Singularity formation in Nonlinear Evolution Equations

Van Tien NGUYEN

Workshop: Singular problems associated to quasilinear equations in celebration of Marie-Françoise Bidaut-Véron and Laurent Véron's 70th Birthday June 2020

1 Introduction

2 Constructive approach

3 Results

- Non-variational semilinear parabolic systems
- Harmonic map heat flow + Wave maps
- 2D Keller-Segel system

4 Conclusion & Perspectives

Image: A matching of the second se

글▶ 글

1 - Introduction

2

Introduction

Singularity formation in Nonlinear PDEs - Motivations

- Applied point of view:
 - Understanding the physical limitation of mathematical models.

Can the equations always do their job?

What additional conditions of physical effects to have a proper model.

- Singularities are physically relevant in natural sciences: concentration of laser beam in media (blowup in NLS), concentration of energy to smaller scales in fluid mechanics, concentration of density of bacteria population, etc.
- Mathematical point of view:
 - The long-time dynamic of solutions to PDEs is of significant interest. However, solutions may develop singularities in finite time.

How to extend solutions beyond their singularities?

- The study of singularity formation requests *new tools* to handle many delicate problems such as stability of a family of special solutions, classification of all possible asymptotic behaviors, etc.
- The numerical study of singularities is challenging.

-

э

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Introduction

Model examples

Reaction-Diffusion equations: Non-variational semilinear parabolic systems

$$\begin{cases} \partial_t u = \Delta u + v |v|^{p-1}, \\ \partial_t v = \mu \Delta v + u |u|^{q-1}, \end{cases} \quad \mu > 0, \quad p, q > 1. \end{cases}$$
(RD)

Application: thermal reaction, chemical reaction, population dynamics, ...

Geometric evolution equations: Harmonic heat flows and wave maps (σ -model): $\Phi(t) : \mathbb{R}^d \to \mathbb{S}^d$,

$$\partial_t \Phi = \Delta \Phi + |\nabla \Phi|^2 \Phi, \tag{HF}$$

$$\partial_t^2 \Phi = \Delta \Phi + \left(|\nabla \Phi|^2 - |\partial_t \Phi|^2 \right) \Phi.$$
 (WM)

Application: geometry, topology, simplified model for Einstein's equation of general relativity,...

Aggregation-Diffusion equations: the 2D Keller-Segel system

$$\begin{aligned} \partial_t u &= \Delta u - \nabla \cdot (u \nabla \Phi_u), \\ 0 &= \Delta \Phi_u + u, \end{aligned} \qquad \text{in } \mathbb{R}^2. \end{aligned} \tag{KS}$$

Application: biology (chemotaxis), interacting many-particle system,

V. T. Nguyen (NYUAD)

Framework of studying singularities in PDEs

2

Framework of studying singularities in PDEs

2

2 - Constructive approach

æ

Existence and Stability of blowup solutions.

• Obstructive argument (Virial law): Existence, no blowup dynamics.

Constructive approach: Existence + blowup dynamics.

- Kenig (Chicago), Rodnianski (Princeton), Merle (Cergy Pontoise & IHES), Raphaël (Cambridge), Martel (École Polytechnique), Collot (CNRS & Cergy Pontoise), ...
- del Pino (Bath), Musso (Bath), Wei (UBC), Davila (Bath), ...
- Krieger (EPFL), Schlag (Yale), Tataru (Berkeley), ...
- Herrero(UCM), Velázquez (Bonn), Zaag (CNRS & Paris Nord), ...

< ロ > < 同 > < 回 > < 回 > < 回 > <

Architecture of the constructive approach

Constructing a good approximate solution;

Reduction of the linearized problem to a finite dimensional one:

- Modulation technique: Kenig, Merle, Raphaël, Martel, … → existence/stability;
- Inner-outer gluing method: del Pino, Wei, Musso, Davila, ... ~ existence/stability;
- Iterative technique: Krieger, Schlag, Tataru, ... → existence;
- Spectral analysis ~> existence/stability + classification;

Solving the finite dimensional problem (if necessary).

- ...

3 - Results: The non-variational semilinear parabolic system

$$\begin{cases} \partial_t u = \Delta u + v |v|^{p-1}, & \mu > 0, \quad p, q > 1. \\ \partial_t v = \mu \Delta v + u |u|^{q-1}, & \end{cases}$$
(RD)

Mathematical analysis:

- No variational structure ~→ Energy-type methods break down;
- $\mu \neq 1 \rightsquigarrow$ breaks any symmetry of the problem;
- The linearized operator is not self-adjoint even for the case $\mu = 1$.

<u>Literature:</u> Andreucci-Herrero-Velázquez '97, Souplet '09, Zaag '98 & '01, Mahmoudi-Souplet-Tayachi '15, ...

Type I (ODE-type) blowup solutions for (RD) via spectral analysis

Type I blowup: " ∂_t dominates Δ " \rightarrow the blowup rate, unknown blowup profiles.

$$\left\{\begin{array}{ll} \bar{u}'=\bar{v}^p,\\ \bar{v}'=\bar{u}^q \end{array} \rightsquigarrow \left(\begin{matrix} \bar{u}\\ \bar{v}\end{matrix}\right)=\left(\begin{matrix} \Gamma(T-t)^{-\alpha}\\ \gamma(T-t)^{-\beta}\end{matrix}\right), \ \alpha=\frac{p+1}{pq-1}, \ \beta=\frac{q+1}{pq-1}.$$

Theorem 1 (Ghoul-Ng.-Zaag '18]).

■ $\exists (u_0, v_0) \in L^{\infty} \times L^{\infty}$ such that the solution (u, v) to System (**RD**) blows up in finite time *T* and admits the asymptotic dynamic

$$(T-t)^{\alpha}u(x,t) - \Phi_0(\xi) \to 0, \quad (T-t)^{\beta}v(x,t) - \Psi_0(\xi) \to 0$$

as $t \to T$ in L^{∞} , where

• (blowup variable) $\xi = \frac{x}{\sqrt{(T-t)|\ln(T-t)|}};$

• (profiles) $\Phi_0(\xi) = \Gamma(1+b|\xi|^2)^{-\alpha}, \quad \Psi_0(\xi) = \gamma(1+b|\xi|^2)^{-\beta}$ with b > 0.

The constructed solution is **stable** under perturbation of initial data.

<u>Remark</u>: - Other profiles are possible, but they are suspected to be unstable.

- The existence of Type II blowup solutions remains unknown.

< 口 > < 同 > < 三 > < 三 > 、

Constructive proof for (RD): approximate blowup solution

■ Self-similar variables:
$$y = \frac{x}{\sqrt{T-t}}$$
, $s = -\ln(T-t)$,
$$\begin{cases} \phi(y,s) = (T-t)^{\alpha}u(x,t) \\ \psi(y,s) = (T-t)^{\beta}v(x,t) \end{cases}$$
,
$$\begin{cases} \partial_s \phi + \frac{1}{2}y \cdot \nabla \phi + \alpha \phi = \Delta \phi + |\psi|^{p-1}\psi, \\ \partial_s \psi + \frac{1}{2}y \cdot \nabla \psi + \beta \psi = \mu \Delta \psi + |\phi|^{q-1}\phi, \end{cases}$$

Results

- Nonzero constant solutions: ($\Gamma,\gamma)$

$$\alpha \Gamma = \gamma^{p}, \quad \beta \gamma = \Gamma^{q}.$$

• Linearizing: $(\phi, \psi) = (\Gamma, \gamma) + (\bar{\phi}, \bar{\psi}),$

$$\partial_s \left(ar{\phi} \ ar{\psi}
ight) = \left(\mathcal{H} + \mathcal{M}
ight) \left(ar{\phi} \ ar{\psi}
ight) +$$
"nonlinear quadratic term";

where H + M has two positive eigenvalues 1 and $\frac{1}{2}$, a zero eigenvalue and an infinite many discrete negative spectrum.

Constructive proof for (RD): approximate blowup solution

■ Null mode is dominant:
$$\begin{pmatrix} \bar{\phi} \\ \bar{\psi} \end{pmatrix}(y,s) = \theta_2(s) \begin{pmatrix} f_2 \\ g_2 \end{pmatrix}, \quad \begin{pmatrix} f_2 \\ g_2 \end{pmatrix} = \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} y^2 + \begin{pmatrix} a_0 \\ b_0 \end{pmatrix},$$

 $\theta'_2 = \bar{c}\theta_2^2 + \mathcal{O}(|\theta_2|^3), \quad \bar{c} > 0, \quad \rightsquigarrow \theta_2 \sim -\frac{1}{\bar{c}s}.$

Results

Inner approximation: for $|y| \leq C$,

$$\begin{pmatrix} \phi \\ \psi \end{pmatrix}(y,s) \sim \begin{pmatrix} \Gamma \\ \gamma \end{pmatrix} - \frac{|y|^2}{s} \begin{pmatrix} a'_2 \\ b'_2 \end{pmatrix} \quad \rightsquigarrow \quad \left[\xi = \frac{|y|}{\sqrt{s}} = \frac{x}{\sqrt{(T-t)|\ln(T-t)|}} \right]$$

æ

Constructive proof for (RD): approximate blowup solution

Shape of profiles:

$$\binom{\phi}{\psi}(y,s) = \binom{\Phi_0}{\Psi_0}(\xi) + rac{1}{s}\binom{\Phi_1}{\Psi_1}(\xi) + \dots, \quad \xi = rac{|y|}{\sqrt{s}},$$

where

$$-\frac{\xi}{2}\Phi_{0}'-\alpha\Phi_{0}+\Psi_{0}^{p}=0, \quad -\frac{\xi}{2}\Psi_{0}'-\beta\Psi_{0}+\Phi_{0}^{q}=0.$$

- Solving ODEs: $\Phi_0(0) = \Gamma$, $\Psi_0(0) = \gamma$,

 $\Phi_0(\xi) = \Gamma(1+b|\xi|^2)^{-lpha}, \quad \Psi_0(\xi) = \gamma(1+b|\xi|^2)^{-eta}, \quad b \in \mathbb{R}.$

• Matching asymptotic expansions: \rightsquigarrow value of $b = b(p, q, \mu) > 0$.

イロト イ団ト イヨト イヨト 二日

Constructive proof for (RD): Control of the remainder

Results

• Linearized problem: $(\phi, \psi) = (\Phi_0, \Psi_0) + (\Lambda, \Upsilon)$,

$$\partial_{s} \begin{pmatrix} \Lambda \\ \Upsilon \end{pmatrix} = \left(\mathcal{H} + \mathcal{M} + \mathcal{V} \right) \begin{pmatrix} \Lambda \\ \Upsilon \end{pmatrix} + \begin{pmatrix} R_{1} \\ R_{2} \end{pmatrix} + \text{"quadratic term"}. \tag{*}$$

• Constructing for (\star) a global in time solution (Λ, Υ) such that

 $\|\Lambda(s)\|_{L^\infty}+\|\Upsilon(s)\|_{L^\infty}\longrightarrow 0 \quad \text{as } s\to+\infty.$

イロト イ団ト イヨト イヨト 二日

Constructive proof for (RD): Control of the remainder

Spectral properties of the linear part: for $K \gg 1$,

- For $|y| \ge K\sqrt{s}$: $\mathcal{H} + \mathcal{M} + \mathcal{V}$ has a negative spectrum. \rightsquigarrow Control of $\binom{\Lambda}{\Upsilon}$ is simple.
- For |y| ≤ K√s: the potential V is regarded as a perturbation of H + M. We decompose

$$\begin{pmatrix} \Lambda \\ \Upsilon \end{pmatrix} = \sum_{n=0}^{2} \theta_n \begin{pmatrix} f_n \\ g_n \end{pmatrix} + \begin{pmatrix} \Lambda_- \\ \Upsilon_- \end{pmatrix},$$

where $\binom{\Lambda_{-}}{\Upsilon_{-}} = \Pi_{-} \binom{\Lambda}{\Upsilon}$ with Π_{-} being the projection on the subspace associated to the negative eigenvalues of $\mathcal{H} + \mathcal{M}$. $\rightsquigarrow \binom{\Lambda_{-}}{\Upsilon}$ is controllable to zero.

Constructive proof for (RD): finite dimensional reduction

Control of θ_2 is delicate: We need to refine the potential term $\mathcal{V} \begin{pmatrix} \Lambda \\ \Upsilon \end{pmatrix}$,

$$\frac{d\theta_2(s)}{ds} + \frac{2}{s}\theta_2(s) = \mathcal{O}\left(\frac{1}{s^3}\right) \quad \stackrel{\tau = \ln s}{\Longrightarrow} \quad \frac{d\theta_2(\tau)}{d\tau} = -2\theta_2(\tau) + \mathcal{O}\left(e^{-2\tau}\right),$$

which shows a negative eigenvalue $\rightsquigarrow \theta_2$ is controllable to zero.

Control θ_0 and θ_1 (reduction to a finite dimensional problem): Consider the initial data depending on $(d_0, d_1) \in \mathbb{R}^{1+d}$:

$$\binom{\Lambda}{\Upsilon}(y,s_0) = \frac{A}{s_0^2} \left[d_0 \binom{f_0}{g_0} + d_1 \binom{f_1}{g_1} \right] \chi(y,s_0).$$

 \implies A contradiction argument yields the existence a particular value $(d_0, d_1) \in \mathbb{R}^{1+d}$ such that $\theta_0(s)$ and $\theta_1(s)$ converge to zero as $s \to +\infty$.

Idea of the stability proof for (RD)

Idea of the stability proof: the stability directly follows from the existence proof.

Results

- Space-time translation invariance \rightsquigarrow control of θ_0, θ_1 ;
- Other directions are always controllable to zero.

Flexibility: The complex Ginzburg-Landau equation by [Nouali-Zaag '18, Masmoudi-Zaag '08], other nonlinearities by [Ghoul-Ng.-Zaag '18], ...

< ロト < 同ト < ヨト < ヨト

3 - Results: Harmonic heat flow & Wave maps

Results

$$\partial_t \Phi = \Delta \Phi + |\nabla \Phi|^2 \Phi, \tag{HF}$$

$$\partial_t^2 \Phi = \Delta \Phi + \left(|\nabla \Phi|^2 - |\partial_t \Phi|^2 \right) \Phi,$$
 (WM)

イロト イヨト イヨト イヨト

where $\Phi(t): \mathbb{R}^d \to \mathbb{S}^d$.

2

Harmonic map Heat Flow and Wave map problems

$\Phi(t): \mathbb{R}^d o \mathbb{S}^d$			
Harmonic heat flow (HF)	Wave Map (WM)		
$\partial_t \Phi = \Delta \Phi + abla \Phi ^2 \Phi$	$\partial_t^2 \Phi = \Delta \Phi + \left(abla \Phi ^2 - \partial_t \Phi ^2 ight) \Phi$		
$\Phi(x,t) = \left[\cos\left(u(x ,t)\right), \frac{x}{ x } \sin\left(u(x ,t)\right) \right]^T$			
$\partial_t u = \Delta_{d,r} u - \frac{(d-1)}{2r^2} \sin(2u)$	$\partial_t^2 u = \Delta_{d,r} u - \frac{(d-1)}{2r^2} \sin(2u)$		
$u_{\lambda}(r,t) = u\left(rac{r}{\lambda},rac{t}{\lambda^2} ight)$	$u_{\lambda}(r,t) = u\left(rac{r}{\lambda},rac{t}{\lambda} ight)$		
LW-P in H^s with $s > \frac{d}{2}$ [Ref 1]	LW-P in $H^s imes H^{s-1}$ with $s > rac{d}{2}$ [Ref 2]		
Develop singularities [Ref 3]			

Results

[Ref 1]: [Struwe, JDG'88], [Wang, ARMA'08]

- [Ref 2]: [Klainerman-Selberg, CPDE'97], [Tataru, CPDE'98], [Shatah-Struwe, IMRN'02]
- [Ref 3]: [Coron-Ghidaglia, CRASP'89], [Chen-Ding, IM'90], [Chang-Ding-Ye, JDG'92], [Shatah, CPAM'88].

Type I and Type II singularities

Harmonic heat flow (HF)	Wave Map (WM)			
$\limsup_{t \to T} \sqrt{T-t} \ \nabla u(t)\ _{L^{\infty}} < \infty$	$\limsup_{t\to T} (T-t) \ \nabla u(t)\ _{L^\infty} < \infty$			
Otherwise, the singularity (or blowup) is of Type II				
$d \geq 2$: Type I $pprox \phi\left(rac{r}{\sqrt{T-t}} ight)$ [Ref 1]	$d=2$: Blowup $ ot\approx \varphi\left(rac{r}{T-t} ight)$ [Ref 2]			
$3\leq d\leq 6:$ $\exists \phi_n, \ \ \mathcal{Z}_{(0,\infty)}(\phi_n-rac{\pi}{2})=n \ \ [ext{Ref 3}]$	$3 \leq d \leq 6: \ \exists arphi_n, \ \ \mathcal{Z}_{(0,1)}(arphi'_n) = n \ [ext{Ref 4}]$			
$d\geq$ 7: No self-similar $ ightarrow$ No Type I [Ref 5]	$d \geq 3: arphi(y) = 2 \arctan\left(rac{y}{\sqrt{d-2}} ight) \;\; [ext{Ref 6}]$			

Results

[Ref 1]: [Struwe, JDG'88]; [Ref 2]: [Struwe, CPAM'03]; [Ref 3]: [Fan, SCSA'99]; [Ref 4]: [Biernat-Bizoń-Maliborski, Nonl'17]; [Ref 5]: [Bizoń-Wasserman, IMRN'15]; [Ref 6]: [Bizon-Biernat, CMP'15].

(Non)Existence of Type I and Type II singularities

Dimension	Heat flow	Wave Map	Туре
d = 2	NO	NO	I
	YES	YES	П
$3 \le d \le 6$	YES	YES	I
	Unknown?	Unknown?	П
$d \ge 7$	NO	YES	I
	YES	YES	П

- [Topping, MZ'04]; [Struwe, CPAM'03];

- [Van de Berg-Hulshof-King, SIAM'03], [Schweyer-Raphael, CPAM'13 -APDE'14], [Davila-del Pino-Wei, IM'19]; [Krieger-Schlag-Tataru, IM'08], [Carstea, CMP'10], [Rodniaski-Sterbenz, AM'10], [Raphael-Rodnianski, IHES'12];

- [Fan, SCSA'99]; [Bizon-Biernat, CMP'15], [Biernat-Bizon-Maliborski, Nonl'17];
- [Bizon-Wasserman, IMRN'15]; [Bizon-Biernat, CMP'15];

Energy identities and the stationary solution

Energy identities:

$$\begin{split} \mathcal{E}_{(HF)}(u) &= \int_{\mathbb{R}^d} \left(|\partial_r u|^2 + \frac{(d-1)}{r^2} \sin^2(u) \right), \quad \frac{d}{dt} \mathcal{E}_{(HF)}(u) = -2 \int_{\mathbb{R}^d} |\partial_t u|^2 \leq 0. \\ \mathcal{E}_{(WM)}(u, \partial_t u) &= \int_{\mathbb{R}^d} \left(|\partial_t u|^2 + |\partial_r u|^2 + \frac{(d-1)}{r^2} \sin^2(u) \right), \quad \frac{d}{dt} \mathcal{E}_{(WM)}(u, \partial_t u) = 0. \\ \hline \mathcal{E}_{(HF)}(u_\lambda) &= \lambda^{d-2} \mathcal{E}_{(HF)}(u) \quad \text{and} \quad \mathcal{E}_{(WM)}(u_\lambda, \partial_t u_\lambda) = \lambda^{d-2} \mathcal{E}_{(WM)}(u, \partial_t u). \\ &\implies d = 2 \text{ energy-critical}, \ d \geq 3 \text{ energy-supercritical}. \end{split}$$

• Stationary solution: $Q(r) = 2 \arctan(r)$ for d = 2;

$$d\geq 7, \quad \mathcal{Q}(r)\sim rac{\pi}{2}-rac{a_0}{r^\gamma} \quad ext{for } r\gg 1,$$

with $a_0 > 0$, $\gamma = \frac{1}{2}(d - 2 - \sqrt{d^2 - 8d + 8}) \in (1, 2].$

æ

Type II singularity for (**HF**)

Type II blowup: " Δ dominates ∂_t " \rightsquigarrow profile, **unknown blowup rates**.

Theorem 2 (Ghoul-Ibrahim-Ng. '19]).

• Let $d \geq 7$, $\ell \in \mathbb{N}^*$ with $2\ell > \gamma$ and $\mathfrak{s} \in \mathbb{N}$ with $\mathfrak{s} = \mathfrak{s}(\ell) \to +\infty$ as $\ell \to +\infty$. There exists a smooth radially symmetric initial data $u_0 \in \mathcal{U} \subset H^{\mathfrak{s}}$ such that the solution to (HF) is of the form

$$u(r,t) = Q\left(\frac{r}{\lambda(t)}\right) + q\left(\frac{r}{\lambda(t)},t\right),$$

where

$$\lambda(t)\sim c(u_0)(T-t)^{rac{\ell}{\gamma}}\ll (T-t)^{rac{1}{2}} \ \ ext{as} \ \ t o T,$$

and $\lim_{t\to T} ||q(t)||_{\dot{H}^{\sigma}} = 0$, $\forall \sigma \in (d/2, \mathfrak{s}]$. The constructed solution is $(\ell - 1)$ codimension stable.

<u>Remark:</u> Type II blowup for d = 2 constructed by [Raphäel-Schweyer APDE'14 & CPAM'13], and [Davila-del Pino-Wei IM'19].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Type II Singularity for (WM)

Type II blowup: " Δ dominates ∂_t^2 " \rightsquigarrow profile, **unknown blowup rates**.

Theorem 3 (Ghoul-Ibrahim-Ng. '19]).

■ Let $d \ge 7$, $\ell \in \mathbb{N}^*$ with $\ell > \gamma$ and $\mathfrak{s} \in \mathbb{N}$ with $\mathfrak{s} \gg 1$. There exists $(u_0, u_1) \in H^{\mathfrak{s}} \times H^{\mathfrak{s}-1}$ such that the solution to (**WM**) is of the form

$$u(r,t) = Q\left(\frac{r}{\lambda(t)}\right) + \varepsilon\left(\frac{r}{\lambda(t)},t\right),$$

where

 $\lambda(t)\sim c(u_0)(\mathcal{T}-t)^{rac{\ell}{\gamma}},~~$ ("Type II blowup")

and $\lim_{t\to T} \|\vec{\varepsilon}(t)\|_{\dot{H}^{\sigma}\times\dot{H}^{\sigma-1}} = 0$ for all $\sigma \in (d/2, \mathfrak{s}]$.

• The constructed solution is $(\ell - 1)$ codimension stable.

<u>Remark:</u> - Type I blowup: $u(r, t) = 2 \arctan\left(\frac{r}{(\tau-t)\sqrt{d-2}}\right)$ for $d \ge 3$, [Bizon-Biernat '15]. Type II blowup for d = 2: [Krieger-Schlag-Tataru IM'08, Raphäel-Rodnianski IHES'12]. (*)

・ロト ・ 同ト ・ ヨト ・ ヨト

Constructive proof for (WM): computing an approximate solution

■ Renormalized variables:
$$\vec{w}(y,s) = {u_1 \choose \lambda u_2}(r,t), \quad y = \frac{r}{\lambda(t)}, \quad \frac{ds}{dt} = \frac{1}{\lambda(t)},$$
$$\boxed{\partial_s \vec{w} + b_1 \Lambda \vec{w} = \vec{F}(\vec{w}),}$$

$$b_1 = -\frac{\lambda_s}{\lambda}, \quad \Lambda \vec{w} = \begin{pmatrix} y \partial_y w_1 \\ w_2 + y \partial_y w_2 \end{pmatrix}, \quad \vec{F}(\vec{u}) = \begin{pmatrix} u_2 \\ \Delta_{r,d} u_1 - \frac{(d-1)}{2r^2} \sin(2u_1) \end{pmatrix}.$$

The approximate solution: Let $L \gg 1$, $b = (b_1, \dots, b_L)$, $\vec{Q} = \begin{pmatrix} Q \\ 0 \end{pmatrix}$,

$$\vec{Q}_{b(s)}(y) = \vec{Q}(y) + \sum_{i=1}^{L} b_i \vec{T}_i(y) + \sum_{i=2}^{L+2} \vec{S}_i(y,b),$$

where

•
$$\mathscr{H} = \begin{pmatrix} 0 & -1\\ \mathscr{L} & 0 \end{pmatrix}$$
, $\mathscr{L} = -\Delta_{r,d} + \frac{d-1}{r^2}\cos(2Q)$;
• $\mathscr{H}\vec{T}_{k+1} = -\vec{T}_k$, $\vec{T}_0 = \Lambda \vec{Q}$, $\rightsquigarrow |\vec{T}_k(y)| \sim c_k y^{k-\gamma}$ for $y \gg 1$.

 $\implies \vec{S}_i$ has a better behavior than \vec{T}_i in the blowup zone $\frac{1}{\sqrt{b_1}}$.

V. T. Nguyen (NYUAD)

Singularities in Nonlinear PDEs

Constructive proof for (**WM**): formal law of λ

The leading dynamical system driving the law:

$$(b_k)_s + (k - \gamma)b_1b_k - b_{k+1} = 0$$
 for $1 \le k \le L$ $(b_{L+1} = 0)$ (Sys-b)

• The explicit solution: Fix $\ell \in \mathbb{N}^*$ with $\ell > \gamma$,

$$egin{aligned} ar{b}_k \Big|_{1 \leq k \leq \ell} &= rac{c_k}{s^k}, \quad ar{b}_k \Big|_{k \geq \ell+1} = 0, \quad c_1 = rac{\ell}{\ell-\gamma}. \ \ egin{aligned} egin{aligned} b_1 &\sim -rac{\lambda_s}{\lambda} &= -\lambda_t & \rightsquigarrow & \lambda(t) \sim (T-t)^{rac{\ell}{\gamma}}. \end{aligned}$$

• Linearizing (Sys-b) around \bar{b} displays $(\ell - 1)$ unstable directions:

$$b_{k} = \bar{b}_{k} + \frac{\beta_{k}}{s^{k}} \Longrightarrow s\beta_{s} = A_{\ell}\beta + \mathcal{O}(|\beta|^{2}) \stackrel{(\tau = \ln s)}{\Longrightarrow} \beta_{\tau} = A_{\ell}\beta + \mathcal{O}(|\beta|^{2}),$$
$$A_{\ell} = P_{\ell}^{-1}D_{\ell}P_{\ell}, \quad D_{\ell} = \operatorname{diag}\left\{-1, \frac{2\gamma}{\ell - \gamma}, \cdots, \frac{\ell\gamma}{\ell - \gamma}\right\}.$$

æ

< ロ > < 同 > < 回 > < 回 > < 回 > <

Constructive proof for (WM): modulation equations

• The linearized problem: $\vec{w}(y,s) = \vec{Q}_b(y) + \vec{q}(y,s)$,

$$\partial_s \vec{q} + b_1 \Lambda \vec{q} + \mathscr{H} \vec{q} = -\vec{E}_b + \dot{\mathsf{Mod}} + L(\vec{q}) + N(\vec{q}),$$

where
$$\vec{\mathsf{Mod}} \approx \sum_{k=1}^{L} \left[(b_k)_s + (k-\gamma)b_1b_k - b_{k+1} \right] \vec{\mathcal{T}}_k.$$

The modulation equations: Projecting onto suitable directions yields

$$\sum_{k=1}^L |(b_k)_s + (k-\gamma)b_1b_k - b_{k+1}| \lesssim \sqrt{\mathcal{E}_{\Bbbk}} + b_1^{L+1+
u}$$

where $\Bbbk = L + 1 + \hbar, \ \hbar = \hbar(d) \ge 0$, $\nu \in (0, 1)$,

$$\mathcal{E}_{\Bbbk} = \int_{\mathbb{R}^d} \left(q_1 \mathscr{L}^{\Bbbk} q_1 + q_2 \mathscr{L}^{\Bbbk-1} q_2
ight) \gtrsim \|ec{q}\|_{\dot{H}^k imes \dot{H}^{\Bbbk-1}}^2.$$

under suitable orthogonality conditions.

Constructive proof for (WM): finite dimensional reduction

Control \mathcal{E}_{\Bbbk} : Local Morawetz control + Coercivity of \mathscr{L}^{\Bbbk} ,

$$\frac{d}{ds}\left(\frac{\mathcal{E}_\Bbbk}{\lambda^{2\Bbbk-d}}\right)\lesssim \frac{b_1}{\lambda^{2\Bbbk-d}}\left(b_1^{L+\nu}\sqrt{\mathcal{E}_\Bbbk}+b_1^{2L+2\nu}\right)\implies \mathcal{E}_\Bbbk(s)\lesssim b_1^{2L+2\nu}.$$

• A technical issue (sharp control for b_L):

$$(b_L)_s + (L-\gamma)b_Lb_1 + rac{d}{ds}\left(rac{\left(\mathscr{L}^Lec{q},\chi_{B_0}\wedgeec{Q}
ight)}{\left(\wedgeec{Q},\chi_{B_0}\wedgeec{Q}
ight)}
ight) \Bigg| \lesssim rac{\sqrt{\mathcal{E}_\Bbbk}}{B_0^{2
u}} + b_1^{L+1+
u}.$$

■ Finite dimensional reduction: Control unstable directions $(P_{\ell}\beta)_k$ for $2 \le k \le \ell$ by a contradiction argument. \rightsquigarrow The constructed solution is $(\ell - 1)$ -codimension stable.

3 - Results: The 2D Keller-Segel system

$$\begin{cases} \partial_t u = \Delta u - \nabla \cdot (u \nabla \Phi_u), & \\ 0 = \Delta \Phi_u + u. & \end{cases} \text{ in } \mathbb{R}^2. \end{cases}$$

Modeling features:

- Describing the *chemotaxis* in biology, [Patlak '53], [Keller-Segel '70], [Nanjundiah '73], [Hillen-Painter '09]; interacting stochastic many-particles system, [Othmer-Stevens '90], [Stevens '00]), [Chavanis '08], [Hillen-Painter '08]; as a diffusion limit of a kinetic model [Chalub-Markowich-Perthame-Schmeiser '04];
- Competition between dispersion of cells (diffusion) and aggregation;
- Rich model from mathematical point of view, [Horstman '03 & '04];

Basis features

$$\partial_t u = \nabla \cdot (\nabla u - u \nabla \Phi_u)$$

The 2D Keller-Segel equation:

$$\partial_t u = \nabla \cdot \left(u \nabla (\ln u - \Phi_u) \right), \quad \Phi_u = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x - y| u(y) dy.$$

- mass conservation:
$$M = \int_{\mathbb{R}^2} u_0(x) dx = \int_{\mathbb{R}^2} u(x,t) dx;$$

- L^1 -scaling invariance: $\forall \gamma > 0$, $u_{\gamma}(x, t) = \frac{1}{\gamma^2} u \left(\frac{x}{\gamma}, \frac{t}{\gamma^2} \right)$, $\int_{\mathbb{T}^2} u_{\gamma} = \int_{\mathbb{T}^2} u;$

- free energy functional: $\mathcal{F}(u) = \int_{\mathbb{R}^2} u \Big(\ln u \frac{1}{2} \Phi_u \Big), \quad \frac{d}{dt} \mathcal{F}(u) \leq 0;$
- stationary solution: $Q_{\gamma,a}(x) = rac{1}{\gamma^2} Qigg(rac{x-a}{\gamma}ig)$, where

$$Q(x) = rac{8}{(1+|x|^2)^2}, \quad \int_{\mathbb{R}^2} Q = 8\pi.$$

	Results	2D Keller-Segel system
Diffusion vs. Aggregation	$\partial_t u = \nabla \cdot (\nabla u - u \nabla \Phi_u)$	

- If $M < 8\pi$: global existence + spreading, [Blanchet-Dolbeault-Perthame '06]. The proof mainly relies on the free energy functional $\mathcal{F}(u)$ and the Log HLS inequality.
- If M = 8π and ∫_{ℝ²} |x|²u < +∞: blowup in infinite time, [Blanchet-Carrillo-Masmoudi '08]. Constructive approaches by [Ghoul-Masmoudi '18] (radial), [Davila-del Pino-Dolbeault-Musso-Wei '20] (full nonradial):

 $\|u(t)\|_{L^{\infty}} \sim c_0 \log t$ as $t \to +\infty$.

 If M > 8π: blowup in finite time, [Childress-Percus '81], [Jager-Luckhaus '92], [Nagai-Senba '98], [Senba-Suzuki '03]:

(virial identity)
$$\frac{d}{dt}\int_{\mathbb{R}^2} |x|^2 u(x,t) dx = \frac{M}{2\pi}(8\pi - M).$$

Constructive approaches in the radial setting by [Herrero-Velázquez '96], [Raphaël-Schweyer '14]:

$$\|u(t)\|_{L^\infty} \sim C_0 rac{e^{\sqrt{2|\log(T-t)|}}}{T-t} \quad ext{as} \quad t o T.$$

ヘロト ヘヨト ヘヨト

A numerical simulation of finite time singularity

A numerical simulation of blowup for the 2D Keller-Segel system

 $\partial_t u = \Delta u - \nabla (u \nabla \Phi_u), \quad -\Delta \Phi_u = u.$

æ

・ロト ・四ト ・ヨト ・ヨト

Finite time blowup for the 2DKS

$$\partial_t u = \nabla \cdot (\nabla u - u \nabla \Phi_u)$$

- Type I does not exist, [Senba-Suzuki '11]: $\partial_t u = \Delta u \nabla u \cdot \nabla \Phi_u + u^2$.
- Type II: " Δ dominates ∂_t " \rightsquigarrow profile, **unknown blowup rates**.

Theorem 4 ([Collot-Ghoul-Masmoudi-Ng., 2020).

• There exists a set $\mathcal{O} \subset L^1 \cap \mathcal{E}$, where $\mathcal{E} = \{u : \sum_{k=0}^2 \|\langle x \rangle^k \nabla^k u\|_{L^2} < +\infty\}$, of initial data u_0 (not necessary radially symmetric) such that

$$u(x,t) = rac{1}{\lambda^2(t)} \left[Q\left(rac{x-a(t)}{\lambda(t)}
ight) + arepsilon(x,t)
ight],$$

where $a(t) \to \bar{a} \in \mathbb{R}^2$ and $\sum_{k=0}^{1} \|\langle y \rangle^k \nabla^k \varepsilon(t) \|_{L^2} \to 0$ as $t \to T$, and λ is given by either

$$\lambda(t) \sim 2e^{-\frac{\gamma+2}{2}}\sqrt{T-t} \exp\left(-\frac{\sqrt{|\log(T-t)|}}{\sqrt{2}}\right),$$
 (C1)

or

$$\lambda(t) \sim c(u_0)(T-t)^{\frac{\ell}{2}} |\log(T-t)|^{-\frac{\ell+1}{2(\ell-1)}}, \quad \ell \geq 2 \text{ integer.}$$
 (C2)

• Case (C1) is stable and Case (C2) is $(\ell - 1)$ -codimension stable.

2D Keller-Segel system

Comments

$$\partial_t u = \nabla \cdot (\nabla u - u \nabla \Phi_u)$$

Fig 1: The form of single-point finite time blowup solutions.

æ

2D Keller-Segel system

Comments

• Existing results: formal level (numerical observation, formal matching asymptotic expansions) and in the radial setting to remove the nonlocal structure difficulty, i.e. u(x, t) = u(r, t),

$$m(r) = \int_0^r u(\zeta)\zeta d\zeta, \quad u(r) = \frac{\partial_r m(r)}{r}, \quad \partial_r \Phi_u(r) = -\frac{m(r)}{r}, \quad r = |x|$$

$$\partial_t u = \frac{1}{r} \partial_r \left(r \partial_r u - r u \partial_r \Phi_u \right) \quad \Longrightarrow \quad \boxed{\partial_t m = \partial_r^2 m - \frac{\partial_r m}{r} + \frac{\partial_r m^2}{2r}}$$

Refs: [Herrero-Velazquez '96 & '97], [Velazquez '02], [Schweyer-Raphael '14], [Dyachenko-Lushnikov-Vladimirova '13], ...

■ The new result: full nonradial setting, refined description of the stable blowup mechanism, new (unstable) blowup dynamics, a nature approach via spectral analysis/robust energy-type method.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Strategy of the new constructive proof

$$\partial_t u = \nabla \cdot (\nabla u - u \nabla \Phi_u)$$

Self-similar variables:

$$u(x,t) = \frac{1}{T-t}w(z,\tau), \quad z = \frac{x}{\sqrt{T-t}}, \quad \tau = -\log(T-t),$$
$$\partial_{\tau}w = \nabla \cdot (\nabla w - w \nabla \Phi_w) - \frac{1}{2} \nabla \cdot (zw)$$

• Linearized problem: $w(z, \tau) = Q_{\nu}(z) + \eta(z, \tau)$, where $Q_{\nu}(z) = \frac{1}{\nu^2}Q(\frac{z}{\nu})$ and η solves

$$\partial_{\tau}\eta = \mathscr{L}^{\nu}\eta + \left(\frac{\nu_{\tau}}{\nu} - \frac{1}{2}\right)\nabla\cdot(zQ_{\nu}) - \nabla\cdot\left(\eta\Phi_{\eta}\right), \qquad \nu \to 0 \text{ unknown,}$$

$$\mathscr{L}^{\nu}\eta = \underbrace{\nabla \cdot \left(\nabla \eta - \eta \nabla \Phi_{Q_{\nu}} - Q_{\nu} \nabla \Phi_{\eta}\right)}_{\equiv \mathscr{L}^{\nu}_{0} \eta} - \frac{1}{2} \nabla \cdot (z\eta)$$

- Structure of \mathscr{L}_0^{ν} :

$$\mathscr{L}_0^
u\eta =
abla \cdot ig(\mathcal{Q}_
u
abla \mathscr{M}^
u\eta ig), \quad \mathscr{M}^
u\eta = rac{\eta}{\mathcal{Q}_
u} - \Phi_\eta.$$

 $(\mathscr{M}^{\nu} \text{ comes from the linearization of the energy functional } \mathcal{F}_{\Box} \text{ around } Q_{\nu}).$

V. T. Nguyen (NYUAD)

Properties of the linearized operator $\mathscr{L}^{\nu} = \nabla . (Q_{\nu} \nabla \mathscr{M}^{\nu} \cdot) - \frac{1}{2} \nabla . (z \cdot)$

In the radial sector, the (nonlocal) operator \mathscr{L}^{ν} becomes a local operator through the partial mass setting, i.e. $\zeta = |z|$, $m_f(\zeta) = \int_0^{\zeta} f(r) r dr$,

$$\mathscr{L}^{\nu}f = \frac{1}{\zeta}\partial_{\zeta}\left(\mathscr{A}^{\nu}m_{f}\right), \qquad \mathscr{A}^{\nu}\phi = \zeta\partial_{\zeta}\left(\frac{\partial_{\zeta}\phi}{\zeta}\right) - \frac{\partial_{\zeta}(m_{Q_{\nu}}\phi)}{\zeta} - \frac{1}{2}\zeta\partial_{\zeta}\phi = \mathscr{A}_{0}^{\nu}\phi - \frac{1}{2}\zeta\partial_{\zeta}\phi.$$

• [Collot-Ghoul-Masmoudi-Ng., '20]: \mathscr{A}^{ν} is self-adjoint in $L^{2}_{\frac{\omega_{\nu}}{\zeta}}$, its eigenvalues are

$$\operatorname{spec}(\mathscr{A}^{\nu}) = \left\{ \alpha_{n,\nu} = 1 - n + \frac{1}{2 \ln \nu} + \mathcal{O}\left(\frac{1}{|\ln \nu|^2}\right), \ n \in \mathbb{N} \right\} \quad \omega_{\nu} = \frac{e^{-\frac{\zeta^2}{4}}}{Q_{\nu}}.$$

The eigenfunction $\phi_{n,\nu}$ solving $\mathscr{A}^{\nu}\phi_{n,\nu}=\alpha_{n,\nu}\phi_{n,\nu}$ is defined by

$$\phi_{n,\nu}(\zeta) = \sum_{j=0}^n c_{n,j}\nu^{2j-2}T_j\left(\frac{\zeta}{\nu}\right) + lot, \quad \mathscr{A}_0^{\nu}T_{j+1} = -T_j, \quad T_0 = \xi\partial_{\xi}m_Q.$$

Proof: Schrödinger type operator \rightsquigarrow discreteness, Sturm comparison principle \rightsquigarrow uniqueness, matching asymptotic expansions + implicit function theorem \rightsquigarrow $(\alpha_{n,\nu}, \phi_{n,\nu})$.

Properties of the linearized operator $\mathscr{L}^{\nu} = \nabla . (Q_{\nu} \nabla \mathscr{M}^{\nu} \cdot) - \frac{1}{2} \nabla . (z \cdot)$

First expression:

$$\mathscr{L}^{\nu}f = \mathscr{L}_{0}^{\nu}f - rac{1}{2}
abla.(zf) \quad ext{with} \quad \mathscr{L}_{0}^{\nu}f =
abla \cdot (Q_{
u}
abla.\mathscr{M}^{\nu}f) \ ext{and} \ \mathscr{M}^{\nu}f = rac{f}{Q_{
u}} - \Phi_{f},$$

The operator \mathscr{L}_0^ν is self-adjoint in L^2 with respect to the inner product

$$\langle f,g
angle_{\mathscr{M}^{
u}} = \int_{\mathbb{R}^2} f \mathscr{M}^{
u} g \, dz, \quad \text{(positivity)} \quad \langle f,f
angle_{\mathscr{M}^{
u}} \sim \int_{\mathbb{R}^2} \frac{f^2}{Q_{
u}} \, dz.$$

Second expression:

$$\mathscr{L}^{\nu}f = \mathscr{H}^{\nu}f - \nabla Q_{\nu} \cdot \nabla \Phi_{f} \quad \text{with} \quad \mathscr{H}^{\nu}f = \frac{1}{\omega_{\nu}} \nabla \cdot \left(\omega_{\nu} \nabla f\right) + (2Q_{\nu} - 2)f.$$

The operator \mathscr{H}^{ν} is self-adjoint in $L^2_{\omega_{\nu}}$ with $\omega_{\nu} = \frac{e^{-\frac{|z|^2}{4}}}{Q_{\nu}}$.

The well-adapted scalar product and coercivity:

$$\int_{\mathbb{R}^2} \mathscr{L}^{\nu}(f\sqrt{\rho}) \mathscr{M}^{\nu}(f\sqrt{\rho}) \leq -c \int_{\mathbb{R}^2} \frac{|\nabla f|^2}{Q_{\nu}} \rho dz \qquad \rho = e^{-\frac{|z|^2}{4}}.$$

2D Keller-Segel system

0

< 日 > < 同 > < 三 > < 三 >

Approximate solution

$$\partial_{\tau}w = \nabla \cdot \left(\nabla w - w \nabla \Phi_{w}\right) - \frac{1}{2} \nabla \cdot (zw)$$

 \blacksquare The approximate solution: for $\ell \geq 1$ integer,

$$w^{app}(z,\tau) = Q_{\nu}(z) + \underbrace{a_{\ell}(\tau) \left[\varphi_{\ell,\nu}(|z|) - \varphi_{0,\nu}(|z|) \right]}_{\text{modification driving the law of blowup}} \quad \text{with} \quad \varphi_{n,\nu} = \frac{\partial_{\zeta} \phi_{n,\nu}}{\zeta}.$$

A suitable projection onto $\varphi_{\ell,\nu}$ and compatibility condition, we obtain the leading ODE

$$(\ell = 1, \text{ stable}) \quad \frac{\nu_{\tau}}{\nu} = \frac{1}{4 \ln \nu} + \frac{e_2}{|\ln \nu|^2} \implies \qquad \nu = C_0 e^{-\sqrt{\frac{\tau}{2}}}$$
$$\ell \ge 2, \text{ unstable}) \quad \frac{\nu_{\tau}}{\nu} = \frac{1-\ell}{2} + \frac{\ell+1}{4 \ln \nu} \implies \qquad \nu = C_\ell e^{\frac{(1-\ell)\tau}{2}\tau \frac{1+\ell}{2(1-\ell)}}$$

• The linearized equation: $\varepsilon = w - w^{app}$,

$$\partial_{\tau}\varepsilon = \mathscr{L}^{\nu}\varepsilon + \text{Error} + \text{SmallLinear} + \text{Nonlinear}.$$

(

æ

Control of the remainder

$$\partial_{\tau}\varepsilon = \mathscr{L}^{\nu}\varepsilon + \textit{Error} + \cdots$$

Decomposition:
$$\varepsilon = \varepsilon^0 + \varepsilon^{\perp}$$
 , $\varepsilon^0(\zeta) = rac{\partial_{\zeta} m_{\varepsilon}}{\zeta}$,

$$\partial_{\tau} m_{\varepsilon} = \mathscr{A}^{\nu} m_{\varepsilon} + m_{E} + \cdots, \quad \partial_{\tau} \varepsilon^{\perp} = \mathscr{L}^{\nu} \varepsilon^{\perp} + \cdots.$$

■ For the radial part, we use the spectral gap

 \blacksquare For the nonradial part, we use the coerivity of \mathscr{L}^{ν} and the well-adapted norm

$$\begin{split} \|\varepsilon^{\perp}\|_{0}^{2} &= \int_{\mathbb{R}^{2}} \varepsilon^{\perp} \sqrt{\rho} \mathscr{M}^{\nu} (\varepsilon^{\perp} \sqrt{\rho}) \ dz \sim \int_{\mathbb{R}^{2}} \frac{|\varepsilon^{\perp}|^{2}}{Q_{\nu}} \rho \ dz. \\ \implies \boxed{\frac{d}{d\tau} \|\varepsilon^{\perp}\|_{0}^{2} \leq -c \|\varepsilon^{\perp}\|_{0}^{2} + C e^{-2\kappa\tau}} \quad 0 < \kappa \ll 1. \end{split}$$

Nonlinear analysis: ...

V. T. Nguyen (NYUAD)

< 17 × <

æ

4 - Conclusion & Perspectives

æ

Conclusion and Perspectives

Existence/Stability of blowup solutions via constructive approaches:

- Spectral analysis: (non)-variational problems whose spectrum of the linearized operator is fairly understood. → Classification of blowup dynamics.
- Energy methods: *robust* for various problems (parabolic/hyperbolic) with variational structures, but gives no answers to the classification question.
- A combination of the two methods is effective for complicated problems.

• Adaptability and Flexibility for studying singularity formation, asymptotic stability, dynamical classification, stability and instability of steady states, long-time asymptotic, ...

Interesting problems:

- multiple-collapse phenomena/ interaction-collision of multi-solitons;
- classification of blowup dynamics (rates & profiles);

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Multiple collapse phenomena

A multiple-collapse phenomenon in the 2D Keller-Segel system

æ