2)p + (N − 1)q = N. (7)

Indeed, if we look for radial positive solutions of the form u(x) = Λ |x |−γ we find, if
q < 2 and p + q − 1 > 0, that γ := γp,q = 2−q

p+q−1 and

Λ := ΛN,p,q = γ
1−q

p+q−1
p,q

(
N − 2p + q

p + q − 1

) 1
p+q−1

. (8)

However, this last quantity exists if and only if the exponents belong to the
supercritical range, that is when

(N − 2)p + (N − 1)q > N. (9)
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In the subcritical range of exponents i.e. when

(N − 2)p + (N − 1)q < N, (10)

we prove that Serrin’s classical results (Acta Math. 1964-65)[7, 8] can be applied. We
obtain a local Harnack inequality and an a priori estimate for positive solutions u in
BR \ {0} under the form

u(x) + |x | |∇u(x)| ≤ c |x |2−N ∀x s.t. 0 < |x | ≤ R

2
, (11)

with a constant c depending on u. We have

Theorem A1

Let Ω ⊂ RN be a domain containing 0, N ≥ 3, p ≥ 0, 0 ≤ q ≤ 2 and assume (p, q)
lies in the sub-critical range (10). If u ∈ C2(Ω \ {0}) is a positive solution of (1) in
Ω \ {0}, then estimate (11) holds in a neighborhood of 0.
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Indeed, assume B1 ⊂ Ω. By Brezis-Lions’s result, there holds

u ∈ M
N

N−2 (B1) , ∇u ∈ M
N

N−1 (B1) , up |∇u|q ∈ L1(B1), (12)

where Mr = Lr,∞ denotes the Marcinkiewicz space or Lorentz space of index (r ,∞),
and there exists α ≥ 0 such that

−∆u = up |∇u|q + αδ0 in D(B1). (13)

We assume first pq 6= 0. Then

|up |∇u|q | ≤ |u|pθ + |∇u|qθ′ = c |u|+ d |∇u| , (14)

where θ, θ′ ≥ 1, 1
θ

+ 1
θ′ = 1, c = |u|pθ−1, d = |∇u|qθ′−1. If θ > max{1, 1

p
} and

θ′ > max{1, 1
q
}, then c ∈ M

N
(N−2)(pθ−1) and d ∈ M

N
(N−1)(qθ′−1) . We claim that we

can choose θ > 1 such that

N

(N − 2)(pθ − 1)
>

N

2
and

N

(N − 1)(qθ′ − 1)
> N. (15)
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These inequalities are respectively equivalent to

θ <
N

p(N − 2)
and θ′ <

N

q(N − 1)
, (16)

which is clearly possible from the subcritical assumption (10) by taking θ = N(1−ε)
p(N−2)

for ε > 0 small enough. Because Mr (B1) ⊂> Lr−δ(B1) for any δ > 0, we infer that
c ∈ L

N
2 +δ(B1) and c ∈ LN+δ(B1) and u verifies Harnack inequality in B \ {0} by

Serrin’s result. This implies

max
|x|=r

u(x) ≤ K min
|x|=r

u(x) ∀r ∈ (0,
1
2

] for some K > 0. (17)

The spherical average ū of u on {x : |x | = r} is superharmonic. Hence there exists
some m ≥ 0 such that

ū(r) ≤ mr2−N . (18)

Combined with (17) it yields u(x) ≤ Km |x |2−N . The estimate on the gradient is
standard, see eg [10, Lemma 3.3.2]. �
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Main Results

Our main results deal with the supercritical range. We prove a priori estimates of
positive solutions of (2) in a punctured domain and existence of ground states in RN .
There are two approaches for obtaining these results. The direct Bernstein method
and the integral Bernstein method popularized by Lions [5] and Gidas and Spruck in
[2] respectively. Both methods are based upon differentiating the equation. The direct
Bernstein method relies on obtaining pointwise estimates of the gradient through
comparison principles via algebraic computations, an intensive use of Young’s
inequality and without any integration. Our main result in this framework is the
following:
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Theorem B1

Let N ≥ 2, 0 ≤ q < 2 and p ≥ 0 be such that p + q− 1 > 0. If u is a positive solution
of (1) in BR and one of the following assumptions is fulfilled,

(i) p + q − 1 < 4
N−1 ,

(ii) 0 ≤ p < 1 and p + q − 1 < (p+1)2

p(N−1)
.

Then there exist positive constants a = a(N, p, q) and c1 = c1(N, p, q) such that

|∇ua(0)| ≤ c1R
−1−a 2−q

p+q−1 . (19)

The value of the exponent a is not easy to compute, however, in several applications
this difficulty can be bypassed.
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The proof of this result is long and very technical, and we will use the following result:

Lemma B1

Let q > 1 and a,R > 0. Assume υ is continuous and nonnegative on BR and C1 on
the set U+ = {x ∈ BR : υ(x) > 0}. If υ satisfies

−∆υ + υq ≤ a
|∇υ|2
υ

(20)

on each connected component of U+, there holds

υ(0) ≤ cN,q,aR
− 2

q−1 . (21)
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Proof of Theorem B1, a scketch

First we set v = u−1/β for some parameter β 6= 0 to be found, and also set
z = |∇v |2. Then

∆v = (1 + β)
|∇v |2
v

+ |β|q−2 βv1−q−β(p+q−1) |∇v |q

= (1 + β)
z

v
+ |β|q−2 βv sz

q
2 ,

(22)

where s = 1− q − β(p + q − 1). Using now the Weizenböck inequality (6) that we
recall

1
2

∆z =
1
N

(∆v)2 + 〈∇(∆v),∇v〉,

and by developing it can be seen that

−1
2

∆z +

(
(1 + β)2

N
− (1 + β)

)
z2

v2 +
1
N
β2(q−1)v2szq

+

(
2(1 + β)

N
+ s

)
|β|q−2 βv s−1z

q
2 +1 + (1 + β)

〈∇z,∇v〉
v

+
q

2
|β|q−2 βv sz

q
2−1〈∇z,∇v〉

≤ 0.
(23)
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Next we set Y = vλz for some parameter λ, and then, after multiplication by vλ we
get

−1
2

∆Y +

(
(1 + β)2

N
− (1 + β)− λ

2
(λ+ β + 2)

)
v−λ−2Y 2

+

(
2(1 + β)

N
+ s − λ(q − 1)

2

)
|β|q−2 βv s−1−λq

2 Y
q
2 +1 +

1
N
β2(q−1)v2s−λq+λY q

≤ −
(
q

2
|β|q−2 βv s−λq

2 +λY
q
2−1 +

λ+ 1
v

)
〈∇Y ,∇v〉.

As a second step we estimate Y . To this end we let ε0 ∈ (0, 1). For any ε > 0 one has

∣∣∣∣ 〈∇Y ,∇v〉v

∣∣∣∣ ≤ 1
4ε
|∇Y |2
Y

+ εv−λ−2Y 2.

By choosing ε appropriately we obtain
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−1
2

∆Y +

(
(1 + β)2

N
− (1 + β)− λ(β + λ+ 2− ε0)

2

)
v−λ−2Y 2

+

(
2(1 + β)

N
+ s − λ(q − 1)

2

)
|β|q−2 βv s−1−λq

2 Y 1+ q
2

+

(
β2(q−1)

N
− ε0

)
v2s−λq+λY q ≤ C(ε0) |∇Y |2

Y
,

(24)

with C(ε0) =
(

(λ+1)2

4 + qβ2(q−1)

16

)
1
ε0
. Next we put H equal to the red expression

above so that our inequality reads

−1
2

∆Y + H ≤ C(ε0)
|∇Y |2
Y

.

and consider the trinom ( Note t = v s+1+λ 2−q
2 Y

q
2−1)

Tε0 (t) =

(
β2(q−1)

N
− ε0

)
t2 +

(
2(1 + β)

N
+ s − λ(q − 1)

2

)
|β|q−2 βt

+

(
(1 + β)2

N
− (1 + β)− λ(β + λ+ 2− ε0)

2

)
.
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If its discriminant is negative there exists α = α(N, p, q, β, λ, ε0) > 0 such that
Tε0 (t) ≥ α(t2 + 1), hence

H ≥ α
(
v−λ−2Y 2 + v2s−λq+λY q

)
. (25)

Assuming λ 6= −2, we introduce

S =
2s − λq + λ

λ+ 2
= 1− q − 2β(p + q − 1)

λ+ 2
, (26)

then, if S > max{0, 1− q}, we have 2S+q
S+1 > 1 and

Y
2S+q
S+1 =

(
Y 2

vλ+2

) S
S+1

v
(λ+2)S
S+1 Y

q
S+1≤ Y 2

vλ+2 + v (λ+2)SY q =
Y 2

vλ+2 + v2s−λq+λY q ,

and thus we deduce

−∆Y + 2αY
2S+q
S+1 ≤ 2C(ε0)

|∇Y |2
Y

. (27)
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Using Lemma B1, we derive

Y (0) ≤ cR
− 2(S+1)

S+q−1 = cR
− 2(s+1)−λ(q−1)

s+q−1 = cR
−2+

(2+λ)(2−q)
β(p+q−1) ,

from which follows ∣∣∣∣∇u− 2+λ
2β (0)

∣∣∣∣ ≤ |2 + λ|√c
2

R
−1+

(2+λ)(2−q)
2β(p+q−1) . (28)

Therefore, Theorem B1 will follow with a = −λ+2
2β and a will be positive if we can

choose λ 6= −2 and β 6= 0 so that S > max{0, 1− q}. After some very lengthy and
delicate estimates we can prove that under the assumptions of Theorem B we can
always choose such β, λ.

19 / 60



An important Corollary

Corollary B1

Under the assumptions on N, p and q of Theorem B1, any positive solution of (2) in
RN is constant.

Our next result is an improvement of Theorem B.

Theorem C1

Assume p ≥ 0, 0 ≤ q < 2 and define the polynomial G by

G(p, q) =
(
(N − 1)2q + N − 2

)
p2 + b(q)p − Nq2,

where b(q) = N(N − 1)q2 − (N2 + N − 1)q − N − 2.
(29)

If the couple (p, q) satisfies the inequality G(p, q) < 0, then all the positive solutions
of (1) in RN are constant.

In the range of p and q, the condition GN(p, q) < 0 is equivalent to

0 ≤ p < pc (q) :=
−b(q) +

√
b2(q) + 4Nq2 ((N − 1)2q + N − 2)

2 ((N − 1)2q + N − 2)
. (30)
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It is proven by using the integral Bernstein method. The aim of the integral Bernstein
method is to obtain estimates of the Lr -norm of the gradient of the solutions in balls
for r large enough. Combined with the work of Serrin this leads in Gidas-Spruck to a
Harnack inequality. Here we use these integral estimates to prove the non-existence of
non-constant global solutions.

We start with the following Weizenböck inequality already used in the proof of
Theorem B, but taken here in the weak sense, namely∫

RN

(
1
2
〈∇z,∇φ〉+

(∆v)2

N
φ−∆v(〈∇v ,∇φ〉+ φ∆v)

)
dx ≤ 0,

for all φ ∈ C1
0 (RN), φ ≥ 0, hence∫

RN

(
1
2
〈∇z,∇φ〉 − N − 1

N
φ(∆v)2 −∆v〈∇v ,∇φ〉

)
dx ≤ 0. (31)
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Essentially, we choose φ = vλzeη where η ∈ C3
0 (RN), η ≥ 0, and derive a series of

integral inequalities that will yield, under the assumption that G(p, q) < 0, that
|∇u(x)| = 0.
Computations are very hard, and the results depend on the choice of e, it works if e is
large enough, but not too large, in our result we have set e = N−1

2 q, which seemed to
give the largest region.
Notice that the minimum of p on the curve G(p, q) = 0, 0 < q < 2 is smaller that 1
whenever N ≥ 9. If q = 0, the above reads reads

0 ≤ p < pc (0) :=
N + 2
N − 2

, (32)

which is the well known condition obtained by Gidas and Spruck. Furthermore, it can
be verified that the domain of (p, q) in which Theorem B applies is included into the
set of (p, q) where G(p, q) < 0. Our proof is extremely technical and necessitates of
many algebraic computations.
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An existence result

If we just look for radial solutions we obtain an optimal result, namely:

Theorem D1

There exist non-constant radial positive solutions of (2) in RN if and only if p ≥ 0,
0 ≤ q < 1 and

p(N − 2) + q(N − 1) ≥ N +
2− q

1− q
. (33)

If equality holds in (33), there exists an explicit one parameter family of positive radial
solutions of (2) in RN under the form

uc (r) = c

(
Kc

(2−q)2
(N−2)(1−q) + r

2−q
1−q

)− (N−2)(1−q)
2−q

, (34)

for any c > 0 and some K = K(N, q) > 0.
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Radial study

Our equations takes the form

−
(
u′′ +

N − 1
r

u′
)

= up |u′|q , u′(0) = 0. (35)

From this equation we see that u can be written under the form

u(r) = u(0) +

∫ r

0
s1−N

∫ s

0
up(t)

∣∣u′(t)
∣∣q tN−1dt ∀r > 0. (36)

If q ≥ 1, the solution satisfying u(0) = a > 0 is the unique fixed point of the mapping
v 7→ T [v ] defined in the set of functions in C([0, r0]) with value a for r = 0 by

T [v ](r) := a +

∫ r

0
s1−N

∫ s

0
vp(t)

∣∣v ′(t)
∣∣q tN−1dt ∀r > 0.

Clearly T is a strict contraction if r0 > 0 is small enough. Since u ≡ a is a solution in
RN , it is the unique one.
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The case 0 ≤ q < 1

Let now q ∈ [0, 1). We search for nonconstant solutions by dividing equation (35) by
|u′|q , which gives

−
(

(|u′|m−2u′)′ +
ν − 1
r
|u′|m−2u′

)
= (1− q)up

where m = 2− q and ν = N − (N − 1)q, that means v = (1− q)u is a radial solution
of

−∆mv = div(|∇v |m−2∇v) = vp

in dimension ν, where m > 1 for q < 1. We now apply results by Bidaut-Véron in

(1989): for this problem the critical Sobolev exponent is (recall
N(p − 1) + p

N − p
)

p∗ =
ν(m − 1) + m

ν −m
,

hence a second critical case appears when

(N − 2)p + (N − 1)q = N +
2− q

1− q
, (37)

and (33) and (34) follow.

26 / 60



Another method

Following the work of Giacomini-Bidaut-Véron in 2010, equation (35) can be reduced
to a quadratic system (2010)): set

t = ln r , X (t) = −r u
′

u
, Z(t) = −rup |u′|q−2u′

then {
Xt = X (X − (N − 2) + Z)

Zt = Z(N − (N − 1)q − pX + (q − 1)Z

where a new value ν = N − (N − 1)q appears playing the role of dimension. Then we
can make a complete study by phase-plane analysis.
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Summary picture for N = 6
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Study for −∆u = |u|p−1u + M |∇u|q

Equation (2) has been the subject of many works in the radial case when M < 0,
where the two terms |u|p−1u and M |∇u|q are in competition. The first work in that
case is due to Chipot and Weissler [15] who, in particular, solved completely the case
N = 1. Then Serrin and Zou [20] performed a very detailed analysis. Very little is
known in the case M > 0. Under the scaling transformation Tk defined for k > 0 by

uk := Tk [u](x) = k
2

p−1 u(kx), (38)

(2) becomes

−∆uk = |uk |p−1uk + k
2p−q(p+1)

p−1 M |∇uk |q , (39)

and thus, if q 6= 2p
p+1 , (2) can be reduced to

−∆u = |u|p−1u ± |∇u|q . (40)

Observe that when q < 2p
p+1 , the limit equation of (39) when k → 0 is the

Lane-Emden equation
−∆u = |u|p−1u, (41)

and thus the exponent p is dominant.

29 / 60



The other scaling transformation

vk := Sk [u](x) = k
2−q
q−1 u(kx), (42)

transforms (2) into

−∆vk = k
(p+1)q−2p

q−1 |vk |p−1vk + M |∇vk |q , (43)

and if q > 2p
p+1 , the limit equation of (43) when k → 0 is the Riccati equation

−∆v = M |∇v |q , (44)

thus the exponent q is dominant. In [15] and [20] most of the study deals with the
case q 6= 2p

p+1 .
In the critical case i.e. when

q =
2p

p + 1
, (45)

then not only the sign of M but also its value plays a fundamental role, with a delicate
interaction with the exponent p. Notice that an equivalent form of (2) is

−∆v = λ |v |p−1 v ± |∇v |q (46)

with λ > 0. The case N ≥ 2 was left open by Serrin and Zou [20] and the first partial
results are due to Fila and Quittner [17] and Voirol [23, 24]. The case M > 0 was not
considered.
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The techniques we used to prove the following results are based upon a delicate
extension of the ones already introduced above in the case of the product. Our first
nonradial result dealing with the case q > 2p

p+1 is the following:

Theorem A2

Let N ≥ 1, p > 1 and q > 2p
p+1 . Then for any M > 0, any solution of (2) in a domain

Ω ⊂ RN satisfies

|∇u(x)| ≤ cN,p,q

(
M
− p+1

(p+1)q−2p + (Mdist (x , ∂Ω))
− 1

q−1

)
for all x ∈ Ω. (47)

As a consequence, any ground state has at most a linear growth at infinity:

|∇u(x)| ≤ cN,p,qM
− p+1

(p+1)q−2p for all x ∈ RN . (48)

Our proof relies on a direct Bernstein method combined with Keller-Osserman’s
estimate applied to |∇u|2. It is important to notice that the result holds for any
p > 1, showing that, in some sense, the presence of the gradient term has a
regularizing effect.
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A nonexistence result

In the case q < 2p
p+1 we prove a non-existence result:

Theorem A’2

Let N ≥ 1, p > 1, 1 < q < 2p
p+1 and M > 0. Then there exists a constant cN,p,q > 0

such that there is no positive solution of (2) in RN satisfying

u(x) ≤ cN,p,qM
2

2p−(p+1)q for all x ∈ RN . (49)

This is done by reducing by scaling to the case M = 1: We set u = α2/(p−1)v(αx)

with α = M
p−1

2p−(p+1)q and using Lemma B1 applied to z = |∇v |2. Hence a radial
ground state has to start large at 0.
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The critical case q = 2p
p+1

When q is critical with respect to p the situation is more delicate since the value of M
plays a fundamental role. Our first statement is a particular case of a more general
result given by Alarcón, García-Melián and Quaas.

Theorem B2

Let N ≥ 2, p > 1 if N = 2 or 1 < p ≤ N
N−2 if N = 3, q = 2p

p+1 and M > −µ∗ where

µ∗ := µ∗(N) = (p + 1)

(
N − (N − 2)p

2p

) p
p+1

. (50)

Then there exists no nontrivial nonnegative supersolution of (2) in an exterior domain.
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Concerning ground states, we prove their nonexistence for any p > 1 provided M > 0
is large enough: indeed

Theorem C2

Let Ω ⊂ RN , N ≥ 1, be a domain, p > 1, q = 2p
p+1 . For any

M > M† :=

(
p − 1
p + 1

) p−1
p+1

(
N(p + 1)2

4p

) p
p+1

, (51)

and any ν > 0 such that (1− ν)M > M†, there exists a positive constant cN,p,ν such
that any solution u in Ω satisfies

|∇u(x)| ≤ cN,p,ν
(
(1− ν)M −M†

)− p+1
p−1 (dist (x , ∂Ω))

− p+1
p−1 for all x ∈ Ω. (52)

Consequently there exists no nontrivial solution of (2) in RN .

34 / 60



The next result, based upon an elaborate Bernstein method, complements Theorem C
under a less restrictive assumption on M but a more restrictive assumption on p.

Theorem D2

Let 1 < p < N+3
N−1 , N ≥ 2, 1 < q < N+2

N
and Ω ⊂ RN be a domain. Then there exist

a > 0 and cN,p,q > 0 such that for any M > 0, any positive solution u in Ω satisfies

|∇ua(x)| ≤ cN,p,q (dist (x , ∂Ω))
− 2a

p−1−1 for all x ∈ Ω. (53)

Hence there exists no nontrivial nonnegative solution of (2) in RN .

It is remarkable that the constants a and cN,p,q do not depend on M > 0, a fact
which is clear when q 6= 2p

p+1 by using the transformation Tk , but much more delicate

to highlight when q = 2p
p+1 since (2) is invariant.
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When |M| is small, we use an integral method to obtain the following result which
contains, as a particular case, the previous estimates by Gidas and Spruck and ours.
The key point of this method is to prove that the solutions in a punctured domain
satisfy a local Harnack inequality.

Theorem E2

Let N ≥ 3, 1 < p < N+2
N−2 , q = 2p

p+1 . Then there exists ε0 > 0 depending on N and p

such that for any M satisfying |M| ≤ ε0, any positive solution u in BR \ {0} satisfies

u(x) ≤ cN,p |x |−
2

p−1 for all x ∈ B R
2
\ {0}. (54)

As a consequence there exists no positive solution of (2) in RN , and any positive
solution u in a domain Ω satisfies

u(x) + |∇u(x)|
2

p+1 ≤ c ′N,p (dist (x , ∂Ω))
− 2

p−1 for all x ∈ Ω. (55)

Note that under the assumptions of Theorem E, there exist ground states for |M| large
enough when 1 < p < N

N−2 , or any p > 1 if N = 1, 2.
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Radial solutions

The radial solutions of (2) are functions r 7→ u(r) defined in (0,∞) where they satisfy

− urr −
N − 1

r
ur = |u|p−1u + M |ur |

2p
p+1 . (56)

Because of the invariance of (56) under the transformation Tk there exists an
autonomous variant of (2) obtained by setting

u(r) = r
− 2

p−1 x(t) with t = ln r . (57)

Then

xtt + Lxt −
2K

p − 1
x + |x |p−1x + M

∣∣∣∣ 2K
p − 1

x − xt

∣∣∣∣ 2p
p+1

= 0 (58)

with

K =
(N − 2)p − N

p − 1
and L =

(N − 2)p − (N + 2)

p − 1
= K − 2

p − 1
. (59)

Setting y(t) = −r
p+1
p−1 ur (r), then (x(t), y(t)) satisfies the system

xt = H1(x , y) =
2

p − 1
x − y

yt = H2(x , y) = −Ky + |x |p−1x + M |y |
2p
p+1

(60)

and we denote by H the vector field of R2 with components H1 and H2.
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We are mainly interested in the trajectories of the system which remain in the first
quadrant Q={(x , y) ∈ R2 : x > 0, y > 0}. Among these trajectories, the ones
corresponding to ground states, i.e. positive C2 solutions u of (56) are defined on
[0,∞). They verify ur (0) = 0 and actually they are C∞ on (0,∞). Using the
invariance of the equation under Tk all the ground states can be derived by scaling
from a unique one which satisfies u(0) = 1. Since it is easy to prove that such a
solution u is decreasing, in the variables (x , y), a ground state is a trajectory of (60) in

Q, defined on R and satisfying lim
t→−∞

y(t)

x(t)
= 0. The corresponding trajectory is

denoted by Treg .

Contrarily to the case of the Lane-Emden equation (41), there exists no natural
Lyapunov function when M 6= 0. This makes the study much more delicate and ours is
based upon a phase plane analysis. The solutions of (56) invariant under Tk for any
k > 0 correspond to constant solutions of (58) and have the form

U(r) = Xr
− 2

p−1 for all r > 0, (61)

where X is a positive root of

X p−1 + M

(
2

p − 1

) 2p
p+1

X
p−1
p+1 − 2K

p − 1
= 0. (62)
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Explicit singular solutions

This equation, which correspons to finding the fixed points of the system, plays a
fundamental role in the description of the set of solutions of (56). The following
constant, defined for N = 1, 2 and p > 1 or N ≥ 3 and 1 < p ≤ N

N−2 has an
important role in the description of the set roots of (62),

µ∗ := µ∗(N) = (p + 1)

(
N − (N − 2)p

2p

) p
p+1

. (63)

This set is described in the following proposition.

Proposition 1 1- If M ≥ 0, equation (62) admits a unique positive root if and only if
N ≥ 3 and p > N

N−2 .

2- If M < 0 and p ≥ N
N−2 , equation (62) admits a unique positive root XM .

3- If M < 0 and either N = 1, 2 and p > 1 or N ≥ 3 and 1 < p ≤ N
N−2 , there exists

no positive root of (62) if −µ∗ < M < 0, a unique positive root if M = −µ∗ < 0 and
two positive roots X1,M < X2,M if M < −µ∗.

We also set YM = 2
p−1XM and PM = (XM ,YM) (resp. Yj,M = 2

p−1Xj,M and
Pj,M = (Xj,M ,Yj,M), for j=1,2) and define the corresponding singular solutions

UM(r) = XM r
− 2

p−1 (resp. Uj,M(r) = Xj,M r
− 2

p−1 ).
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The geometry of the vector field H

The vector field is inward in (resp. outward of) Q on the axis {(x , y) : x > 0, y = 0}
(resp. {(x , y) : x = 0, y > 0}). We set

L :=

{
(x , y) ∈ Q : y =

2x
p − 1

}
and C :=

{
(x , y) ∈ Q : x =

(
Ky −My

2p
p+1

) 1
p

}
(64)

and ψ(y) =

(
Ky −My

2p
p+1

) 1
p

. Then xt = 0 on L and yt = 0 on C. The curves L
and C have zero, one or two intersections in Q according the value of

K =
(N − 2)p − N

p − 1
and M.
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Graphic representation of the vector field H
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Figure: M > 0, p >
N

N − 2
,(0, 0) is a saddle point M < 0, p ≥ N

N − 2
, (0, 0) is a source.

In these two cases, whenever u is a regular solution, it either changes sign, and if not,
either u ∼ r2−N or u ∼ UM(r) at ∞, or u has an ω-limit cycle surrounding PM .
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Graphic representation of the vector field H
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Figure: −µ∗ < M < 0, 1 < p <
N
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There are no ground states and no positive singular solutions
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Graphic representation of the vector field H
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Figure: M = −µ∗, 1 < p <
N

N − 2
, M < −µ∗, 1 < p <

N

N − 2
.

In the last case P1,M is a saddle point, if M < M < −µ∗ then P2,M is a source and if
M < M, then P2,M is a sink. P2,M is a weak source.
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Recall briefly the description of the positive solutions of the Lane-Emden equation
(41), i.e. M = 0: there exists radial ground states if and only if N ≥ 3 and p ≥ N+2

N−2 .

If p = N+2
N−2 these ground states are explicit and they satisfy

limr→∞ rN−2u(r) = c > 0. There exist infinitely many singular solutions u ondulating
around UM . Note that a ground state corresponds to a homoclinic orbit at 0 for
system (60) and these singular solutions are cycles surrounding PM . We recall that an
orbit of (60) which connects two different equilibria (resp. the same equilibrium) when
t ∈ R is called heteroclinic (resp. homoclinic).

We describe next the ground states and the singular global solutions of (56) in
RN \ {0}. We present first the results for M > 0. The following value of M appears
when we linearize the system (60) at the equilibrium PM ,

M = M(N, p) =
(p + 1) ((N − 2)p − (N + 2))

(4p)
p

p+1 ((N − 2)(p − 1)2 + 4)
1

p+1
. (65)

Then M is positive (resp. negative) if p > N+2
N−2 (resp. p < N+2

N−2 ). It is easy to see
that if M = M then the characteristic values of the linearized operator at PM are
purely imaginary.
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The case M > 0

Theorem A2r

Let N ≥ 1, p > 1 and M > 0.

1- If 1 < p ≤ N+2
N−2 if N ≥ 3, and any p > 1 if N = 1, 2, then equation (56) admits no

ground state.

2- If N ≥ 3 and p > N+2
N−2 , there exist constants M̃min, M̃max verifying

0 < M < M̃min ≤ M̃max such that

- if 0 < M < M̃min there exist ground states u satisfying u(r) ∼ UM(r) when r →∞.
- if M = M̃min or M = M̃max there exists a ground state u minimal at infinity, that is
satisfying lim

r→∞
rN−2u(r) = c > 0.

- for M > M̃max there exists no radial ground state.

The values of M̃min and M̃max appear as transition values for which the ground state
still exists but it is smaller than the others at infinity; it is of order r2−N instead of

r
− 2

p−1 . They are not explicit but they can be estimated as functions of N and p. It is
a numerical evidence that M̃min = M̃max in the phase plane analysis of system (60)
and we conjecture that this is true. When M = M̃min or M̃max , the system (60) admits
homoclinic trajectories.
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The case M < 0

When M is negative, the precise description of the trajectories of (60) depends also on
the value of p with respect to N

N−2 . It is proved in [8, Th. B, E] that for N ≥ 3 and

1 < p < N+2
N−2 there exists ε0 > 0 such that if |M| ≤ ε0 equation (2) admits no

positive solution in RN . The same conclusion holds if N ≥ 3, 1 < p ≤ N
N−2 (or N = 2

and p > 1) and M > −µ∗. We first consider the case p ≥ N
N−2 for which there exists

a unique explicit singular solution UM , and the results present some similarity with the
ones of Theorem A.

Theorem B2r

Let N ≥ 3, p ≥ N
N−2 and M < 0. Then

1- If p ≥ N+2
N−2 , then equation (56) admits ground states u. Moreover they satisfy

u(r) ∼ UM(r) as r →∞.

2- If N
N−2 ≤ p < N+2

N−2 , there exist numbers µ̃min and µ̃max verifying

0 < |M| < µ̃min ≤ µ̃max < µ∗(1) such that

(i) for M < −µ̃max there exist ground states u such that u(r) ∼ UM(r) when r →∞.
(ii) for M = −µ̃min or for M = −µ̃max there exist ground states minimal at infinity in
the sense that u(r) ∼ cr2−N when r →∞, c > 0.
(iii) for −µ̃min < M < 0 there exists no radial ground state.

Here also the value of µ̃min, µ̃max are not explicit and we conjecture that they coincide.
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The situation is more complicated when 1 < p < N
N−2 and M < −µ∗ because there

exist two explicit singular solutions U1,M and U2,M which coincide when M = −µ∗.

Theorem C2r

Let M < 0, N ≥ 3 and 1 < p < N
N−2 , or N = 2 and p > 1. Then there exist two

constants µ̃min and µ̃max verifying

µ∗ ≤ |M| < µ̃min ≤ µ̃max < µ∗(1),

such that

1- If M < −µ̃max then equation (56) admits ground states u either ondulating around
U2,M or such that u(r) ∼ U2,M(r) as r →∞.

2- If M = −µ̃min or M = −µ̃max there exists a ground state u such that
u(r) ∼ U1,M(r) as r →∞.

3- If −µ̃min < M < 0 there exists no radial ground state.

Here again µ̃min and µ̃max appear as transition values for which the ground state still
exists but it is smaller than the others at infinity: it behaves like U1,M instead of U2,M .
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The proof of this theorem is very elaborate in particular in the case N = 2. In the case
N = 1 the result is already proved by Chipot-Weissler in [15]. The nonexistence of
ground state, not necessarily radial for M > −µ∗ is proved by Alarcón et al in [1] and
independently in [8] with a different method. In the radial case it was obtained much
before in the case N = 1 in [15] and then by Fila and Quittner [17] who raised the
question whether the condition −µ̃min < M < 0 is optimal for the non-existence of
radial ground state. This question received a negative answer in the work of Voirol
[23] who extended the domain of non-existence to −µ∗ − ε < M ≤ −µ∗.
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Map for the ground state solutions.
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Figure: Theorems A2r, B2r and C2r.
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Positive singular solutions for M > 0, N ≥ 3.

We prove that the system (60) admits a Hopf bifurcation when M = M. When
p > N+2

N−2 we also prove the existence of different types of positive singular solutions.

Theorem A’2r

Let N ≥ 3.

1- If N
N−2 < p ≤ N+2

N−2 for any M > 0 there exists a unique (always up to scaling

transformation) positive singular solution u of (56) satisfying lim
r→0

r
2

p−1 u(r) = XM and

lim
r→∞

rN−2u(r) = c > 0.

2- If p > N+2
N−2 , then

(i) If M > M̃max , there exists a unique singular solution u of (56) with the same
behaviour as in 1.
(ii) If M < M < M̃min there exist positive singular solutions u ondulating around UM

on R.

In terms of the system (60) the 1- and 2-(i) correspond to the existence of a
heteroclinic orbit in Q connecting PM to (0, 0) and (ii) to the existence of a cycle in Q
surrounding PM .
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Positive singular solutions for M < 0, N
N−2 < p < N+2

N−2 , N ≥ 3.

The next result is the counterpart of Theorem B for singular soulutions.

Theorem B’2r

Let N ≥ 3 and N
N−2 < p < N+2

N−2 .

(i) If M < M < 0 there exists a unique (up to scaling) positive singular solution u of
(56), such that u(r) ∼ UM(r) when r → 0 and u(r) ∼ cr2−N when r →∞ for some
c > 0.

(ii) If −µ̃min < M < 0 there exist positive singular solutions u ondulating around UM

on [0,∞) and singular solutions ondulating around UM in a neighbourhood of 0 and
satisfying u(r) ∼ cr2−N for some c > 0 when r →∞.

In terms of the system (60), (i) corresponds to a heteroclinic orbit connecting PM and
(0, 0), while (ii) to the existence of a periodic solution in Q around PM , and the
existence of a solution in Q converging to (0, 0) at ∞ and having a limit cycle at
t = −∞ which is a periodic orbit around PM .
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Positive singular solutions for M < 0,1 < p < N
N−2 , N ≥ 3.

The next result is the counterpart of Theorem C when dealing with singular solutions.

Theorem C’2r

Let M < 0, N ≥ 3 and 1 < p < N
N−2 . Then there exist positive real numbers

|M| < µ̂min ≤ µ̂max < µ̃min ≤ µ̃max < µ∗(1) with the following properties

(i) If M < −µ∗ there exist positive singular solutions u such that u(r) ∼ cr2−N with
c > 0 when r → 0 and u(r) ∼ U1,M(r) as r →∞.

(ii) If M ≤ M < −µ∗ there exists a unique up to scaling positive singular solution u,
such that u(r) ∼ U2,M(r) as r → 0 and u(r) ∼ U1,M(r) as r →∞. Furthermore
u(r) > U1,M(r) for all r > 0.

(iii) If −µ̂min < M < −|M| there exist positive singular solutions u ondulating around
U2,M at 0 and such that u(r) ∼ U1,M(r) as r →∞, and positive singular solutions u
ondulating around U2,M on R.
(iv) If M = −µ̃min or M = −µ̂max there exists a positive singular solution u different
from U1,M such that u(r) ∼ U1,M(r) when r → 0 and r →∞.

(v) If −µ̃min < M < −µ̂max there exists a positive singular solution u such that
lim
r→0

rN−2u(r) = c > 0 and either ondulating around U2,M or such that

u(r) ∼ U2,M(r) when r →∞.
(vi) If N ≥ 3 and M = −µ∗, there exist positive singular solution u satisfying
lim
r→0

rN−2u(r) = c > 0 and u(r) ∼ U−µ∗ (r) as r →∞.
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Map for the singular positive solutions.
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Figure: Theorems A’2r, B’2r and C’2r.
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