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The uniformly elliptic case

We consider nonlinear equations with linear growth

−div a(Du) = µ

under assumptions{
|a(z)|+ |∂a(z)||z | ≤ L|z |p−1

ν|z |p−2|ξ|2 ≤ 〈∂a(z)ξ, ξ〉

A typical instance is

−div (|Du|p−2Du) = µ

Emphasis on Lipschitz estimates.

We want to consider more general growth and ellipticity
assumptions.
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Intrinsic rewriting

Theorem

If u solves
−div a(Du) = µ ,

then

|a(Du(x))| .
∫
BR(x)

d |µ|(y)

|x − y |n−1
+−
∫
BR(x)

|a(Du)| dy

holds

Duzaar & Min. (JFA 2010) for 2− 1/n < p < 2

Kuusi & Min. (CRAS 2011 + ARMA 2013) for the case p ≥ 2

Nguyen & Phuc (Math. Ann. 19) for 3n−2
2n−1 < p ≤ 2
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A global estimate

Theorem

If u solves
−div a(Du) = µ ,

and decays properly at infinity, then

|Du(x)|p−1 .
∫
Rn

d |µ|(y)

|x − y |n−1
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A classical theorem of Stein

Theorem (Stein, Ann. Math. 1981)

Dv ∈ L(n, 1) =⇒ v is continuous

Recall that

g ∈ L(n, 1)⇐⇒
∫ ∞

0
|{x : |g(x)| > λ}|1/n dλ <∞

An example of L(n, 1) function is given by

1

|x | logβ(1/|x |)
β > 1 in the ball B1/2

4u = µ ∈ L(n, 1) =⇒ Du is continuous
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A nonlinear Stein theorem

Now notice that

µ ∈ L(n, 1) =⇒ lim
R→0

∫
BR(x)

d |µ|(y)

|x − y |n−1
= 0 uniformly w.r.t. x

From the results of Kuusi & Min. it also follows that if

lim
R→0

∫
BR(x)

d |µ|(y)

|x − y |n−1
= 0 uniformly =⇒ Du is continuous .
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Linear and nonlinear Stein theorems

Theorem (Stein, Ann. Math. 1981)

If u solves the Poisson equation

−divDu = 4u = µ ∈ L(n, 1)

then
Du is continuous.

Theorem (Kuusi & Min. ARMA 2013)

If u solves the p-Laplacean equation

−div a(Du) = µ ∈ L(n, 1)

then
Du is continuous.
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Linear and nonlinear Stein theorems

Theorem (Kuusi & Min. ARMA 2013)

If u solves the p-Laplacean type equation

−div a(x ,Du) = µ ∈ L(n, 1)

with ∫
0

ω(%)

%
d% <∞

then
Du is continuous.

Here it is
|a(x , z)− a(y , z)|

|z |p−1
. ω(|x − y |)
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Emphasis on external ingredients µ and c(·)

Theorem (Kuusi & Min. ARMA 2013 - Calc. Var. 2014)

If u solves the p-Laplacean equation

−div (c(x)a(Du)) = µ

with
0 < c(·) is Dini continuous

and
µ ∈ L(n, 1)

then
Du is continuous.
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A classic from Ladyzhenskaya & Ural’tseva (1970)
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A classic from Trudinger (1971)
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A classic from Leon Simon (1976)
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Verifying uniform ellipticity

Minimizers of

v 7→
∫

Ω
[F (Dv)− fv ] dx for F (z) :=

|z |p

p

are solutions to
−div ∂F (Du) = f .

In this case we have

(p − 1)|z |p−2Id ≤ ∂2F (z) ≤ c |z |p−2Id

therefore

highest eigenvalue of ∂2F (z)

lowest eigenvalue of ∂2F (z)
≈ p

min{p − 1, 1}
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Non-uniformly elliptic problems

I consider functionals

v 7→
∫

Ω
[F (Dv)− fv ] dx ,

so that the Euler-Lagrange reads as

−div ∂F (Du) = f

and non-uniform ellipticity reads as

lim
|z|→∞

R(z) = lim
|z|→∞

highest eigenvalue of ∂2F (z)

lowest eigenvalue of ∂2F (z)
=∞ .
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Connection: functionals with non-standard growth of
polynomial type (Marcellini)

W 1,1 3 v 7→
∫

Ω
F (Dv) dx Ω ⊂ Rn

with
|z |p . F (z) . |z |q + 1 and q > p > 1
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A first example: almost polynomial

This means

W 1,1 3 v 7→
∫

Ω
|Dv |p log(1 + |Dv |) dx p ≥ 1

in particular, we have the almost linear growth condition

W 1,1 3 v 7→
∫

Ω
|Dv | log(1 + |Dv |) dx
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Oscillating and polynomial

This time it is

W 1,3 3 v 7→
∫

Ω
F (|Dv |) dx

with

F (t) :=


et3 if t ≤ e

t4+sin(log log t) if t > e
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Anisotropic growth conditions

In this case the model is

W 1,1 3 v 7→
∫

Ω
|Dv |p +

n∑
i=1

|Div |pi dx

with
1 ≤ p ≤ p1 ≤ . . . ≤ pn
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Fast growth conditions

This means we are considering functionals of the type

v 7→
∫

Ω
exp(exp(. . . exp(|Dv |p) . . .)) dx , p ≥ 1 ,

Duc & Eells (1991), Lieberman (1992), Marcellini (1996)
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A basic condition

W 1,1 3 v 7→
∫

Ω
F (Dv) dx Ω ⊂ Rn

with
|z |p . F (z) . |z |q + 1 and q > p > 1

then
q

p
< 1 + o(n)

is a sufficient (Marcellini) and necessary (Giaquinta and Marcellini)
condition for regularity
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A model result by Marcellini

We consider functionals of the type

F(v) :=

∫
Ω
F (Dv) dx v : Ω→ R

assuming that z 7→ F (z) is C 2 and{
ν|z |p ≤ F (z) ≤ L(1 + |z |q)

ν(|z |2 + 1)
p−2

2 |λ|2 ≤ 〈∂2F (z)λ, λ〉 ≤ L(|z |2 + 1)
q−2

2 |λ|2
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A model result by Marcellini

Theorem (Marcellini JDE 1991)

Under the above assumptions, if

q

p
< 1 +

2

n

then any local W 1,p-minimizer is locally Lipschitz continuous.
Moreover, we have

‖Du‖L∞(BR/2) .

(
−
∫
BR

F (Du) dx

) 2
(n+2)p−nq

+ 1

for every ball BR b Ω
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Additional interesting results

Bella & Shäffner, Analysis & PDE, to appear

q

p
< 1 +

2

n − 1
=⇒ Du ∈ L∞loc

Shäffner, Arxiv 2020, to appear

q

p
< 1 +

2

n − 1
=⇒ Du ∈ Lqloc (vectorial case)

Hirsch & Shäffner, Comm. Cont. Math., to appear.

1

p
− 1

q
<

1

n − 1
=⇒ u ∈ L∞loc

De Filippis & Kristensen & Koch, to appear

q

p
< 1 +

2

n − 2
=⇒ Du ∈ L∞loc

by duality methods, under special assumptions
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Non-standard growth conditions

Bounded minimisers give better bounds

q < p + 1

the first example of this result I know is from a paper of Uraltseva
& Urdaletova (1984).
Later results by Choe (Nonlinear Anal. 1992) – Kristensen & co.
(Ann. IHP 2011) – De Filippis & Min. (JGA 2020).
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Special structures

Theorem (Bousquet & Brasco Rev. Mat. Iber. to appear)

If u is a local minimizer of the functional

v 7→
∫

Ω

n∑
k=1

|Dkv |pk dx ,

where
2 ≤ p1 ≤ . . . ≤ pn

Then
u ∈ L∞loc =⇒ Du ∈ L∞loc .

No upper bound on pn/p1 is needed.
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The variational setting

We consider functionals

v 7→
∫

Ω
[F (Dv)− fv ] dx ,

Double control on the eigenvalues

g1(|z |)Id . ∂2F (z) . g2(|z |)Id

Balance condition

R(z) .
g2(|z |)
g1(|z |)

. H

(∫ |z|
0

g1(s)s ds

)

for a suitable increasing function H(·) which is of power type
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The non-uniformly elliptic case

Theorem (Beck & Min. CPAM 2020)

If u is a local minimizer and f ∈ L(n, 1), then Du ∈ L∞loc(Ω).
Moreover the estimate∫ ‖Du‖L∞(BR/2)

0
g1(s)s ds .

(
−
∫
BR

F (Du) dx

)γ2

+ ‖f ‖γ1

L(n,1)(BR) + 1

holds for every ball. The result still holds in the vectorial case
provided F (Du) ≡ F̃ (|Du|).
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New features

Provides a nonlinear potential theoretic approach to the
regularity of non-uniformly elliptic problems, yielding new and
optimal estimates already in the case f ≡ 0.

The approach allows to reduce the case of non-uniformly
elliptic equations to that of uniformly elliptic ones. No real
difference.

It covers essentially all the previous general results from
non-uniformly elliptic theory

It yields new results also in the classical uniformly elliptic case;
it provides local analogues to recent estimates of Cianchi &
Maz’ya (ARMA 2014)

In the case f ≡ 0 it recovers the classical theory of Marcellini
for both functionals with polynomial and non-polynomial
growth conditions and the theory by Lieberman for anisotropic
integrals

It recovers the usual theory from Orlicz spaces setting
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Example 1: Estimates in the polynomial case

In the case F (Du) ≈ |Du|p we recover the classical estimate

‖Du‖L∞(BR/2) .

(
−
∫
BR

|Du|p dx
) 1

p

+ ‖f ‖
1

p−1

L(n,1)(BR)

In the case |Du|p . F (Du) . |Du|q + 1 and f ≡ 0 we recover
the classical estimate

‖Du‖L∞(BR/2) .

(
−
∫
BR

F (Du) dx

) 2
(n+2)p−nq

+ 1

which is the basic result of Marcellini
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Example 2: Fast growth conditions

Theorem (Beck & Min. CPAM 2020)

If u is a local minimizer of the functional

v 7→
∫

Ω
[exp(exp(. . . exp(|Dv |p) . . .))− fv ] dx , p ≥ 1 ,

with
f ∈ L(n, 1) .

Then
Du ∈ L∞loc(Ω) .

Holds in the vectorial case too.
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Example 3: Exponentials

Theorem (Beck & Min. CPAM 2020)

If u is a local minimizer of the functional

v 7→
∫

Ω
exp(|Dv |p) dx , p ≥ 1 .

Then

‖Du‖pL∞(B/2) . log

(
−
∫
B

exp(|Du|p) dx

)
+ 1 .

Previous estimates looked like

‖Du‖L∞(B/2) .

(
−
∫
B

exp(|Du|p) dx

)γ
+ 1
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Example 4: Natural growth estimates and no 42

Theorem (Beck & Min. CPAM 2020)

If the functional has the form

v 7→
∫

Ω
A(|Dv |) dx ,

where A(t) does not satisfy the 42-condition, then

‖Du‖L∞(BR/2) . A−1

(
−
∫
BR

A(|Du|) dx
)

+ 1

The result was known only assuming the 42-condition

A(2t) . A(t)

No available technique was catching natural estimates under fast
growth conditions.
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Non-autonomous functionals

Finally, we consider

v 7→
∫

Ω
F (x ,Dv) dx

New phenomena appear in this situation, and the presence of x is
not any longer a perturbation.
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Two functionals of Zhikov

Zhikov introduced, between the 80s and the 90s, the following
functionals:

v 7→
∫

Ω
|Dv |p(x) dx p(x) ≥ 1

v 7→
∫

Ω
(|Dv |p + a(x)|Dv |q) dx a(x) ≥ 0

motivations: modelling of strongly anisotropic materials, Elasticity,
Homogenization, Lavrentiev phenomenon etc.
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A counterexample

Theorem (Fonseca-Malý-Min. ARMA 2004)

For every choice of n ≥ 2, Ω ⊂ Rn and of ε, σ > 0, α > 0, there
exists a non-negative function a(·) ∈ C [α]+{α}, a boundary datum
u0 ∈W 1,∞(B) and exponents p, q satisfying

n − ε < p < n < n + α < q < n + α + ε

such that the solution to the Dirichlet problemu 7→ min
w

∫
B

(|Dv |p + a(x)|Dv |q) dx

w ∈ u0 + W 1,p
0 (B)

has a singular set of essential discontinuity points of Hausdorff
dimension larger than n − p − σ

See also a recent, very interesting paper by Balci & Diening &
Surnachev (Arxiv 2019)
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Maximal regularity

Theorem (Baroni & Colombo & Min., Calc. Var. 2018)

Let u ∈W 1,p(Ω), Ω ⊂ Rn, be a local minimiser of the functional

v 7→
∫

Ω
(|Dv |p + a(x)|Dv |q) dx 0 ≤ a(·) ∈ C 0,α(Ω)

and assume that one of the following assumptions holds:

q/p ≤ 1 + α/n

u ∈ L∞ and q ≤ p + α

u ∈ C 0,γ and q < p +
α

1− γ
then

Du is Hölder continuous

Giuseppe Mingione Non-uniform ellipticity



More

The first regularity results are in papers by Colombo & Min.
(ARMA 2015 + ARMA 2015 + JFA 2016), also with different
proofs.

The result holds for more general functionals of the type

v 7→
∫

Ω
F (x , v ,Dv) dx

modelled on the double phase functional.

A recent paper of Balci & Diening & Surnachev (Arxiv 2019)
features examples, still related to a fractal construction,
showing that also the third condition

u ∈ C 0,γ and q < p +
α

1− γ

is sharp.
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Heuristic explanation - dependence on α of the bound

The Euler equation of the functional is

divA(x ,Du) = div (|Du|p−2Du + (q/p)a(x)|Du|q−2Du) = 0

on a ball BR where

BR ∩ {a(x) = 0} 6= ∅ .

Then

supBR
highest eigenvalue of ∂zA(x ,Du)

infBR
lowest eigenvalue of ∂zA(x ,Du)

≈ 1 + Rα|Du|q−p
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Heuristic explanation - the bound q ≤ p + α

Consider the usual p-capacity for p < n

capp(Br ) = inf

{∫
Rn

|Df |p dx : f ∈W 1,p, f ≥ 1 on Br

}
we have

capp(Br ) ≈ rn−p

then consider the weighted capacity

capq,α(Br ) = inf

{∫
Rn

|x |α|Df |q dx : f ∈W 1,p, f ≥ 1 on Br

}
we then have

capq,α(Br ) ≈ rn−q+α
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Heuristic explanation - the bound q ≤ p + α

We then ask for
capq,α(Br ) . capp(Br )

that is
rn−q+α ≤ rn−p

for r small enough, so that

q ≤ p + α
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Multi Phase variational problems

Theorem (De Filippis & Oh JDE 2019)

Let u ∈W 1,p(Ω) be a local minimizer of the energy

w 7→
∫

Ω

[
|Dw |p +

k∑
j=1

aj(x)|Dw |pj
]
dx ,

where

aj(·) ∈ C 0,αj (Ω), 1 <
pj
p
≤ 1 +

αj

n
, 1 < p < p1 ≤ · · · ≤ pk .

Then Du ∈ C 0,β
loc (Ω) for some universal β ∈ (0, 1).
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Fully nonlinear equations – The viscosity setting

Theorem (De Filippis, Proc. Royal Soc. Edin. 2020)

Let u be a continuous viscosity solution to problem

[|Du|p + a(x)|Du|q]F (D2u) = f (x),

with f ∈ L∞, 0 ≤ a(·) continuous and 0 < p ≤ q. Then u ∈ C 1,γ
loc for

some γ ∈ (0, 1).

Viscosity solutions can also be considered in a non-local version of double
phase operators. See another paper from De Filippis & Palatucci JDE
2019
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The space W 1,H(·)(Ω,SN)

For z ∈ RN×n we define the integrand

H(x , z) = |z |p + a(x)|z |q,

where {
0 ≤ a(·) ≤ L, a ∈ C 0,α(Ω), α ∈ (0, 1]

q − p < α, 1 < p ≤ q < N.

The space W 1,H(·)(Ω,SN) is defined as

W 1,H(·)(Ω,SN) : =
{
w : Ω→ SN such that H(·,Dw) ∈ L1(Ω)

}
.

The subset of smooth functions might not be dense in W 1,H(·)(Ω,SN).

We also define
H−B (z) := |z |p +

(
inf
B

a(x)
)
|z |q
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C 1,β-partial regularity

Theorem (De Filippis & Min. JGA 2020)

Let u ∈W 1,1
loc (Ω,SN) be a constrained minimizer of the double phase

functional. Then

There exists δ > 0 such that H(x ,Du) ∈ L1+δ
loc (Ω).

There exists β > 0 and an open subset Ωu ⊂ Ω, with full measure,
such that Du ∈ C 0,β

loc (Ωu).

There exists ε > 0 such that x0 ∈ Ωu iff

−
∫
B2r (x0)

H(x ,Du) dx ≤ H−B2r (x0)

( ε
2r

)
holds for some B2r (x0) b Ω

δ, β, ε are universal, i.e. they are indipendent of the minimizer

This extends and recovers classical works of Schoen & Uhlenbeck
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Intrinsic Hausdorff measures – De Filippis & Min. JGA

We consider a function Φ: Ω× [0,∞)→ [0,∞), non decreasing in
the second variable (+ some technical, easy-to-verify conditions),
and define

hΦ(B) =

∫
B

Φ (x , 1/radius(B)) dx

and

HΦ,κ(E ) = inf
CκE

∑
j

hΦ(Bj) ,

CκE = { {Bj}j∈N covers E with radius(Bj) ≤ κ }

Finally, we define

HΦ(E ) := lim
κ→0
HΦ,κ(E ) = sup

κ>0
HΦ,κ(E ) .
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Some examples

These definitions unify several instances of similar objects, and introduce
new ones

Φ(x , t) ≡ tp, p ≤ n, then HΦ ≈ Hn−p;

Φ(x , t) ≡ tp(x), p(·) ≤ n, and this falls into the realm of variable
exponent Hausdorff measures;

Φ(x , t) ≡ ω(x)tp, weighted Hausdorff measures, studied in
particular when ω(·) is a Muckenhoupt weight;

Φ(x , t) = [H(x , t)]1+σ ≡ [tp + a(x)tq]1+σ for some σ ≥ 0,
q(1 + σ) ≤ n.

Classical references are

E. Nieminen, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes,
(1991).

B. O. Turesson, Lecture Notes in Math., (2000).
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How to measure the singular set

Theorem (De Filippis & Min. JGA 2020)

Let u ∈W 1,1
loc (Ω,SN) be a local minimizer and let Ωu ⊂ Ω be its

regular set. If q(1 + δ) ≤ n, then it holds that

HH1+δ(Σu) = 0 .

These measure naturally connect to the standard intrinsic
capacities

Chlebicka & De Filippis show that these measures can be used
to characterize the removability sets for solutions to
non-uniformly elliptic problems
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Removable sets

A function u ∈W 1,H(Ω), Ω ⊂ Rn being open, is H-harmonic
in Ω \ E , where E is a closed subset, iff

−div (|Du|p−2Du + a(x)|Du|q−2Du) = 0 in Ω \ E .

The set is removable for u if the above condition
automatically implies that u is H-harmonic in Ω.

Here we assume that

0 ≤ a(·) ∈ C 0,α(Ω),
q

p
≤ 1 +

α

n
, 1 < p < q ≤ n .
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Removable sets

Theorem (Chlebicka & De Filippis AMPA 2020)

Let E ⊂ Ω be a closed subset and u be H-harmonic in Ω \ E, and
such that, for all x1 ∈ E, x2 ∈ Ω,

|u(x1)− u(x2)| . |x1 − x2|β0 0 < β0 ≤ 1 .

If

HHσ(E ) = 0 for σ := 1− β0

q
(p − 1)

then u is H-harmonic in Ω and therefore E is removable.

This extends classical results by Carleson, Serrin, Verons,
Kilpeläinen.
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General functionals



ν|z |p ≤ F (x , z) ≤ L(1 + |z |q)

ν
(
λ2 + |z1|2 + |z2|2

) p−2
2 |z1 − z2|2

≤ (∂zF (x , z1)− ∂zF (x , z2)) · (z1 − z2)

|∂zF (x , z)− ∂zF (y , z)| ≤ L|x − y |α(1 + |z |q−1) ,
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General functionals

Theorem (De Filippis & Min. JGA 2020)

Let u ∈W 1,p(Ω) be a bounded local minimiser of the functional

v 7→
∫

Ω
F (x ,Dv) dx

under the above assumptions. Furthermore, assume that

2 ≤ p < q < p + α

and no Lavrentiev phenomenon occurs. Then Du ∈ Lp̃loc(Ω)
provided

q < p̃ < p + α .

Proof uses several things, amongst them, interpolation inequalities
in fractional Sobolev spaces and delicate approximation and
penalization methods.
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A cheap trick, De Filippis & Min. JGA 2020

We now consider the assumptions

(|z |2 + 1)
p
2 ≤ F (x , v , z) ≤ L(|z |2 + 1)

q
2

(|z |2 + 1)
p−2

2 |ξ|2 ≤
〈
∂2F (x , v , z)ξ, ξ

〉
|∂zzF (x , z)|+ |∂xzF (x , z)|

(1 + |z |2)1/2
≤ L(|z |2 + 1)

q−2
2

with
q

p
< 1 +

1

n

we have the apriori estimate

‖Du‖L∞(BR/2) . R
− n

p−n(q−p)

(
‖Du‖

p
p−n(q−p)

Lp(BR) + 1

)

Giuseppe Mingione Non-uniform ellipticity



A cheap trick, De Filippis & Min. JGA 2020

We now consider the assumptions
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)
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Step 1: Tracking the constants in the case p = q

The following estimate holds when p = q

‖Du‖L∞(Bτ1 ) ≤
cLn/p

(τ2 − τ1)n/p

(
‖Du‖Lp(Bτ2 ) + 1

)
,

where
Bτ1 b Bτ2

are arbitrary balls. This follows tracking the constants in the
classical proof.
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Step 2: Reduction to the uniform case

On Bτ2

|∂zzF (x , z)|+ |∂xzF (x , z)|
(1 + |z |2)1/2

≤ cL
(
‖Du‖q−pL∞(Bτ2 ) + 1

)
(|z |2 + 1)

p−2
2

therefore we have standard growth conditions with L replaced by

cL
(
‖Du‖q−pL∞(Bτ2 ) + 1

)
and c is an absolute constant.

The a priori estimate in the case
p = q from the previous slide gives

‖Du‖L∞(Bτ1 ) ≤
c
[
L‖Du‖q−pL∞(Bτ2 ) + 1

]n/p
(τ2 − τ1)n/p

‖Du‖Lp(Bτ2 ) .
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Step 2: Reduction to the uniform case

The assumed bound
q

p
< 1 +

1

n

implies

(q − p)
n

p
< 1

so that, Young’s inequality gives

‖Du‖L∞(Bτ1 ) ≤
1

2
‖Du‖L∞(Bτ2 ) +

c‖Du‖
p

p−n(q−p)

Lp(Bτ2 ) + c

(τ2 − τ1)
n

p−n(q−p)
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Step 3: Iteration lemma

Lemma (Giaquinta & Giusti, Acta Math. 1982)

Let Z : [%,R)→ [0,∞) be a function which is bounded on every
interval [%,R∗] with R∗ < R. Let ε ∈ (0, 1), a, γ ≥ 0 be numbers.
If

Z(τ1) ≤ εZ(τ2) +
a

(τ2 − τ1)γ
,

for all % ≤ τ1 < τ2 < R, then

Z(%) ≤ ca

(R − %)γ
,

holds with c ≡ c(ε, γ).
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Step 3: Iteration lemma

‖Du‖L∞(BR/2) . R
− n

p−n(q−p)

(
‖Du‖

p
p−n(q−p)

Lp(BR) + 1

)
and the a priori estimate is ready.

Notice that in the case p = q the above estimate gives

‖Du‖L∞(BR/2) .

(
−
∫
BR

(|Du|+ 1)p dx

)1/p

,

which is the usual L∞ − Lp estimate typical of harmonic functions
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