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Diffusive Hamilton-Jacobi equations:

ut −∆u + H(x ,Du) = 0 in (0,T )× Ω

where Ω is a smooth bounded set in RN .

Main point of the talk: H(x ,Du) ' |Du|p with p > 2

 beyond the natural growth.

→ What is so un-natural in the super-quadratic growth ?

...“a second order equation behaving like first order“...

A short summary:

Stationary solutions: regularity, existence & uniqueness.

 Distributional Vs viscosity solutions

Evolution of smooth solutions: when and how do we lose them ?

 gradient blow-up, loss (and recovery !) of boundary data, ...
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What is natural in the natural growth ?

Remind: under natural growth conditions (H ≤ c(1 + |Du|2))

Smooth data ⇒ bounded solutions are smooth

(Serrin, Trudinger, [Ladysenskaya-Uraltseva], DiBenedetto...)

General solvability (bounded and unbounded data, nonlinear
operators, etc..)

([Amann],[Kazdan-Kramer]...,[Boccardo-Murat-Puel]...,

[Abdelhamid-Bidaut Véron], + many people...)

Uniqueness of bounded weak solutions (since [Barles-Murat]...)

Global existence for the evolution problem (either convergence or
infinite time blow-up of ‖u‖∞)
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Pb: What happens in case of super-quadratic growth ?

Hamilton-Jacobi-Bellman viewpoint  stochastic control representation

The solution of {
λu −∆u + |Du|p = f in Ω

u = 0 on ∂Ω

is the value function of a stochastic control problem

u(x) = inf
a∈A

E
{∫ τx

0

[
cp|at |

p
p−1 + f (Xt)

]
e−λt dt

}
, (1)

where Xt is a controlled process:{
dXt = at dt +

√
2 dBt ,

X0 = x ∈ Ω ,

Bt a Brownian motion in RN

{at}t≥0 a control process

τx = the exit time from Ω

Important: the optimal drift would be given in feedback form by

at = a(Xt) = −p|Du(Xt)|p−2Du(Xt)

 when p > 2 singular drifts are less expensive...
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The stationary problem

−∆u + λ u + |Du|p = f (x) with p > 2

[Capuzzo Dolcetta-Leoni-P. ’10]:
viscosity solutions framework (fully nonlinear)

→ extends to F (x ,D2u) + λ u + |Du|p ≤ f ,

(see also [Barles ’10], [Barles-Koike-Ley-Topp ’14] [Barles-Topp ’15] for further

extensions to state constraint, nonlocal diffusions etc...)

[Dall’Aglio-P. ’14]:
distributional solutions framework (divergence form)

→ extends to −div(a(x ,Du)) + λ u + |Du|p ≤ f ,

(similar with m-Laplacian and p > m)
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A list of un-natural properties due to super-quadratic Hamiltonian:

−∆u + λ u + |Du|p = f (x) with p > 2

Sub solutions are Hölder continuous

f bounded ⇒ USC bounded viscosity subsolutions are p−2
p−1

-Hölder

Proof by doubling variables & comparison ([Capuzzo Dolcetta-Leoni-P])

u(x) ≤ u(y) + k

(
|x − y |
d(x)1−α + L |x − y |α

)
α = p−2

p−1

f ∈ Lm,m > N
p ⇒ distributional subsolutions are α-Hölder with

α = min(1 − N
m p
, 1 − 1

p−1
).

Proof by a Morrey-type estimate ([Dall’Aglio-P]):∫
Br

|∇u|p dx ≤ K rN−γ , where γ = max(N
m
, p′)
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[...]
−∆u + λ u + |Du|p = f (x) with p > 2

Interior Hölder regularity extends up to the boundary
(independently of boundary data !)

Consequence: Hölder regularity is necessary for boundary data !

Global universal bounds for u+:

‖u+‖L∞(Ω) ≤ M

where M = M(Ω, 1
λ , ‖f ‖Lm(Ω)), m > N/p.

Notice: the bound is independent of boundary values ! (cfr.
[Lasry-Lions ’89])

 loss of boundary data

Size and regularity conditions are needed to have compatibility of
boundary data.
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A sample result on the solvability of the Dirichlet problem{
λu −∆u + |Du|p = f in Ω,

u = ϕ on ∂Ω,
(2)

where p > 2 and, now, f is continuous, λ > 0.

Theorem (Capuzzo Dolcetta-Leoni-P. ’10)

There exists a constant M0 > 0 such that if ϕ satisfies

|ϕ(x)− ϕ(y)| ≤ M|x − y |α ∀x , y ∈ ∂Ω , α =
p − 2

p − 1
.

with M < M0 and if λ inf ϕ ≤ inf f , then (2) has a unique viscosity
solution u ∈ C 0,(p−2)/(p−1)(Ω) such that u(x) = ϕ(x) for every x ∈ ∂Ω.

Alternatives:

for Lipschitz solutions one can use [P-L. Lions ’80]: there exists a
W 1,∞ solution if and only if there exists a W 1,∞ sub solution ψ.

For a general theory...  relaxed formulation of boundary
conditions, viscosity solutions theory.
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Rmk: viscosity Vs distributional solutions:

A selection criterion is necessary as in first order problems !!

Ex: u(x) = c0(|x |
p−2
p−1 − 1) satisfies, for a suitable choice of c0{

−∆u + |∇u|p = 0 in Ω

u ∈W 1,p
0 (Ω) ∩ C (Ω)

Note: u is a distributional solution but not a viscosity solution !!
Yet u is bounded, Hölder continuous etc...

 Typical first order effects

the L∞-bound does not bring enough information...

loss of boundary data
→ need of relaxed formulation of boundary conditions, viscosity

solutions theory.

(uniqueness results for viscosity solutions: [Barles-Rouy-Souganidis ’99],

[Barles-Da Lio ’04], [Barles ’10]...)
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The evolution problem

We consider now the evolution problem
ut −∆u = |Du|p in (0,T )× Ω

u = 0 on (0,T )× ∂Ω

u(0) = u0

p > 2

Ω smooth

u0 ∈ C 0(Ω); u0 = 0 on ∂Ω.

We discuss here the (more interesting) reaction case:

u0 ≥ 0 (⇒ u(t) ≥ 0 ∀t)

Many other contributions in different directions (absorption problems, local

theory in Lebesgue spaces, initial traces, etc...): [Alaa, Pierre, Barles, Da Lio,

Ben Artzi, Souplet, Weissler, Bidaut Véron, Dao, Benachour, Laurençot,

Dabuleanu,....]
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ut −∆u = |Du|p in (0,T )× Ω

u = 0 on (0,T )× ∂Ω

u(0) = u0

u0 ∈ C 1
0 (Ω)⇒ (classical parabolic theory) there exists a maximal

classical C 1 solution in [0,T ∗), where T ∗ = T ∗(u0) ∈ (0,∞].

u is bounded by maximum principle: ‖u(t)‖∞ ≤ ‖u0‖∞
But: ‖u(t)‖C 1 may blow-up

 gradient blow-up: lim
t↑T∗
‖Du(t)‖∞ = +∞.

Previous contributions to the question of blow-up of classical solutions: see e.g.

[Alikakos-Bates-Grant],[Conner-Grant], [Guo-Hu], [Fila-Lieberman],

[Arrieta-Bernal Rodriguez-Souplet], [Li-Souplet], [Quittner-Souplet],

[Souplet-Zhang], [Souplet-Vazquez],...
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Gradient blow-up

Well known facts (see e.g. [Souplet ’02], [Souplet-Zhang ’06]):

gradient blow-up certainly occurs for suitably large initial data

gradient blow-up can only occur at the boundary

A short proof:

(i) u is bounded for all times (max. principle)

(ii) ut is bounded for all times (L∞-contraction):

‖u(t + h)− u(t)‖∞ ≤ ‖u(t0 + h)− u(t0)‖∞ ∀t > t0

and is enough to take some t0 smaller than the blow-up time so

‖ut(t)‖∞ ≤ ‖ut(t0)‖∞ ≤ C

(iii) At any time t, u(t) solves

−∆u = |Du|p + f with f ∈ L∞

Stationary gradient bounds [Lions ’85] imply

|Du(t, x)| ≤ C d(x)−
1

p−1 d(x) =dist(x , ∂Ω)
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−∆u = |Du|p + f with f ∈ L∞

Stationary gradient bounds [Lions ’85] imply

|Du(t, x)| ≤ C d(x)−
1

p−1 d(x) =dist(x , ∂Ω)
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Continuation after blow-up

There exists a unique global relaxed viscosity solution

u ∈ C ([0,∞)× Ω) , ut −∆u = |Du|p

[Barles-Da Lio ’04] : existence and uniqueness of continuous
viscosity solutions with relaxed boundary conditions:

for x ∈ ∂Ω, if u(t, x) > 0 then ut −∆u ≤ |Du|p in viscosity sense

 the unique classical solution coincides with the viscosity solution
and is globally prolonged as such (continuation after blow-up).

Rmk: u is locally Hölder continuous ([Cannarsa-Cardaliaguet ’10],

[Cardaliaguet-Silvestre ’12], [Stokols-Vasseur ’19])

The unique global (viscosity) solution u is the increasing limit of
smooth solutions of truncated problems:{

∂tun −∆un = Fn(∇un),

un(0) = u0, un|∂Ω = 0,
⇒ un ↑ u

where Fn has natural growth and Fn(ξ) ↑ |ξ|p
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Loss of boundary condition (& blow-up) certainly occurs for large u0.

Classical argument: multiply by ϕ1∫
Ω

u(t)ϕ1 dx ≥
∫

Ω

u0ϕ1 dx+

∫ t

0

∫
Ω

|∇u|pϕ1 dxds−λ1

∫ t

0

∫
Ω

uϕ1 dxds

As long as u = 0 on the boundary, Poincaré inequality implies(∫
Ω

uϕ1 dx
)p
≤
(∫

Ω

uk dx
)p/k

≤ C
(∫

Ω

|∇u|k dx
)p/k

≤
(∫

Ω

|∇u|pϕ1 dx
)(∫

Ω

ϕ
−k/(p−k)
1 dx

)p/k−1

︸ ︷︷ ︸
≤c

by choosing 1 < k < p
2 . Therefore∫

Ω

u(t)ϕ1 dx ≥
∫

Ω

u0ϕ1 dx + c0

∫ t

0

[(∫
Ω

uϕ1 dx
)p
− cp1

]
ds

and this would lead to a blow-up if
∫

Ω
u0ϕ1 dx is too large.

 u must lose the boundary condition ( ⇒ gradient must blow-up)
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Long time behavior
[Benachour-Dabuleanu Hapca-Laurencot ’07], [P.-Zuazua ’12]

For all initial data u0, there exists C such that

‖u(t)‖∞ ≤ Ce−λ1t

What’s more: there exists time T0 & K ‖u0‖∞ such that

u(t) ∈W 1,∞
0 (Ω) and is a classical C 1-solution for t ≥ T0 and

‖Du(t)‖∞ ≤ C
e−λ1t

√
t

∀t ≥ T0

So not only there is life after blow-up, but there is also a happy ending

 whatever u0 is, solutions eventually become classical again and behave
like the heat equation
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So far, three main features appear in the qualitative behavior of the
evolution problem:

(i) gradient blow-up

(blow-up rate, blow-up profile,...?)

(ii) loss of boundary condition

(when and how does it occur ?)

(iii) recovery of boundary condition and regularization

(a totally new issue ! How this smoothing property can be
described?...)

Jointly with with P. Souplet, we investigated the relations between these
3 issues.
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1. Blow-up rate (and regularization rate)

In [P-Souplet ’19] we give some estimates for the rate of blow-up and
regularization:

T ∗ := blow-up time T r := regularization time

The regularization time T r = T r (u0) means the (ultimate) time after
which the solution remains classical for ever:

T r (u0) := inf
{
τ > T ∗(u0); u(t, ·) ∈ C 1

0 (Ω) for all t > τ
}
∈ [T ∗,∞).

In both cases, we show that the minimal rate has order 1/(p − 2):

if blow-up time T ∗ <∞, then ‖∇u(t)‖∞ ≥
C

(T ∗ − t)1/(p−2)
, t ↑ T ∗

and similarly at the regularization time:

‖∇u(t)‖∞ ≥
C2

(t − T r )1/(p−2)
, t ↓ T r
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Remarks:

The blow-up rate (T ∗ − t)−1/(p−2) is known to be optimal for
time-increasing solutions (1d or radial, see [Conner-Grant],

[Guo-Hu],[Attouchi-Souplet]).

However, faster blow-up rates can occur !! (see later....)

This is not the self-similar rate of the equation. The self-similar scaling

would lead to a rate of order 1/(p − 1).

uλ(x , y , t) := λmu(λx , λy , λ2t) with m = (2− p)/(p − 1),

 ∇uλ = λ1/(p−1)∇u(λx , λy , λ2t).

The self-similar rate is actually the rate of the spatial blow-up of
normal derivative (see also [Filippucci-Pucci-Souplet])

 for single point blow-up, in 2− d we proved ([P-Souplet ’17])
that the blow-up profile is strongly anisotropic:
1/(p − 2) for the time rate
1/(p − 1) of the normal spatial rate
2/(p − 2) for the tangential spatial rate
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2. Loss of boundary conditions

In [P.-Souplet ’17], we show that loss of boundary condition may or may
not occur, strongly depending on the initial data.

there exist initial data for which the loss of boundary conditions
occurs everywhere on ∂Ω

(see also [Quaas-Rodriguez] in the setting of viscosity solutions)

one can find solutions for which the loss of boundary conditions
occurs essentially only on a prescribed open subset of ∂Ω

∀ω open set of Rn, and ∀ε > 0, there exists u0:

ω ∩ ∂Ω ⊂ Σu ⊂ [ω + Bε(0)] ∩ ∂Ω

where Σu is the set where the boundary condition is lost.

In other words, one can prepare the initial datum u0 so that loss of
boundary condition occurs at his/her favorite subset of ∂Ω
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gradient blowup may occur without loss of boundary conditions

[P-Souplet] in 1-d, and [Filippucci-Pucci-Souplet] in more generality

Actually, for fixed u0 ≥ 0, this happens at the critical value

λ̄ := inf{λ > 0 : T ∗(λu0) <∞}

If λu0  uλ, then

• uλ blows-up if and only if λ ≥ λ̄
• uλ loses the boundary value if and only if λ > λ̄

 uλ̄ is a threshold between global in time smooth solutions and
solutions with loss of boundary condition

This distinguishes between minimal blow-up solutions and non
minimal ones:

u is a minimal blow-up solution if, for any v0 ≤ u0,

the corresponding solution v is smooth for all times

Be careful: minimal blow-up solutions may have faster blow-up rates!
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3. The one-dimensional case: a precise picture of loss and recovery of
boundary conditions.

Take initial data u0 which satisfy

u0 is symmetric w.r.t. x = 1
2 , u′0 ≥ 0 on [0, 1

2 ],

u0(0) = u′′0 (0) + u′0
p
(0) = 0

there exists a ∈ (0, 1) such that u′′0 + u′0
p

{
> 0 on [0, a)

< 0 on (a, 1
2 ].

(3)

Set as before

T ∗ = blow-up time

T r = regularization time
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[P-Souplet ’19]: a detailed picture of minimal and non minimal solutions in 1-d

1. u is a minimal blow-up solution if and only if it does not lose the
boundary condition. Moreover:

(i) There is instantaneous and permanent regularization at T ∗, u
becomes immediately smooth once and for ever after T ∗.

(ii) both the blow-up and the regularization rate are faster than the
minimal rate:

(T ∗ − t)1/(p−2)‖ux(t)‖∞ →∞, t ↑ T ∗

(t − T ∗)1/(p−2)‖ux(t)‖∞ →∞, t ↓ T ∗

Rmk: for a class of non monotone in time solutions,
[Attouchi-Souplet] recently proved a blow-up rate of 2/(p − 2) !...
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2. u is a non minimal blow-up solution if and only if it loses the
boundary condition. Moreover:

(i) The blow-up and regularization rates are both minimal:

c1(T ∗−t)−1/(p−2) ≤ ‖ux(t)‖∞ ≤ c2(T ∗−t)−1/(p−2), as t → T ∗−,

c3(t−T r )−1/(p−2) ≤ ‖ux(t)‖∞ ≤ c4(t−T r )−1/(p−2), as t → T r
+,

(ii) u linearly detaches from the boundary condition and linearly
reconnects:

u(t, 0) ∼ `1(t − T ∗), as t → T ∗+,

u(t, 0) ∼ `2(T r − t), as t → T r
−,

(iii) There is immediate and permanent regularization after the
recovery of boundary conditions

u(t, 0) > 0 for all t ∈ (T ∗,T r ),

then u becomes a classical solution again and for ever
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We also describe the life of the solution in the time interval when the
boundary condition is relaxed. Actually, we have

(iii) In the interval [T ∗,T r ], the solution behaves like a shifted copy of
the singular stationary profile:

u(t, x) ' u(t, 0) + cp x
−1/(p−1) as x → 0+,

Moreover

u(t, 0) is C 1 in [T ∗,T r ], admits a unique max. at some Tm ∈ (T ∗,T r ),

it is increasing on [T ∗,Tm] and decreasing on [Tm,T
r ]
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Key point in the above results is the zero number argument applied to ut .

• ut satisfies a linear equation zt − zxx = bzx , b = p|ux |p−2ux , so up to
t = T ∗ one can apply the zero number property ([Matano], [Angenent])

→ the number of sign changes of ut , say N(t), decreases with time.

• For the chosen class of initial data, one has N(t) = 2 until the blow-up
time T ∗, and ut has only one zero in (0, 1/2).

 there are (roughly speaking) only two cases:

(i) either the zero of ut collapses at the boundary as t ↑ T ∗
Then ut ≤ 0 at t = T ∗ (and later), and the boundary condition can not
be lost (minimal solution)

(ii) or ut remains positive near x = 0 at t = T ∗, then ut(t, 0) jumps at
t = T ∗ and u leaves the boundary condition and becomes positive on ∂Ω
(non minimal solution)

Important: Recent results by [Mizoguchi-Souplet] show that the behavior
can be much more weird for other initial data: gradient blow-up and
loss/recovery of boundary condition may happen several times !!
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Conclusions, comments,...

Perturbing the Laplace (or the heat) equation with super quadratic
coercive first order terms lead to a surprisingly rich hybrid model of
a second order equation which shares properties of first order
equations.

The stationary equation already shows the possible competition
between oscillations (due to the Laplacian) and coercivity (given by
the Hamiltonian).
It gives much more rigidity compared to a second order equation:
the coercive term may prevent too singular oscillations and gives
prescriptions on size and regularity of solutions up the boundary

The evolution case shows a completely new issue for second order
equations: the loss and recovery of boundary conditions.

Once more, the competition between the possible formation of
singularity (gradient blow-up) and the stabilizing effects (due to the
maximum principle) leaves room for a rich variety of phenomena:
anisotropic blow-up rates, profiles, etc...
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Thanks for the attention !

Happy Birthday to Marie-Françoise and Laurent !

Wishing you and us all that for your next celebration we will have
recovered our boundary conditions...:

coffee breaks

dinners to share

random walks in stranger countries

personal discussions

claps after the talks...:)

....
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