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Recent Liouville-type theorems Lane-Emden equation

I - THE LANE-EMDEN EQUATION
—Au=uP, ze€R" (p>1) (1)

e Classical Gidas-Spruck Liouville theorem

Theorem. [Gidas-Spruck CPAM 81] Equation (1) does not admit any positive
classical solution in R™ if (and only if) p < ps = (n+2)/(n — 2);.

See also simplified proof in [Bidaut-Véron-Véron, Invent. Math. 91]
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I - THE LANE-EMDEN EQUATION

—Au=uP, ze€R" (p>1) (1)

e Classical Gidas-Spruck Liouville theorem

Theorem. [Gidas-Spruck CPAM 81] Equation (1) does not admit any positive
classical solution in R™ if (and only if) p < ps = (n+2)/(n — 2)4.

See also simplified proof in [Bidaut-Véron—Véron, Invent. Math. 91]

e Half-space R? = {(z1,...,2n); x, > 0}

—Au = uP, x € R,
{ + (b>1) @)

u = 0, z € R

Theorem. [Gidas-Spruck CPDE 81] Problem (2) does not admit any positive
classical solution if p < pg.

Applications: a priori estimates for p < pg by rescaling method, and existence for
Dirichlet boundary value problems via degree theory



Recent Liouville-type theorems Lane-Emden equation

HALF-SPACE: BEYOND SOBOLEV EXPONENT

Exponent pg is optimal for nonexistence in whole space. What about half-space ?
For bounded solutions:

ep<psin—1)=(n+1)/(n—3)+ [Dancer, Bull. Austral. Math. Soc. 92]
ep<pyr(n—1):=mn*—=10n+8/n+13)/(n—3)(n—11).  [Farina, JMPA 07]
ep>1 [Chen-Li-Zou, JFA 14]
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Theorem 1. [Dupaigne-Sirakov-Souplet 2020] Let p > 1.
(i) Problem (2) has no positive classical solution bounded on finite strips

(ii) Problem (2) has no positive classical solution with u,,, > 0

Finite strip: Xp :={z € R}; 0 <z, <R} (R>0)
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HALF-SPACE: BEYOND SOBOLEV EXPONENT

Exponent pg is optimal for nonexistence in whole space. What about half-space ?

For bounded solutions:

ep<psin—1)=(n+1)/(n—3)+ [Dancer, Bull. Austral. Math. Soc. 92]
ep<pyr(n—1):=mn*—=10n+8/n+13)/(n—3)(n—11).  [Farina, JMPA 07]
ep>1 [Chen-Li-Zou, JFA 14]

Theorem 1. [Dupaigne-Sirakov-Souplet 2020] Let p > 1.
(i) Problem (2) has no positive classical solution bounded on finite strips

(ii) Problem (2) has no positive classical solution with u,,, > 0

Finite strip: Xp :={z € R}; 0 <z, <R} (R>0)
Remarks
e u bounded on finite strips = u,, K >0 == u stable

e Theorem 1 remains true for any f conver C?, with f(0) =0 and f > 0 on (0, c0)

e Open question: if there still exists a positive classical solution, it would have to
blow up for z, bounded (and |z/,| — o0). Is this possible ?



Recent Liouville-type theorems Lane-Emden equation

SKETCH OF PROOF OF THEOREM 1

Step 1. Basic strategy

Show that u is convex in the normal direction (idea from Chen-Li-Zou 14).
(leads to contradiction with basic local L! estimates)

Moving planes: u bounded on finite strips = u,, >0
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SKETCH OF PROOF OF THEOREM 1

Step 1. Basic strategy

Show that u is convex in the normal direction (idea fromm Chen-Li-Zou 14).
(leads to contradiction with basic local L! estimates)

Moving planes: u bounded on finite strips = u,, >0

Key auxiliary function:
5 Uz,

T (0t 2n)a,

Elliptic operator:
L:=22V-(22V) with weight z := (1 + z,)us, >0
Equation for ¢ (using convexity of nonlinearity):
L£e > 2
Also £ =0 on OR?} (due to ug, 4, = Au= —f(0) =0)

Does this imply £ >0 ?



Recent Liouville-type theorems Lane-Emden equation

Step 2. Key Lemma based on Moser iteration

Lemma 1. Let ¢ > 1 and consider the diffusion operator

L=A"1V.(4AV)
where the weight A € L (R7), A > 0 a.e., satisfies

loc

Adz = exp(o(R?)), R — oo. (H)

By
Let ¢ € HL N C(R%), with £ > 0 on OR", be a weak solution of
—L& > (§-)*  in R

Then § > 0 a.e. in R"}.
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Step 2. Key Lemma beased on Moser iteration

Lemma 1. Let ¢ > 1 and consider the diffusion operator

L=A"1V.(4AV)
where the weight A € L (R7), A > 0 a.e., satisfies

loc

Adz = exp(o(R?)), R — oo.

By
Let ¢ € HL N C(R%), with £ > 0 on OR", be a weak solution of
—LE>(€2)7  in RY.

Then § > 0 a.e. in R"}.

e Gaussian assumption (H) is optimal ! Counter-example:

A(z) = exp[(2,)"], &€= —2n, withk>2andg=4k—1

e Idea of proof of Lemma 1: Moser type iteration, testing with powers of (£_)™ times

suitably scaled cut-off ¢(x/R) where m = e R2.




Recent Liouville-type theorems Lane-Emden equation

Step 3. Conclusion via stability estimates.

Theorem 1 follows if we show & > 0, i.e. uy, o > 0.

To apply Lemma 1 we need sub-Gaussian integral bounds on the weight A.
Here A = ((1 + zp)uz, ).

Recall: u, >0 = u stable
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Step 3. Conclusion via stability estimates.

Theorem 1 follows if we show & > 0, i.e. uy, o > 0.

To apply Lemma 1 we need sub-Gaussian integral bounds on the weight A.
Here A = ((1 + zp)uz, ).

Recall: u, >0 = u stable

Estimates for stable solutions (e.g. Farina 07):

Lemma 2. Let p > 1 and let u € C%(2) be a nonnegative stable solution of
—Au = uP in By. Then we have

/ |Vul|? dx < C(n,p).
B2

Lemma 2 + similar boundary estimates for half-balls
—— fB+AdZ’§C(1+R)n+2 ]
R

e Remark: general case f convex: analogue of Lemma 2 is consequence of recent
estimates of [Cabré-Figalli-RosOthon-Serra, Acta Math. 19



Recent Liouville-type theorems Semilinear heat equation

II - THE SEMILINEAR HEAT EQUATION

Theorem 2. [Quittner 2020] Let p > 1. Then the equation
ur — Au = uP, (t,z) e R x R"

has no positive classical solution if (and only if) p < pg.
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II - THE SEMILINEAR HEAT EQUATION

Theorem 2. [Quittner 2020] Let p > 1. Then the equation

uy — Au = uP, (t,z) e R x R"

has no positive classical solution if (and only if) p < pg.

Previous results

e p < (n+2)/n (consequence of [Fujita 66|, true for global solutions on [0, 00) x R™)
ep<n(n+2)/(n—1)>2 [Bidaut-Véron, special vol. in honor of JL Lions 98]
e Radial case for p < pg [Polacik-Quittner NA0G6, Polacik-Quittner-Souplet IUMJO07]
on =2 [Quittner Math Ann. 16]
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II - THE SEMILINEAR HEAT EQUATION

Theorem 2. [Quittner 2020] Let p > 1. Then the equation

uy — Au = uP, (t,z) e R x R"

has no positive classical solution if (and only if) p < pg.

Previous results

e p < (n+2)/n (consequence of [Fujita 66|, true for global solutions on [0, 00) x R™)

ep<nn+2)/(n—1)> [Bidaut-Véron, special vol. in honor of JL Lions 98]
e Radial case for p < pg [Polacik-Quittner NA0G6, Polacik-Quittner-Souplet IUMJO07]
on =2 [Quittner Math Ann. 16]

Liouville for half-space case R x R} (with v =0 on R x JR"})
e bounded solutions for p < pg [Polacik-Quittner-Souplet ITUMJO07]
e p < ps (possibly unbounded) [Quittner 2020]

Rem: true in a larger range for bounded solutions; optimality unknown

Related: Liouville type theorem for ancient solutions [Merle-Zaag, CPAM 98]



Recent Liouville-type theorems Semilinear heat equation

SKETCH OF PROOF OF THEOREM 2
Pass to similarity variables to get modified equation (cf. [Giga-Kohn CPAMS5])
w = wek(y,s) = e_ﬂsu(a + ye_S/Q, k — e_s), s=—log(k—1t), B=1/(p—1).
(E") ws = Aw — % -Vw+wP —fw in R" xR (for each integer k)
Good energy structure associated with (E’) for Gaussian weight p(y) = ey’ /4

1
2 2 p+1
—|—wa’k)p Y 1 nwa’kp Y

1
Ea,kz(S) = 5/ (|Vwa7k

Hard energy estimates of the form E,, (s) < k7% for k > 1, with suitable centers a;,
powers ; > 0 and time intervals.

Obtained by bootstrap procedure + covering and measure arguments.

Appropriate rescaled of wy — w positive solution of —Aw = wP in R™ as k — oc:
contradiction with Gidas-Spruck elliptic Liouville.



Recent Liouville-type theorems Semilinear heat equation

APPLICATIONS OF PARABOLIC LIOUVILLE THEOREM

Estimates for nonnegative solutions of u; — Au = u? with 1 < p < pg.
Csq of Thm 2 + Rescaling + Doubling Lemma [Polacik-Quittner-S. DMJ & TUMJO07]

e Blow-up rate estimates (final and initial), in any smooth domain (incl. nonconvex !)
and with universal constants

u solution in (0,T) x R = | u < C(n,p)[t7F + (T —t)~"] fi=—

u solution in (0,7) x @ with zero B.C. = | u<C(p,Q)[1+t P + (T —t)77]
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APPLICATIONS OF PARABOLIC LIOUVILLE THEOREM

Estimates for nonnegative solutions of u; — Au = u? with 1 < p < pg.
Csq of Thm 2 + Rescaling + Doubling Lemma [Polacik-Quittner-S. DMJ & TUMJO07]

e Blow-up rate estimates (final and initial), in any smooth domain (incl. nonconvex !)
and with universal constants

u solution in (0,T) x R = | u < C(n,p)[t7F + (T —t)~"] fi=—

u solution in (0,7) x @ with zero B.C. = | u<C(p,Q)[1+t P + (T —t)77]

e Decay estimates for all global solutions in R"”

u solution in (0,00) x R* = | u < C(n,p)t="

e Universal bounds away from ¢ = 0 for global solutions in any smooth domain

u > 0 solution of (E) in (0,00) x Q with zero B.C. = | u < C(p,Q)[1+t77]

e Local universal estimate in space and time

u solution in (0,T) x @ = | u<C(n,p)[t7° + (T —t)~7 + (dist(z, 92)) 2]




Recent Liouville-type theorems Diffusive Hamilton-Jacobi equation

IIT - DIFFUSIVE HAMILTON-JACOBI EQUATION

ug —Au = |VulP, re, t>0,
(DHJ) u = 0, x €N, t>0,
u(z,0) = wup(x), x € (.

2 C R™ smooth bounded domain, p > 2 (superquadratic).
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IIT - DIFFUSIVE HAMILTON-JACOBI EQUATION

ug —Au = |VulP, re, t>0,
(DHJ) u = 0, x €N, t>0,
u(z,0) = wup(x), x € (.

2 C R™ smooth bounded domain, p > 2 (superquadratic).

Some key features: [cf. A. Porretta’s lecture]

e Finite time gradient blow-up (GBU) occurs for large initial data:
li oo =
I [[Vu(t)]e = o0

e Continuation as unique global viscosity condition (with possible loss of classical
boundary conditions)

e Singularities appear only on (some subset of) 02
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IIT - DIFFUSIVE HAMILTON-JACOBI EQUATION

ug —Au = |VulP, re, t>0,
(DHJ) u = 0, x €N, t>0,
u(z,0) = wup(x), x € (.

2 C R™ smooth bounded domain, p > 2 (superquadratic).

Some key features: [cf. A. Porretta’s lecture]

e Finite time gradient blow-up (GBU) occurs for large initial data:
li oo =
lim ([ Vu()0 = o0

e Continuation as unique global viscosity condition (with possible loss of classical
boundary conditions)

e Singularities appear only on (some subset of) 02

Related elliptic problem:

) —Av = |VulP, r € RY,
v = 0, xr € ORY




Recent Liouville-type theorems Diffusive Hamilton-Jacobi equation

e Whole space case: [PL Lions, JAM 85|

if p > 1 and v classical solution of —Av = |Vu|P in R”, then v is constant
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e Whole space case: [PL Lions, JAM 85|

if p > 1 and v classical solution of —Av = |Vu|P in R”, then v is constant

e Elliptic half-space case is important for study of GBU (see later)

Theorem 3. [Filippucci-Pucci-Souplet CPDE 2019]
Let p > 2 and let v € C*(R) N C(R%) be a solution of (1). Then v depends
only on the variable x,,.
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e Whole space case: [PL Lions, JAM 85]

if p > 1 and v classical solution of —Av = |Vu|P in R”, then v is constant

e Elliptic half-space case is important for study of GBU (see later)

Theorem 3. [Filippucci-Pucci-Souplet CPDE 2019]
Let p > 2 and let v € C*(R) N C(R%) be a solution of (1). Then v depends
only on the variable x,,.

Remarks

e Thm 3 = wv solves the ODE —v" = |[v/|P, s > 0 with v(0) =0

Va(y) .,

v=0 or v(s)=cp[(s+a)F —aF]
for some a > 0, with 5 =1/(p—1)

Cp

including singular sol. V = cpsl_ﬁ

1 y

e Thm 3 also true for 1 < p <2 [Porretta-Véron, Adv. Nonl. Stud. 06]



Recent Liouville-type theorems Diffusive Hamilton-Jacobi equation

SKETCH OF PROOF OF THEOREM 3
e Write z = (Z,y) € R*™! x [0,00) and fix any h € R* 1\ {0}. Let
2(Z,y) =v(T + h,y) —v(Z,y), (Z,y) € R x [0, 00)
Goal: show z = 0 by contradiction, assuming S&p z > 0.
-

e Use local Bernstein estimate [PL Lions 85]:
IVo(Z,y)| < C(n,p)y~", for all (&,y) € R"! x (0, 00)

—> supremum of z localized in a finite strip

e Translations parallel to the boundary + compactness procedure

—> supremum of z localized at a finite point

e The new function z., satisfies a linear equation with (locally bounded) drift,
along with z = 0 on JR"}

—> contradiction with Strong Maximum Principle



Recent Liouville-type theorems Diffusive Hamilton-Jacobi equation

APPLICATIONS OF THEOREM 3
[Filippucci-Pucci-Souplet CPDE 19|

e Sharp GBU profile in normal direction: for any GBU point a € 012,

lim s’ Vu(a + sva, T) = dpvy | = |Vu(z,T)| ~ dpo=?,as x = a, z —a L 0Q

s—0

) u(x,y,T)
v, = inner unit normal vector

d(z) = dist(x, 092)
B = Iﬁ’ dp - 55
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APPLICATIONS OF THEOREM 3
[Filippucci-Pucci-Souplet CPDE 19|

e Sharp GBU profile in normal direction: for any GBU point a € 012,

lim s’ Vu(a + sva, T) = dpvy | = |Vu(z,T)| ~ dpo=?,as x = a, z —a L 0Q

s—0

) u(x,y,T)

v, = inner unit normal vector
d(z) = dist(x, 092)
=1 d,=p°

e More singular tangential behavior: lim |z — a|’u,(z,T) = oo
r—ra, tEOS

Sharp tangential exponent known only in special cases (2 < p < 3, flat symm. case)

w, (2,0, T) ~ |x|~2/(P—2) [Porretta-Souplet, IMRN 17]
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APPLICATIONS OF THEOREM 3 (cont’d)
[Filippucci-Pucci-Souplet CPDE 19|

e Asymptotic ODE type singular behavior in space-time:

— Uy ~ |y, |P in the region of (0,7) x Q where |Vu| > 1.

)p/2

Asymptotic scheme: wu; —|uyy, |— u,r = ( u |+ u?

Rem: Analogue of [Merle-Zaag CPAM 98]
ug ~ uP in {u > 1} for semilinear heat equation u; — Au =u? (p < pg)
Proved by means of Liouville type theorem for ancient solutions

Significant difference: normal spatial direction instead of time direction
e GBU viscosity solutions without loss of boundary conditions

(existence known from [Porretta-Souplet AIHP 17])

Liouville = such solutions are exceptional: completely unstable from above and below

Thresholds between global classical and GBU solutions



Recent Liouville-type theorems Mixed elliptic equation

IV — A MIXED ELLIPTIC EQUATION

—Au=uP|Vul?, zeR" (1)
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IV — A MIXED ELLIPTIC EQUATION

—Au=uP|Vul?, zeR"
[Filippucci-Pucci-Souplet, Adv. Nonl. Stud. 20|

(special volume in honor of Marie-Frangoise and Laurent)

(1)

Theorem 4.

Let ¢ > 2, p > 0. Then any bounded solution v > 0 of (1) is constant.
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IV — A MIXED ELLIPTIC EQUATION

—Au=uP|Vul?, zeR" (1)
[Filippucci-Pucci-Souplet, Adv. Nonl. Stud. 20|

(special volume in honor of Marie-Frangoise and Laurent)

Theorem 4.
Let ¢ > 2, p > 0. Then any bounded solution v > 0 of (1) is constant.

e Case 0 < ¢ < 2: studied in detail [Bidaut-Véron, Garcia-Huidobro, Véron DMJ 19|
(also [Burgos-Pérez, Garcia-Melfan, Quaas DCDS 16])

Various regions of nonexistence / existence
e Theorem 4 fails for supersolutions: they exist if (n —2)¢+ (n — 1)p >n and n > 3

e Open question for ¢ > 2: can one relax assumption u bounded ?
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SKETCH OF PROOF OF THEOREM 4

(A) Basic tool: monotone decreasing (resp. increasing) property of
spherical averages of superharmonic (resp. subharmonic) functions

(B) v :=u — infu > 0 superharmonic

How to find a good subharmonic quantity 7
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SKETCH OF PROOF OF THEOREM 4

Basic tool: monotone decreasing (resp. increasing) property of
spherical averages of superharmonic (resp. subharmonic) functions

v :=u — inf u > 0 superharmonic
How to find a good subharmonic quantity 7
Show: w := (u — inf u)™ > 0 subharmonic for m > 1

Lemma. If u positive bounded solution of (1), then u?™|Vu[P~2 bounded.
Proof by a local Bernstein argument
Lemma + simple computation = (C)

Combination of opposite monotonicity properties of spherical averages obtained from
(A), (B), (C) forces u = const.
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