SOME RECENT LIOUVILLE TYPE RESULTS AND THEIR APPLICATIONS

Philippe Souplet

LAGA, Université Sorbonne Paris Nord & CNRS

Workshop "Singular problems associated to quasilinear equations" In honor of Marie-Françoise Bidaut-Véron and Laurent Véron

> Masaryk University & Shanghai Tech University June 1-3, 2020

OUTLINE

- 1. The Lane-Emden equation
- 2. The nonlinear heat equation
- 3. The diffusive Hamilton-Jacobi equation
- 4. A mixed elliptic equation

I – THE LANE-EMDEN EQUATION

$$-\Delta u = u^p, \quad x \in \mathbb{R}^n \tag{1}$$

• Classical Gidas-Spruck Liouville theorem

Theorem. [Gidas-Spruck CPAM 81] Equation (1) does not admit any positive classical solution in \mathbb{R}^n if (and only if) $p < p_S = (n+2)/(n-2)_+$.

See also simplified proof in [Bidaut-Véron–Véron, Invent. Math. 91]

I – THE LANE-EMDEN EQUATION

$$-\Delta u = u^p, \quad x \in \mathbb{R}^n \tag{1}$$

• Classical Gidas-Spruck Liouville theorem

Theorem. [Gidas-Spruck CPAM 81] Equation (1) does not admit any positive classical solution in \mathbb{R}^n if (and only if) $p < p_S = (n+2)/(n-2)_+$.

See also simplified proof in [Bidaut-Véron–Véron, Invent. Math. 91]

• Half-space $\mathbb{R}^{n}_{+} = \{(x_1, \dots, x_n); x_n > 0\}$

$$\begin{cases} -\Delta u &= u^p, \quad x \in \mathbb{R}^n_+, \\ u &= 0, \quad x \in \partial \mathbb{R}^n_+ \end{cases}$$
 (p > 1) (2)

Theorem. [Gidas-Spruck CPDE 81] Problem (2) does not admit any positive classical solution if $p \leq p_S$.

Applications: a priori estimates for $p < p_S$ by rescaling method, and existence for Dirichlet boundary value problems via degree theory

HALF-SPACE: BEYOND SOBOLEV EXPONENT

Exponent p_S is optimal for nonexistence in whole space. What about half-space ? For **bounded** solutions:

• $p < p_S(n-1) = (n+1)/(n-3)_+$ [Dancer, Bull. Austral. Math. Soc. 92] • $p < p_{JL}(n-1) := (n^2 - 10n + 8\sqrt{n} + 13)/(n-3)(n-11)_+$ [Farina, JMPA 07] • p > 1 [Chen-Li-Zou, JFA 14]

HALF-SPACE: BEYOND SOBOLEV EXPONENT

Exponent p_S is optimal for nonexistence in whole space. What about half-space ? For **bounded** solutions:

- $p < p_S(n-1) = (n+1)/(n-3)_+$ [Dancer, Bull. Austral. Math. Soc. 92]
- $p < p_{JL}(n-1) := (n^2 10n + 8\sqrt{n} + 13)/(n-3)(n-11)_+$ [Farina, JMPA 07]
- p > 1 [Chen-Li-Zou, JFA 14]

Theorem 1. [Dupaigne-Sirakov-Souplet 2020] Let p > 1. (i) Problem (2) has no positive classical solution bounded on finite strips (ii) Problem (2) has no positive classical solution with $u_{x_n} \ge 0$

Finite strip: $\Sigma_R := \{ x \in \mathbb{R}^n_+; \ 0 < x_n < R \} \quad (R > 0)$

HALF-SPACE: BEYOND SOBOLEV EXPONENT

Exponent p_S is optimal for nonexistence in whole space. What about half-space ? For **bounded** solutions:

- $p < p_S(n-1) = (n+1)/(n-3)_+$ [Dancer, Bull. Austral. Math. Soc. 92]
- $p < p_{JL}(n-1) := (n^2 10n + 8\sqrt{n} + 13)/(n-3)(n-11)_+$ [Farina, JMPA 07]
- p > 1 [Chen-Li-Zou, JFA 14]

Theorem 1. [Dupaigne-Sirakov-Souplet 2020] Let p > 1. (i) Problem (2) has no positive classical solution bounded on finite strips (ii) Problem (2) has no positive classical solution with $u_{x_n} \ge 0$

Finite strip: $\Sigma_R := \{ x \in \mathbb{R}^n_+; \ 0 < x_n < R \} \quad (R > 0)$

Remarks

- u bounded on finite strips $\implies u_{x_n} \ge 0 \implies u$ stable
- Theorem 1 remains true for any f convex C^2 , with f(0) = 0 and f > 0 on $(0, \infty)$
- Open question: if there still exists a positive classical solution, it would have to **blow up for** x_n **bounded** (and $|x'_n| \to \infty$). Is this possible ?

SKETCH OF PROOF OF THEOREM 1

Step 1. Basic strategy

Show that u is convex in the normal direction (idea from Chen-Li-Zou 14). (leads to contradiction with basic local L^1 estimates)

Moving planes: u bounded on finite strips $\implies u_{x_n} > 0$

SKETCH OF PROOF OF THEOREM 1

Step 1. Basic strategy

Show that u is convex in the normal direction (idea fromm Chen-Li-Zou 14). (leads to contradiction with basic local L^1 estimates)

Moving planes: u bounded on finite strips $\implies u_{x_n} > 0$

Key auxiliary function:

$$\xi := \frac{u_{x_n x_n}}{(1+x_n)u_{x_n}}$$

Elliptic operator:

$$\mathcal{L} := z^{-2} \nabla \cdot (z^2 \nabla)$$
 with weight $z := (1 + x_n) u_{x_n} > 0$

Equation for ξ (using convexity of nonlinearity):

 $\mathcal{L}\xi \ge 2\xi^2$

Also $\xi = 0$ on $\partial \mathbb{R}^n_+$ (due to $u_{x_n x_n} = \Delta u = -f(0) = 0$)

Does this imply $\xi \ge 0$?

Step 2. Key Lemma based on Moser iteration

Lemma 1. Let q > 1 and consider the diffusion operator $\mathcal{L} = A^{-1} \nabla \cdot (A \nabla)$ where the weight $A \in L^{\infty}_{loc}(\overline{\mathbb{R}^{n}_{+}}), A > 0$ a.e., satisfies $\int_{B^{+}_{R}} A \, dx = \exp(o(R^{2})), \quad R \to \infty. \tag{H}$ Let $\xi \in H^{1}_{loc} \cap C(\overline{\mathbb{R}^{n}_{+}})$, with $\xi \ge 0$ on $\partial \mathbb{R}^{n}_{+}$, be a weak solution of $-\mathcal{L}\xi \ge (\xi_{-})^{q}$ in \mathbb{R}^{n}_{+} . Then $\xi \ge 0$ a.e. in \mathbb{R}^{n}_{+} .

Step 2. Key Lemma beased on Moser iteration

 $\begin{array}{l} \mbox{Lemma 1. Let } q>1 \mbox{ and consider the diffusion operator} \\ \mathcal{L}=A^{-1}\nabla\cdot(A\nabla) \\ \mbox{where the weight } A\in L^\infty_{loc}(\overline{\mathbb{R}^n_+}), \ A>0 \ \mbox{a.e., satisfies} \\ \int_{B^+_R}A \ dx=\exp\bigl(o(R^2)\bigr), \quad R\to\infty. \end{array} \tag{H} \\ \mbox{Let } \xi\in H^1_{loc}\cap C(\overline{\mathbb{R}^n_+}), \ \mbox{with } \xi\geq 0 \ \mbox{on }\partial\mathbb{R}^n_+, \ \mbox{be a weak solution of} \\ -\mathcal{L}\xi\geq (\xi_-)^q \quad \mbox{in } \mathbb{R}^n_+. \end{array}$

• Gaussian assumption (H) is optimal ! Counter-example:

$$A(x) = \exp[(x_n)^k], \quad \xi = -x_n, \text{ with } k > 2 \text{ and } q = k - 1$$

• Idea of proof of Lemma 1: Moser type iteration, testing with powers of $(\xi_{-})^m$ times suitably scaled cut-off $\phi(x/R)$ where $m = \varepsilon R^2$.

Step 3. Conclusion via stability estimates.

Theorem 1 follows if we show $\xi \ge 0$, i.e. $u_{x_n x_n} \ge 0$.

To apply Lemma 1 we need sub-Gaussian integral bounds on the weight A.

Here $A = ((1 + x_n)u_{x_n})^2$.

Recall: $u_{x_n} \ge 0 \implies u$ stable

Step 3. Conclusion via stability estimates.

Theorem 1 follows if we show $\xi \ge 0$, i.e. $u_{x_n x_n} \ge 0$.

To apply Lemma 1 we need sub-Gaussian integral bounds on the weight A.

Here
$$A = ((1 + x_n)u_{x_n})^2$$
.

Recall: $u_{x_n} \ge 0 \implies u$ stable

Estimates for stable solutions (e.g. Farina 07):

Lemma 2. Let p > 1 and let $u \in C^2(\Omega)$ be a nonnegative stable solution of $-\Delta u = u^p$ in B_1 . Then we have

$$\int_{B_{1/2}} |\nabla u|^2 \, dx \le C(n, p).$$

Lemma 2 + similar boundary estimates for half-balls

$$\implies \int_{B_R^+} A \, dx \le C(1+R)^{n+2} \qquad \Box$$

• **Remark:** general case *f* convex: analogue of Lemma 2 is consequence of recent estimates of [Cabré-Figalli-RosOthon-Serra, Acta Math. 19]

II – THE SEMILINEAR HEAT EQUATION

Theorem 2. [Quittner 2020] Let p > 1. Then the equation

 $u_t - \Delta u = u^p, \qquad (t, x) \in \mathbb{R} \times \mathbb{R}^n$

has no positive classical solution if (and only if) $p < p_S$.

II – THE SEMILINEAR HEAT EQUATION

Theorem 2. [Quittner 2020] Let p > 1. Then the equation

 $u_t - \Delta u = u^p, \qquad (t, x) \in \mathbb{R} \times \mathbb{R}^n$

has no positive classical solution if (and only if) $p < p_S$.

Previous results

- $p \leq (n+2)/n$ (consequence of [Fujita 66], true for global solutions on $[0,\infty) \times \mathbb{R}^n$)
- $p < n(n+2)/(n-1)^2$ [Bidaut-Véron, special vol. in honor of JL Lions 98]
- Radial case for $p < p_S$ [Polacik-Quittner NA06, Polacik-Quittner-Souplet IUMJ07]
- n = 2 [Quittner Math Ann. 16]

II – THE SEMILINEAR HEAT EQUATION

Theorem 2. [Quittner 2020] Let p > 1. Then the equation

 $u_t - \Delta u = u^p, \qquad (t, x) \in \mathbb{R} \times \mathbb{R}^n$

has no positive classical solution if (and only if) $p < p_S$.

Previous results

- $p \leq (n+2)/n$ (consequence of [Fujita 66], true for global solutions on $[0,\infty) \times \mathbb{R}^n$)
- $p < n(n+2)/(n-1)^2$ [Bidaut-Véron, special vol. in honor of JL Lions 98]
- Radial case for $p < p_S$ [Polacik-Quittner NA06, Polacik-Quittner-Souplet IUMJ07]
- n = 2 [Quittner Math Ann. 16]

Liouville for half-space case $\mathbb{R} \times \mathbb{R}^n_+$ (with u = 0 on $\mathbb{R} \times \partial \mathbb{R}^n_+$)

• bounded solutions for $p < p_S$ [Polacik-Quittner-Souplet IUMJ07] • $p < p_S$ (possibly unbounded) [Quittner 2020]

Rem: true in a larger range for bounded solutions; optimality unknown

Related: Liouville type theorem for ancient solutions [Merle-Zaag, CPAM 98]

SKETCH OF PROOF OF THEOREM 2

• Pass to similarity variables to get modified equation (cf. [Giga-Kohn CPAM85])

$$w := w_{a,k}(y,s) = e^{-\beta s} u (a + y e^{-s/2}, k - e^{-s}), \quad s = -\log(k-t), \quad \beta = 1/(p-1).$$

$$(E') w_s = \Delta w - \frac{y}{2} \cdot \nabla w + w^p - \beta w \text{in } \mathbb{R}^n \times \mathbb{R} (\text{for each integer } k)$$

• Good energy structure associated with (E') for Gaussian weight $\rho(y) = e^{-y^2/4}$

$$E_{a,k}(s) = \frac{1}{2} \int_{\mathbb{R}^n} \left(|\nabla w_{a,k}|^2 + w_{a,k}^2 \right) \rho \, dy - \frac{1}{p+1} \int_{\mathbb{R}^n} w_{a,k}^{p+1} \rho \, dy.$$

Hard energy estimates of the form E_{ai,k}(s) ≤ k^{γj} for k ≫ 1, with suitable centers a_i, powers γ_j > 0 and time intervals.
Obtained by bootstrap procedure + covering and measure arguments.

• Appropriate rescaled of $w_k \to w$ positive solution of $-\Delta w = w^p$ in \mathbb{R}^n as $k \to \infty$: contradiction with Gidas-Spruck elliptic Liouville.

APPLICATIONS OF PARABOLIC LIOUVILLE THEOREM

Estimates for nonnegative solutions of $u_t - \Delta u = u^p$ with 1 .Csq of Thm 2 + Rescaling + Doubling Lemma [Poláčik-Quittner-S. DMJ & IUMJ07]

• Blow-up rate estimates (final *and* initial), in any smooth domain (incl. nonconvex !) and with *universal constants*

$$u \text{ solution in } (0,T) \times \mathbb{R}^n \Longrightarrow \qquad u \le C(n,p) \left[t^{-\beta} + (T-t)^{-\beta} \right] \qquad \beta := \frac{1}{p-1}$$

$$u$$
 solution in $(0,T) \times \Omega$ with zero B.C. $\implies u \leq C(p,\Omega) \left[1 + t^{-\beta} + (T-t)^{-\beta}\right]$

 $u \le C(p, \Omega) \left[1 + t^{-\beta} \right]$

APPLICATIONS OF PARABOLIC LIOUVILLE THEOREM

Estimates for nonnegative solutions of $u_t - \Delta u = u^p$ with 1 .Csq of Thm 2 + Rescaling + Doubling Lemma [Poláčik-Quittner-S. DMJ & IUMJ07]

• Blow-up rate estimates (final *and* initial), in any smooth domain (incl. nonconvex !) and with *universal constants*

$$u \text{ solution in } (0,T) \times \mathbb{R}^n \Longrightarrow \qquad u \le C(n,p) \left[t^{-\beta} + (T-t)^{-\beta} \right] \qquad \beta := \frac{1}{p-1}$$

u solution in $(0,T) \times \Omega$ with zero B.C. $\implies u \leq C(p,\Omega) [1 + t^{-\beta} + (T-t)^{-\beta}]$

 \bullet Decay estimates for all global solutions in \mathbb{R}^n

$$u \text{ solution in } (0,\infty) \times \mathbb{R}^n \implies u \le C(n,p) t^{-\beta}$$

- Universal bounds away from t = 0 for global solutions in any smooth domain
- $u \ge 0$ solution of (E) in $(0, \infty) \times \Omega$ with zero B.C. \implies
- Local universal estimate in space and time

$$u \text{ solution in } (0,T) \times \Omega \implies u \leq C(n,p) \left[t^{-\beta} + (T-t)^{-\beta} + (\operatorname{dist}(x,\partial\Omega))^{-2\beta} \right]$$

III – DIFFUSIVE HAMILTON-JACOBI EQUATION

(DHJ)
$$\begin{cases} u_t - \Delta u &= |\nabla u|^p, \quad x \in \Omega, \quad t > 0, \\ u &= 0, \quad x \in \partial \Omega, \quad t > 0, \\ u(x,0) &= u_0(x), \quad x \in \Omega. \end{cases}$$

 $\Omega \subset \mathbb{R}^n$ smooth bounded domain, p > 2 (superquadratic).

III – DIFFUSIVE HAMILTON-JACOBI EQUATION

(DHJ)
$$\begin{cases} u_t - \Delta u &= |\nabla u|^p, \quad x \in \Omega, \quad t > 0, \\ u &= 0, \quad x \in \partial \Omega, \quad t > 0, \\ u(x,0) &= u_0(x), \quad x \in \Omega. \end{cases}$$

 $\Omega \subset \mathbb{R}^n$ smooth bounded domain, p>2 (superquadratic).

Some key features: [cf. A. Porretta's lecture]

• Finite time gradient blow-up (GBU) occurs for large initial data:

$$\lim_{t \to T} \|\nabla u(t)\|_{\infty} = \infty$$

• Continuation as unique global viscosity condition (with possible loss of classical boundary conditions)

• Singularities appear only on (some subset of) $\partial \Omega$

III – DIFFUSIVE HAMILTON-JACOBI EQUATION

(DHJ)
$$\begin{cases} u_t - \Delta u &= |\nabla u|^p, \quad x \in \Omega, \quad t > 0, \\ u &= 0, \quad x \in \partial \Omega, \quad t > 0, \\ u(x,0) &= u_0(x), \quad x \in \Omega. \end{cases}$$

 $\Omega \subset \mathbb{R}^n$ smooth bounded domain, p>2 (superquadratic).

Some key features: [cf. A. Porretta's lecture]

• Finite time gradient blow-up (GBU) occurs for large initial data:

$$\lim_{t \to T} \|\nabla u(t)\|_{\infty} = \infty$$

• Continuation as unique global viscosity condition (with possible loss of classical boundary conditions)

• Singularities appear only on (some subset of) $\partial \Omega$

Related elliptic problem:

(1)
$$\begin{cases} -\Delta v = |\nabla v|^p, & x \in \mathbb{R}^n_+, \\ v = 0, & x \in \partial \mathbb{R}^n_+ \end{cases}$$

• Whole space case:

[PL Lions, JAM 85]

if p > 1 and v classical solution of $-\Delta v = |\nabla v|^p$ in \mathbb{R}^n , then v is constant

• Whole space case:

[PL Lions, JAM 85]

if p > 1 and v classical solution of $-\Delta v = |\nabla v|^p$ in \mathbb{R}^n , then v is constant

• Elliptic half-space case is important for study of GBU (see later)

Theorem 3. [Filippucci-Pucci-Souplet CPDE 2019] Let p > 2 and let $v \in C^2(\mathbb{R}^n_+) \cap C(\overline{\mathbb{R}^n_+})$ be a solution of (1). Then v depends only on the variable x_n . • Whole space case:

[PL Lions, JAM 85]

if p > 1 and v classical solution of $-\Delta v = |\nabla v|^p$ in \mathbb{R}^n , then v is constant

• Elliptic half-space case is important for study of GBU (see later)

Theorem 3. [Filippucci-Pucci-Souplet CPDE 2019] Let p > 2 and let $v \in C^2(\mathbb{R}^n_+) \cap C(\overline{\mathbb{R}^n_+})$ be a solution of (1). Then v depends only on the variable x_n .

Remarks

• Thm 3
$$\implies v$$
 solves the ODE $-v'' = |v'|^p, s > 0$ with $v(0) = 0$

$$v \equiv 0$$
 or $v(s) = c_p [(s+a)^{1-\beta} - a^{1-\beta}]$
for some $a \ge 0$, with $\beta = 1/(p-1)$
including singular sol. $V = c_p s^{1-\beta}$

• Thm 3 also true for 1

[Porretta-Véron, Adv. Nonl. Stud. 06]

SKETCH OF PROOF OF THEOREM 3

• Write
$$x = (\tilde{x}, y) \in \mathbb{R}^{n-1} \times [0, \infty)$$
 and fix any $h \in \mathbb{R}^{n-1} \setminus \{0\}$. Let

$$z(\tilde{x}, y) = v(\tilde{x} + h, y) - v(\tilde{x}, y), \qquad (\tilde{x}, y) \in \mathbb{R}^{n-1} \times [0, \infty)$$

Goal: show $z \equiv 0$ by contradiction, assuming $\sup_{\mathbb{R}^n_+} z > 0$.

• Use local Bernstein estimate [PL Lions 85]:

$$|\nabla v(\tilde{x}, y)| \le C(n, p) y^{-\beta}, \quad \text{for all } (\tilde{x}, y) \in \mathbb{R}^{n-1} \times (0, \infty)$$

$$\implies$$
 supremum of z localized in a *finite strip*

• Translations parallel to the boundary + compactness procedure

$$\implies$$
 supremum of z localized at a *finite point*

- The new function z_{∞} satisfies a linear equation with (locally bounded) drift, along with z = 0 on $\partial \mathbb{R}^n_+$
- \implies contradiction with Strong Maximum Principle

APPLICATIONS OF THEOREM 3

[Filippucci-Pucci-Souplet CPDE 19]

• Sharp GBU profile in normal direction: for any GBU point $a \in \partial \Omega$,

$$\lim_{s \to 0} s^{\beta} \nabla u(a + s\nu_a, T) = d_p \nu_a \implies |\nabla u(x, T)| \sim d_p \delta^{-\beta}, \text{ as } x \to a, x - a \perp \partial \Omega$$

 $\nu_a = \text{inner unit normal vector}$ $\delta(x) = \text{dist}(x, \partial \Omega)$ $\beta = \frac{1}{p-1}, \, d_p = \beta^{\beta}$

APPLICATIONS OF THEOREM 3

[Filippucci-Pucci-Souplet CPDE 19]

• Sharp GBU profile in normal direction: for any GBU point $a \in \partial \Omega$,

$$\lim_{s \to 0} s^{\beta} \nabla u(a + s\nu_a, T) = d_p \nu_a \implies |\nabla u(x, T)| \sim d_p \delta^{-\beta}, \text{ as } x \to a, x - a \perp \partial \Omega$$

 $\nu_a = \text{inner unit normal vector}$ $\delta(x) = \text{dist}(x, \partial \Omega)$ $\beta = \frac{1}{p-1}, \, d_p = \beta^{\beta}$

• More singular tangential behavior: $\lim_{x \to a, x \in \partial \Omega} |x - a|^{\beta} u_{\nu}(x, T) = \infty$ Sharp tangential exponent known only in special cases (2 $u_{\nu}(x, 0, T) \sim |x|^{-2/(p-2)}$ [Porretta-Souplet, IMRN 17]

APPLICATIONS OF THEOREM 3 (cont'd)

[Filippucci-Pucci-Souplet CPDE 19]

• Asymptotic ODE type singular behavior in space-time:

 $-u_{\nu\nu} \sim |u_{\nu}|^p$ in the region of $(0,T) \times \Omega$ where $|\nabla u| \gg 1$.

Asymptotic scheme: $u_t - \boxed{u_{\nu\nu}} - u_{\tau\tau} = \left(\boxed{u_{\nu}^2} + u_{\tau}^2\right)^{p/2}$

Rem: Analogue of [Merle-Zaag CPAM 98] $u_t \sim u^p$ in $\{u \gg 1\}$ for semilinear heat equation $u_t - \Delta u = u^p$ $(p < p_S)$ Proved by means of Liouville type theorem for ancient solutions Significant difference: normal spatial direction instead of time direction

• GBU viscosity solutions without loss of boundary conditions (existence known from [Porretta-Souplet AIHP 17])

Liouville \Rightarrow such solutions are exceptional: completely unstable from above and below Thresholds between global classical and GBU solutions

$\mathbf{IV}-\mathbf{A}$ MIXED ELLIPTIC EQUATION

$$-\Delta u = u^p |\nabla u|^q, \quad x \in \mathbb{R}^n \tag{1}$$

IV – A MIXED ELLIPTIC EQUATION

$$-\Delta u = u^p |\nabla u|^q, \quad x \in \mathbb{R}^n \tag{1}$$

[Filippucci-Pucci-Souplet, Adv. Nonl. Stud. 20]

(special volume in honor of Marie-Françoise and Laurent)

Theorem 4.

Let q > 2, p > 0. Then any bounded solution $u \ge 0$ of (1) is constant.

IV – A MIXED ELLIPTIC EQUATION

$$-\Delta u = u^p |\nabla u|^q, \quad x \in \mathbb{R}^n \tag{1}$$

[Filippucci-Pucci-Souplet, Adv. Nonl. Stud. 20]

(special volume in honor of Marie-Françoise and Laurent)

Theorem 4.

Let q > 2, p > 0. Then any bounded solution $u \ge 0$ of (1) is constant.

• Case $0 < q \le 2$: studied in detail [Bidaut-Véron, Garcia-Huidobro, Véron DMJ 19] (also [Burgos-Pérez, García-Melían, Quaas DCDS 16])

Various regions of nonexistence / existence

- Theorem 4 fails for supersolutions: they exist if (n-2)q + (n-1)p > n and $n \ge 3$
- Open question for q > 2: can one relax assumption u bounded ?

SKETCH OF PROOF OF THEOREM 4

- (A) Basic tool: monotone decreasing (resp. increasing) property of spherical averages of superharmonic (resp. subharmonic) functions
- (B) $v := u \inf u \ge 0$ superharmonic

How to find a good subharmonic quantity ?

SKETCH OF PROOF OF THEOREM 4

- (A) Basic tool: monotone decreasing (resp. increasing) property of spherical averages of superharmonic (resp. subharmonic) functions
- (B) $v := u \inf u \ge 0$ superharmonic

How to find a good subharmonic quantity ?

(C) Show: $w := (u - \inf u)^m \ge 0$ subharmonic for $m \gg 1$

Lemma. If u positive bounded solution of (1), then $u^{q+1}|\nabla u|^{p-2}$ bounded. Proof by a local Bernstein argument

Lemma + simple computation \implies (C)

(D) Combination of opposite monotonicity properties of spherical averages obtained from (A), (B), (C) forces $u \equiv \text{const.}$

BON ANNIVERSAIRE MARIE-FRANÇOISE ET LAURENT !!