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Recent Liouville-type theorems Lane-Emden equation

I – THE LANE-EMDEN EQUATION

−∆u = up, x ∈ Rn (p > 1) (1)

• Classical Gidas-Spruck Liouville theorem

Theorem. [Gidas-Spruck CPAM 81] Equation (1) does not admit any positive

classical solution in Rn if (and only if) p < pS = (n+ 2)/(n− 2)+.

See also simplified proof in [Bidaut-Véron–Véron, Invent. Math. 91]
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I – THE LANE-EMDEN EQUATION

−∆u = up, x ∈ Rn (p > 1) (1)

• Classical Gidas-Spruck Liouville theorem

Theorem. [Gidas-Spruck CPAM 81] Equation (1) does not admit any positive

classical solution in Rn if (and only if) p < pS = (n+ 2)/(n− 2)+.

See also simplified proof in [Bidaut-Véron–Véron, Invent. Math. 91]

• Half-space Rn+ = {(x1, . . . , xn); xn > 0}{−∆u = up, x ∈ Rn+,
u = 0, x ∈ ∂Rn+

(p > 1) (2)

Theorem. [Gidas-Spruck CPDE 81] Problem (2) does not admit any positive

classical solution if p ≤ pS .

Applications: a priori estimates for p < pS by rescaling method, and existence for
Dirichlet boundary value problems via degree theory



Recent Liouville-type theorems Lane-Emden equation

HALF-SPACE: BEYOND SOBOLEV EXPONENT

Exponent pS is optimal for nonexistence in whole space. What about half-space ?

For bounded solutions:

• p < pS(n− 1) = (n+ 1)/(n− 3)+ [Dancer, Bull. Austral. Math. Soc. 92]

• p < pJL(n− 1) := (n2 − 10n+ 8
√
n+ 13)/(n− 3)(n− 11)+ [Farina, JMPA 07]

• p > 1 [Chen-Li-Zou, JFA 14]
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• p < pJL(n− 1) := (n2 − 10n+ 8
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Theorem 1. [Dupaigne-Sirakov-Souplet 2020] Let p > 1.

(i) Problem (2) has no positive classical solution bounded on finite strips

(ii) Problem (2) has no positive classical solution with uxn
≥ 0

Finite strip: ΣR :=
{
x ∈ Rn+; 0 < xn < R

}
(R > 0)
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HALF-SPACE: BEYOND SOBOLEV EXPONENT

Exponent pS is optimal for nonexistence in whole space. What about half-space ?

For bounded solutions:

• p < pS(n− 1) = (n+ 1)/(n− 3)+ [Dancer, Bull. Austral. Math. Soc. 92]

• p < pJL(n− 1) := (n2 − 10n+ 8
√
n+ 13)/(n− 3)(n− 11)+ [Farina, JMPA 07]

• p > 1 [Chen-Li-Zou, JFA 14]

Theorem 1. [Dupaigne-Sirakov-Souplet 2020] Let p > 1.

(i) Problem (2) has no positive classical solution bounded on finite strips

(ii) Problem (2) has no positive classical solution with uxn
≥ 0

Finite strip: ΣR :=
{
x ∈ Rn+; 0 < xn < R

}
(R > 0)

Remarks

• u bounded on finite strips =⇒ uxn
≥ 0 =⇒ u stable

• Theorem 1 remains true for any f convex C2, with f(0) = 0 and f > 0 on (0,∞)

• Open question: if there still exists a positive classical solution, it would have to
blow up for xn bounded (and |x′n| → ∞). Is this possible ?



Recent Liouville-type theorems Lane-Emden equation

SKETCH OF PROOF OF THEOREM 1

Step 1. Basic strategy

Show that u is convex in the normal direction (idea from Chen-Li-Zou 14).
(leads to contradiction with basic local L1 estimates)

Moving planes: u bounded on finite strips =⇒ uxn > 0
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SKETCH OF PROOF OF THEOREM 1

Step 1. Basic strategy

Show that u is convex in the normal direction (idea fromm Chen-Li-Zou 14).
(leads to contradiction with basic local L1 estimates)

Moving planes: u bounded on finite strips =⇒ uxn > 0

Key auxiliary function:

ξ :=
uxnxn

(1 + xn)uxn

Elliptic operator:

L := z−2∇ · (z2∇) with weight z := (1 + xn)uxn
> 0

Equation for ξ (using convexity of nonlinearity):

Lξ ≥ 2ξ2

Also ξ = 0 on ∂Rn+ (due to uxnxn
= ∆u = −f(0) = 0)

Does this imply ξ ≥ 0 ?
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Step 2. Key Lemma based on Moser iteration

Lemma 1. Let q > 1 and consider the diffusion operator

L = A−1∇ · (A∇)

where the weight A ∈ L∞loc(Rn+), A > 0 a.e., satisfies∫
B+

R

Adx = exp
(
o(R2)

)
, R→∞. (H)

Let ξ ∈ H1
loc ∩ C(Rn+), with ξ ≥ 0 on ∂Rn+, be a weak solution of

−Lξ ≥ (ξ−)q in Rn+.

Then ξ ≥ 0 a.e. in Rn+.
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Step 2. Key Lemma beased on Moser iteration

Lemma 1. Let q > 1 and consider the diffusion operator

L = A−1∇ · (A∇)

where the weight A ∈ L∞loc(Rn+), A > 0 a.e., satisfies∫
B+

R

Adx = exp
(
o(R2)

)
, R→∞. (H)

Let ξ ∈ H1
loc ∩ C(Rn+), with ξ ≥ 0 on ∂Rn+, be a weak solution of

−Lξ ≥ (ξ−)q in Rn+.

Then ξ ≥ 0 a.e. in Rn+.

• Gaussian assumption (H) is optimal ! Counter-example:

A(x) = exp
[
(xn)k

]
, ξ = −xn, with k > 2 and q = k − 1

• Idea of proof of Lemma 1: Moser type iteration, testing with powers of (ξ−)m times
suitably scaled cut-off φ(x/R) where m = εR2.



Recent Liouville-type theorems Lane-Emden equation

Step 3. Conclusion via stability estimates.

Theorem 1 follows if we show ξ ≥ 0, i.e. uxnxn
≥ 0.

To apply Lemma 1 we need sub-Gaussian integral bounds on the weight A.

Here A = ((1 + xn)uxn)2.

Recall: uxn ≥ 0 =⇒ u stable
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Step 3. Conclusion via stability estimates.

Theorem 1 follows if we show ξ ≥ 0, i.e. uxnxn
≥ 0.

To apply Lemma 1 we need sub-Gaussian integral bounds on the weight A.

Here A = ((1 + xn)uxn)2.

Recall: uxn ≥ 0 =⇒ u stable

Estimates for stable solutions (e.g. Farina 07):

Lemma 2. Let p > 1 and let u ∈ C2(Ω) be a nonnegative stable solution of

−∆u = up in B1. Then we have∫
B1/2

|∇u|2 dx ≤ C(n, p).

Lemma 2 + similar boundary estimates for half-balls

=⇒
∫
B+

R
Adx ≤ C(1 +R)n+2

• Remark: general case f convex: analogue of Lemma 2 is consequence of recent
estimates of [Cabré-Figalli-RosOthon-Serra, Acta Math. 19]



Recent Liouville-type theorems Semilinear heat equation

II – THE SEMILINEAR HEAT EQUATION

Theorem 2. [Quittner 2020] Let p > 1. Then the equation

ut −∆u = up, (t, x) ∈ R× Rn

has no positive classical solution if (and only if) p < pS .
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II – THE SEMILINEAR HEAT EQUATION

Theorem 2. [Quittner 2020] Let p > 1. Then the equation

ut −∆u = up, (t, x) ∈ R× Rn

has no positive classical solution if (and only if) p < pS .

Previous results

• p ≤ (n+ 2)/n (consequence of [Fujita 66], true for global solutions on [0,∞)×Rn)

• p < n(n+ 2)/(n− 1)2 [Bidaut-Véron, special vol. in honor of JL Lions 98]

• Radial case for p < pS [Polacik-Quittner NA06, Polacik-Quittner-Souplet IUMJ07]

• n = 2 [Quittner Math Ann. 16]
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II – THE SEMILINEAR HEAT EQUATION

Theorem 2. [Quittner 2020] Let p > 1. Then the equation

ut −∆u = up, (t, x) ∈ R× Rn

has no positive classical solution if (and only if) p < pS .

Previous results

• p ≤ (n+ 2)/n (consequence of [Fujita 66], true for global solutions on [0,∞)×Rn)

• p < n(n+ 2)/(n− 1)2 [Bidaut-Véron, special vol. in honor of JL Lions 98]

• Radial case for p < pS [Polacik-Quittner NA06, Polacik-Quittner-Souplet IUMJ07]

• n = 2 [Quittner Math Ann. 16]

Liouville for half-space case R× Rn+ (with u = 0 on R× ∂Rn+)

• bounded solutions for p < pS [Polacik-Quittner-Souplet IUMJ07]

• p < pS (possibly unbounded) [Quittner 2020]

Rem: true in a larger range for bounded solutions; optimality unknown

Related: Liouville type theorem for ancient solutions [Merle-Zaag, CPAM 98]



Recent Liouville-type theorems Semilinear heat equation

SKETCH OF PROOF OF THEOREM 2

• Pass to similarity variables to get modified equation (cf. [Giga-Kohn CPAM85])

w := wa,k(y, s) = e−βsu
(
a+ ye−s/2, k − e−s

)
, s = − log(k − t), β = 1/(p− 1).

(E′) ws = ∆w − y

2
· ∇w + wp − βw in Rn × R (for each integer k)

• Good energy structure associated with (E’) for Gaussian weight ρ(y) = e−y
2/4

Ea,k(s) =
1

2

∫
Rn

(
|∇wa,k|2 + w2

a,k

)
ρ dy − 1

p+ 1

∫
Rn

wp+1
a,k ρ dy.

• Hard energy estimates of the form Eai,k(s) ≤ kγj for k � 1, with suitable centers ai,
powers γj > 0 and time intervals.

Obtained by bootstrap procedure + covering and measure arguments.

• Appropriate rescaled of wk → w positive solution of −∆w = wp in Rn as k → ∞:
contradiction with Gidas-Spruck elliptic Liouville.



Recent Liouville-type theorems Semilinear heat equation

APPLICATIONS OF PARABOLIC LIOUVILLE THEOREM

Estimates for nonnegative solutions of ut −∆u = up with 1 < p < pS .

Csq of Thm 2 + Rescaling + Doubling Lemma [Poláčik-Quittner-S. DMJ & IUMJ07]

• Blow-up rate estimates (final and initial), in any smooth domain (incl. nonconvex !)
and with universal constants

u solution in (0, T )× Rn =⇒ u ≤ C(n, p)
[
t−β + (T − t)−β

]
β :=

1

p− 1

u solution in (0, T )× Ω with zero B.C. =⇒ u ≤ C(p,Ω)
[
1 + t−β + (T − t)−β

]
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APPLICATIONS OF PARABOLIC LIOUVILLE THEOREM

Estimates for nonnegative solutions of ut −∆u = up with 1 < p < pS .

Csq of Thm 2 + Rescaling + Doubling Lemma [Poláčik-Quittner-S. DMJ & IUMJ07]

• Blow-up rate estimates (final and initial), in any smooth domain (incl. nonconvex !)
and with universal constants

u solution in (0, T )× Rn =⇒ u ≤ C(n, p)
[
t−β + (T − t)−β

]
β :=

1

p− 1

u solution in (0, T )× Ω with zero B.C. =⇒ u ≤ C(p,Ω)
[
1 + t−β + (T − t)−β

]
• Decay estimates for all global solutions in Rn

u solution in (0,∞)× Rn =⇒ u ≤ C(n, p) t−β

• Universal bounds away from t = 0 for global solutions in any smooth domain

u ≥ 0 solution of (E) in (0,∞)× Ω with zero B.C. =⇒ u ≤ C(p,Ω)
[
1 + t−β

]
• Local universal estimate in space and time

u solution in (0, T )× Ω =⇒ u ≤ C(n, p)
[
t−β + (T − t)−β + (dist(x, ∂Ω))−2β

]



Recent Liouville-type theorems Diffusive Hamilton-Jacobi equation

III – DIFFUSIVE HAMILTON-JACOBI EQUATION

(DHJ)


ut −∆u = |∇u|p, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Ω ⊂ Rn smooth bounded domain, p > 2 (superquadratic).
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III – DIFFUSIVE HAMILTON-JACOBI EQUATION

(DHJ)


ut −∆u = |∇u|p, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Ω ⊂ Rn smooth bounded domain, p > 2 (superquadratic).

Some key features: [cf. A. Porretta’s lecture]

• Finite time gradient blow-up (GBU) occurs for large initial data:

lim
t→T
‖∇u(t)‖∞ =∞

• Continuation as unique global viscosity condition (with possible loss of classical
boundary conditions)

• Singularities appear only on (some subset of) ∂Ω



Recent Liouville-type theorems Diffusive Hamilton-Jacobi equation

III – DIFFUSIVE HAMILTON-JACOBI EQUATION

(DHJ)


ut −∆u = |∇u|p, x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω.

Ω ⊂ Rn smooth bounded domain, p > 2 (superquadratic).

Some key features: [cf. A. Porretta’s lecture]

• Finite time gradient blow-up (GBU) occurs for large initial data:

lim
t→T
‖∇u(t)‖∞ =∞

• Continuation as unique global viscosity condition (with possible loss of classical
boundary conditions)

• Singularities appear only on (some subset of) ∂Ω

Related elliptic problem:

(1)

{−∆v = |∇v|p, x ∈ Rn+,
v = 0, x ∈ ∂Rn+



Recent Liouville-type theorems Diffusive Hamilton-Jacobi equation

• Whole space case: [PL Lions, JAM 85]

if p > 1 and v classical solution of −∆v = |∇v|p in Rn, then v is constant
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• Whole space case: [PL Lions, JAM 85]

if p > 1 and v classical solution of −∆v = |∇v|p in Rn, then v is constant

• Elliptic half-space case is important for study of GBU (see later)

Theorem 3. [Filippucci-Pucci-Souplet CPDE 2019]

Let p > 2 and let v ∈ C2(Rn+) ∩ C(Rn+) be a solution of (1). Then v depends

only on the variable xn.
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• Whole space case: [PL Lions, JAM 85]

if p > 1 and v classical solution of −∆v = |∇v|p in Rn, then v is constant

• Elliptic half-space case is important for study of GBU (see later)

Theorem 3. [Filippucci-Pucci-Souplet CPDE 2019]

Let p > 2 and let v ∈ C2(Rn+) ∩ C(Rn+) be a solution of (1). Then v depends

only on the variable xn.

Remarks

• Thm 3 =⇒ v solves the ODE −v′′ = |v′|p, s > 0 with v(0) = 0

v ≡ 0 or v(s) = cp
[
(s+ a)1−β − a1−β]

for some a ≥ 0, with β = 1/(p− 1)

including singular sol. V = cps
1−β

• Thm 3 also true for 1 < p ≤ 2 [Porretta-Véron, Adv. Nonl. Stud. 06]



Recent Liouville-type theorems Diffusive Hamilton-Jacobi equation

SKETCH OF PROOF OF THEOREM 3

• Write x = (x̃, y) ∈ Rn−1 × [0,∞) and fix any h ∈ Rn−1 \ {0}. Let

z(x̃, y) = v(x̃+ h, y)− v(x̃, y), (x̃, y) ∈ Rn−1 × [0,∞)

Goal: show z ≡ 0 by contradiction, assuming sup
Rn

+

z > 0.

• Use local Bernstein estimate [PL Lions 85]:

|∇v(x̃, y)| ≤ C(n, p)y−β , for all (x̃, y) ∈ Rn−1 × (0,∞)

=⇒ supremum of z localized in a finite strip

• Translations parallel to the boundary + compactness procedure

=⇒ supremum of z localized at a finite point

• The new function z∞ satisfies a linear equation with (locally bounded) drift,

along with z = 0 on ∂Rn+
=⇒ contradiction with Strong Maximum Principle
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APPLICATIONS OF THEOREM 3

[Filippucci-Pucci-Souplet CPDE 19]

• Sharp GBU profile in normal direction: for any GBU point a ∈ ∂Ω,

lim
s→0

sβ∇u(a+ sνa, T ) = dpνa =⇒ |∇u(x, T )| ∼ dpδ
−β , as x→ a, x− a ⊥ ∂Ω

νa = inner unit normal vector

δ(x) = dist(x, ∂Ω)

β = 1
p−1 , dp = ββ
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APPLICATIONS OF THEOREM 3

[Filippucci-Pucci-Souplet CPDE 19]

• Sharp GBU profile in normal direction: for any GBU point a ∈ ∂Ω,

lim
s→0

sβ∇u(a+ sνa, T ) = dpνa =⇒ |∇u(x, T )| ∼ dpδ
−β , as x→ a, x− a ⊥ ∂Ω

νa = inner unit normal vector

δ(x) = dist(x, ∂Ω)

β = 1
p−1 , dp = ββ

• More singular tangential behavior: lim
x→a, x∈∂Ω

|x− a|βuν(x, T ) =∞

Sharp tangential exponent known only in special cases (2 < p ≤ 3, flat symm. case)

uν(x, 0, T ) ∼ |x|−2/(p−2) [Porretta-Souplet, IMRN 17]
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APPLICATIONS OF THEOREM 3 (cont’d)

[Filippucci-Pucci-Souplet CPDE 19]

• Asymptotic ODE type singular behavior in space-time:

−uνν ∼ |uν |p in the region of (0, T )× Ω where |∇u| � 1.

Asymptotic scheme: ut − uνν − uττ =
(
u2
ν + u2

τ

)p/2
Rem: Analogue of [Merle-Zaag CPAM 98]

ut ∼ up in {u� 1} for semilinear heat equation ut −∆u = up (p < pS)

Proved by means of Liouville type theorem for ancient solutions

Significant difference: normal spatial direction instead of time direction

• GBU viscosity solutions without loss of boundary conditions

(existence known from [Porretta-Souplet AIHP 17])

Liouville⇒ such solutions are exceptional: completely unstable from above and below

Thresholds between global classical and GBU solutions



Recent Liouville-type theorems Mixed elliptic equation

IV – A MIXED ELLIPTIC EQUATION

−∆u = up|∇u|q, x ∈ Rn (1)
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IV – A MIXED ELLIPTIC EQUATION

−∆u = up|∇u|q, x ∈ Rn (1)

[Filippucci-Pucci-Souplet, Adv. Nonl. Stud. 20]

(special volume in honor of Marie-Françoise and Laurent)

Theorem 4.

Let q > 2, p > 0. Then any bounded solution u ≥ 0 of (1) is constant.
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IV – A MIXED ELLIPTIC EQUATION

−∆u = up|∇u|q, x ∈ Rn (1)

[Filippucci-Pucci-Souplet, Adv. Nonl. Stud. 20]

(special volume in honor of Marie-Françoise and Laurent)

Theorem 4.

Let q > 2, p > 0. Then any bounded solution u ≥ 0 of (1) is constant.

• Case 0 < q ≤ 2: studied in detail [Bidaut-Véron, Garcia-Huidobro, Véron DMJ 19]
(also [Burgos-Pérez, Garćıa-Meĺıan, Quaas DCDS 16])

Various regions of nonexistence / existence

• Theorem 4 fails for supersolutions: they exist if (n− 2)q + (n− 1)p > n and n ≥ 3

• Open question for q > 2: can one relax assumption u bounded ?



Recent Liouville-type theorems Mixed elliptic equation

SKETCH OF PROOF OF THEOREM 4

(A) Basic tool: monotone decreasing (resp. increasing) property of
spherical averages of superharmonic (resp. subharmonic) functions

(B) v := u− inf u ≥ 0 superharmonic

How to find a good subharmonic quantity ?
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SKETCH OF PROOF OF THEOREM 4

(A) Basic tool: monotone decreasing (resp. increasing) property of
spherical averages of superharmonic (resp. subharmonic) functions

(B) v := u− inf u ≥ 0 superharmonic

How to find a good subharmonic quantity ?

(C) Show: w := (u− inf u)m ≥ 0 subharmonic for m� 1

Lemma. If u positive bounded solution of (1), then uq+1|∇u|p−2 bounded.

Proof by a local Bernstein argument

Lemma + simple computation =⇒ (C)

(D) Combination of opposite monotonicity properties of spherical averages obtained from
(A), (B), (C) forces u ≡ const.
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MARIE-FRANÇOISE ET LAURENT !!


