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1 - Introduction
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Introduction

Singularity formation in Nonlinear PDEs - Motivations

m Applied point of view:

- Understanding the physical limitation of mathematical models.
Can the equations always do their job?

What additional conditions of physical effects to have a proper model.

- Singularities are physically relevant in natural sciences: concentration of laser beam
in media (blowup in NLS), concentration of energy to smaller scales in fluid
mechanics, concentration of density of bacteria population, etc.

m Mathematical point of view:

- The long-time dynamic of solutions to PDEs is of significant interest. However,
solutions may develop singularities in finite time.

How to extend solutions beyond their singularities?

- The study of singularity formation requests new tools to handle many delicate
problems such as stability of a family of special solutions, classification of all possible
asymptotic behaviors , etc.

- The numerical study of singularities is challenging.
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Introduction

Model examples
m Reaction-Diffusion equations: Non-variational semilinear parabolic systems

O = Au+v|v|P
w>0, p,g>1 (RD)
v = pAv + ulu|"t,
Application: thermal reaction, chemical reaction, population dynamics, ...

m Geometric evolution equations: Harmonic heat flows and wave maps (o-model):
o(t) : RY — 87,

0 ® = Ad + |[VO [P, (HF)
80 = Ad + (VO] - [5:0%) b. (WM)

Application: geometry, topology, simplified model for Einstein's equation of general
relativity,...

m Aggregation-Diffusion equations: the 2D Keller-Segel system

Oru = Au—V - (uVP,), )
in R”. (KS)
0=Ad, +u,

Application: biology (chemotaxis), interacting many-particle system, ...
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Introduction

Framework of studying singularities in PDEs
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Introduction

Framework of studying singularities in PDEs
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Constructive approach

2 - Constructive approach
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Underlying problem

Existence and Stability of blowup solutions.

m Obstructive argument (Virial law): Existence, no blowup dynamics.

m Constructive approach: Existence + blowup dynamics.

- Kenig (Chicago), Rodnianski (Princeton), Merle (Cergy Pontoise & IHES), Raphaél
(Cambridge), Martel (Ecole Polytechnique), Collot (CNRS & Cergy Pontoise), ...

- del Pino (Bath), Musso (Bath), Wei (UBC), Davila (Bath), ...
- Krieger (EPFL), Schlag (Yale), Tataru (Berkeley), ...
- Herrero(UCM), Veldzquez (Bonn), Zaag (CNRS & Paris Nord), ...
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Constructive approach

Architecture of the constructive approach

m Constructing a good approximate solution;

m Reduction of the linearized problem to a finite dimensional one:
- Modulation technique: Kenig, Merle, Raphaél, Martel, ... ~~ existence/stability;
- Inner-outer gluing method: del Pino, Wei, Musso, Davila, ... ~~ existence/stability;
- lterative technique: Krieger, Schlag, Tataru, ... ~ existence;

- Spectral analysis ~ existence/stability + classification;

m Solving the finite dimensional problem (if necessary).
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Results Non-variational semilinear parabolic systems

3 - Results: The non-variational semilinear parabolic system

Ot = Au+ v|v\p71,
p>0, pg>1 (RD)
v = pAv + ulu|" !,

Mathematical analysis:

m No variational structure ~» Energy-type methods break down;
m p # 1 ~~ breaks any symmetry of the problem;
m The linearized operator is not self-adjoint even for the case p = 1.

Literature: Andreucci-Herrero-Velazquez '97, Souplet '09, Zaag '98 & '01, Mahmoudi-
Souplet-Tayachi '15, ...

V. T. Nguyen (NYUAD) Singularities in Nonlinear PDEs



Type | (ODE-type) blowup solutions for (RD) via spectral analysis

m Type | blowup: "0; dominates A" ~~ the blowup rate, unknown blowup profiles.

=P, o\ (N(T—-t"\  p+1 . q+1
{ =a 7 (V>_(7(Tt)"f S S |

,—(Theorem 1 (Ghoul-Ng.-Zaag '18]).} <

<l ol
|

m 3(uo, o) € L™ x L* such that the solution (u, v) to System (RD) blows up in
finite time T and admits the asymptotic dynamic

(T = t)%u(x,t) = Po(§) = 0, (T —t)’v(x,t) — Wo(¢) = O,
ast — T in L°°, where

e (blowup variable) ¢ = WAEn eIk

o (profiles) ®q(¢) = (14 b|£[?)™%, Wo(€) = (1 + b|¢|?)~# with b > 0.

m The constructed solution is stable under perturbation of initial data.
. v

Remark: - Other profiles are possible, but they are suspected to be unstable.
- The existence of Type Il blowup solutions remains unknown.
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Results Non-variational semilinear parabolic systems

Constructive proof for (RD): approximate blowup solution

m Self-similar variables: y =

; B o(y,s) = (T — t)%u(x, t)
F=pr 5= —In(T —1), {w(?s):(T—r)Bv(x,t) |

Dsp+iy Vo+ap = Ap+[¢[P 1,
Osth +3y .V + By = pAy + |97 9,

- Nonzero constant solutions: (I, )

ar:’va /67: re.

m Linearizing: (¢,v) = (I, ) + (QEMZ)

Os <g> = (H + M) (g) + "nonlinear quadratic term";

where H + M has two positive eigenvalues 1 and % a zero eigenvalue and an infinite many
discrete negative spectrum.
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Results Non-variational semilinear parabolic systems

Constructive proof for (RD): approximate blowup solution

m Null mode is dominant: <sz> (v,s) = 62(s) (2)7 (ng) - (‘Z)yz + <Z(;>’

1
05 =¢34+ O(|62°), €©>0, ~0~——.

m Inner approximation: for |y| < C,

® (T _ﬁ ah " _ vl x
(o~ ()-5E) - |-~ g
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Results Non-variational semilinear parabolic systems

Constructive proof for (RD): approximate blowup solution

m Shape of profiles:

(o= ()0 2(E)0r - =24

¢
2

where

®) — adg + WE =0, fg\llgf,B\IJngcbg:O.

- Solving ODEs: ®4(0) =T, Wo(0) = v,

®o(€) =M1+ bIEP)™, Wo(&) =~(1+blEf)™", beR

m Matching asymptotic expansions: ~ value of b = b(p, q, 1) > 0. O
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Results Non-variational semilinear parabolic systems

Constructive proof for (RD): Control of the remainder

m Linearized problem: (¢, ) = (®o, Vo) + (A, T),
A o A Rl " . 1]
0s (T) = (7—[ + M+ V) (T) + (Rz) + "quadratic term". (*)

m Constructing for (%) a global in time solution (A, T) such that

[A(s)[eoe +[[T(s)][eee —> O as s — +oo0.
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Results Non-variational semilinear parabolic systems

Constructive proof for (RD): Control of the remainder

m Spectral properties of the linear part: for K > 1,
e For |y| > K\/s: H+ M +V has a negative spectrum. ~» Control of (Q) is simple.
e For |y| < K+/s: the potential V is regarded as a perturbation of H + M. We

decompose
2
A fa A_
() -2(0)- (%)

where (Q:) =TI_ (./}) with T_ being the projection on the subspace associated to

the negative eigenvalues of H + M. ~~ (.’}:) is controllable to zero.
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Results Non-variational semilinear parabolic systems

Constructive proof for (RD): finite dimensional reduction

m Control of 0, is delicate: We need to refine the potential term V(Q)

d@g(s)
ds

1 ) 721}5 d&Q(T)

2 —2r
#5=0(5 e A Gl

which shows a negative eigenvalue ~~ 6 is controllable to zero.

m Control 6y and 0; (reduction to a finite dimensional problem): Consider the initial data
depending on (do, di) € R**¢:

(3Joo-4[e(2) (D] 00

= A contradiction argument yields the existence a particular value (do, d1) € such
that 6o(s) and 0:1(s) converge to zero as s — +00. O

R1+d
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Idea of the stability proof for (RD)

m Idea of the stability proof: the stability directly follows from the existence proof.
e Space-time translation invariance ~~ control of g, 61;

e Other directions are always controllable to zero.

m Flexibility: The complex Ginzburg-Landau equation by [Nouali-Zaag '18, Masmoudi-Zaag
'08], other nonlinearities by [Ghoul-Ng.-Zaag '18], ...
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Results Harmonic map heat flow + Wave maps

3 - Results: Harmonic heat flow & Wave maps
8:d = Ad + [VO [0, (HF)
o = Ad+ (VO — [0:0*) o, (WM)

where  ®(t) : R? — §%.
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Results Harmonic map heat flow + Wave maps

Harmonic map Heat Flow and Wave map problems

o(t) : RY — s
Harmonic heat flow (HF) Wave Map (WM)
o® = Ad + |[VO 0 K = A0+ (VO] — [0:9°) b
T
O(x, t) = {cos (utix. t)),|x7| sin (ul(x|, t)ﬂ
Oru = Ay ru— (‘12:21) sin(2u) 02u= Ay, u— (‘12:21) sin(2u)
ux(r,t) = u(§7/\—t2) ux(r,t) = u(i,%)
LW-P in H® with s > ¢ [Ref 1] LW-P in H® x H*"' with s > ¢ [Ref2]
Develop singularities [Ref 3]

[Ref 1]: [Struwe, JDG'88], [Wang, ARMA'08]
[Ref 2]: [Klainerman-Selberg, CPDE’97], [Tataru, CPDE’98], [Shatah-Struwe, IMRN'02]
[Ref 3]: [Coron-Ghidaglia, CRASP’89], [Chen-Ding, IM'90], [Chang-Ding-Ye, JDG'92], [Shatah, CPAM’88].
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Results Harmonic map heat flow + Wave maps

Type | and Type Il singularities

Harmonic heat flow (HF)

Wave Map (WM)

limsup /T — t||Vu(t)||Lee < 00
t—T

limsup(T — t)[[Vu(t)||e < 00
t—T

Otherwise, the singularity (or blowup) is of Type Il

d22:TypeIz¢(\/%) [Ref 1]

d =2: Blowup # ¢ (ﬁ) [Ref 2]

3<d<6:
Ién, Z(0,00)(Pn — 5) = n [Ref 3]

3<d<6:
3o, Z0,1)(wn) = n[Ref 4]

d > 7: No self-similar — No Type | [Ref 5]

d>3:p(y) =2arctan (\/—%) [Ref 6]

Ref 6]: [Bizon-Biernat, CMP’15].

V. T. Nguyen (NYUAD)
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Results Harmonic map heat flow + Wave maps

(Non)Existence of Type | and Type Il singularities

Dimension Heat flow Wave Map Type
NO NO |
d=2
YES YES Il
YES YES |
3<d<6
Unknown? Unknown? Il
NO YES |
d>7
YES YES 11

- [Topping, MZ'04];

[Struwe, CPAM'03];

- [Van de Berg-Hulshof-King, SIAM'03], [Schweyer-Raphael, CPAM'13 -APDE'14],
[Davila-del Pino-Wei, IM'19];  [Krieger-Schlag-Tataru, IM'08], [Carstea, CMP'10 ],
[Rodniaski-Sterbenz, AM'10], [Raphael-Rodnianski, IHES'12];

- [Fan, SCSA'99];  [Bizon-Biernat, CMP’15], [Biernat-Bizon-Maliborski, Nonl'17];
- [Bizon-Wasserman, IMRN'15];  [Bizon-Biernat, CMP'15];

V. T. Nguyen (NYUAD)
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Results Harmonic map heat flow + Wave maps

Energy identities and the stationary solution

m Energy identities:
d
72/ \dtu| < 0

, d—1) .
Enry(U) = /}Rd (drUQ + (r72) S|n2(u)> Do Enry(
ig (u,@tu) :0

. , d—1) .
g(WM)(u7 dtu) :/ (|8tu2 + ‘dru‘Q + ( 5 )7 S|n2(u)> s o S
Rd

(WM)(uvatu)'

e (Un) = /\d72£(HF)(u) and &, (ux,0cun) = \2e
=—> d = 2 energy-critical, d > 3 energy-supercritical

Q(r) = 2arctan(r) for d = 2;

m Stationary solution:
forr>1,

d>7, Qr)~7 -2

with a9 >0, v = 2(d —2—/d> —8d +8) € (1,2].

Singularities in Nonlinear PDEs
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Type Il singularity for (HF)

m Type Il blowup: "A dominates 0;" ~ profile, unknown blowup rates.

~ Theorem 2 (Ghoul-Ibrahim-Ng. '19]).} .

mletd>7, ¢ €N with 2/ > v and s € N with s = 5({) — 400 as £ — +o0.
There exists a smooth radially symmetric initial data up € & C H® such that the
solution to (HF) is of the form

u(r,t)—Q<)\(t)> +q< D) >

A(t) ~ c(uo)(T — )7 < (T—1t)? as t— T,

and lim:—7||q(t)||zo =0, Vo € (d/2,s].
m The constructed solution is (¢ — 1) codimension stable.

where

\

Remark: Type Il blowup for d = 2 constructed by [Raphael-Schweyer APDE'14 & CPAM'13],
and [Davila-del Pino-Wei IM'19].
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Type Il Singularity for (WM)

m Type Il blowup: "A dominates 52" ~- profile, unknown blowup rates.

~{ Theorem 3 (Ghoul-Ibrahim-Ng. '19]).} \

mletd >7, ¢ € N* with £ >~ and s € N with s > 1. There exists (uo, u1) €
H* x H*! such that the solution to (WM) is of the form

u(r,t) =Q ()\(t)) +e (A(t)’t)’

A(t) ~ c(w)(T — t)7, ("Type Il blowup")
and lim:— 7 ||€(t) || yo fyo—1 = 0 for all o € (d/2,5].

where

m The constructed solution is (¢ — 1) codimension stable.

\. J

Remark: - Type | blowup: u(r, t) = 2arctan ((T*t)%d\/j) for d > 3, [Bizon-Biernat '15].

Type Il blowup for d = 2: [Krieger-Schlag-Tataru IM’'08, Raphiel-Rodnianski IHES'12].
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Results Harmonic map heat flow + Wave maps

Constructive proof for (WM): computing an approximate solution

r ds 1

At dt A(D)
05 + A = F(), |

® Renormalized variables: w(y,s) = (M )(r t), y=

1

yOywm - up
‘ F(d) = (d—1
2r2

bu=—7% A = (W2 +y<9yW2)’ (A,,dul —

) sin(2u1))‘

® The approximate solution: Let L > 1, b= (b1, -+, by), Q= (g)

L+2

() y)+ZbT y)+ZS(y7 );

] 0o -1 d—
.Jf:(g 0), L= Dyt

° jfﬁﬂzfﬂ, T0:/\Q, > |Tk(y)|~ckyk_“f for y > 1.

1 cos(2Q);

Bl §,- has a better behavior than 7_",- in the blowup zone ——.
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Constructive proof for (WM): formal law of A

m The leading dynamical system driving the law:

] (bi)s + (k —7)bibx — bis1 =0 for 1< k < L‘ (b1 = 0) (Sys-b)

m The explicit solution: Fix £ € N* with £ > ~,

_ o - ¢
bk = % bk = 07 L = —.
1<k<¢ S k> 041 £—x

blw—%:—)\t - A(E) ~ (T — )7,

m Linearizing (Sys-b) around b displays (£ — 1) unstable directions:

b= Bt 2 = 5, = A+ 0(18) "2 5. = A+ O(181),
- . 2y by
AZ:PélDZPh DZ:dlag{_7£_fy7"'>g_’\/}'
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Results Harmonic map heat flow + Wave maps

Constructive proof for (WM): modulation equations

m The linearized problem: w(y,s) = Qu(y) + d(y, s),

8:G + biAG + 4G = —Eb + Mod + L(§) + N(G),

where  Mod ~ Z [(be)s + (k —7)bybx — biya] Tx.

m The modulation equations: Projecting onto suitable directions yields

L
Z |(bk)s + (k — ¥)bibk — by1| < VE + blHHV

k=1

wherek =L+ 1+h, h=~h(d) >0, v e (0,1),

Ex :/ (qlffkm + Q2u(f£671¢72) z Ha“f’.ﬂkxﬁlk—b
RrRd

under suitable orthogonality conditions.
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Results Harmonic map heat flow + Wave maps

Constructive proof for (WM): finite dimensional reduction

m Control &: Local Morawetz control + Coercivity of .Z*,

d [ & b . ) ,
E (/\Z(ﬂid> S AQKI,d (blL+ \/@+ bfL+2 ) = gk(s) S bfL+2 .

m A technical issue (sharp control for by ):

24, x8,\Q
(br)s + (L —)bLbr + q 7( Hq o = ) < @ + b{'+1+".
ds \ (AQ,x5AQ) By

= Finite dimensional reduction: Control unstable directions (P¢S)« for 2 < k < ¢ by a
contradiction argument. ~» The constructed solution is (¢ — 1)-codimension stable.
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Results 2D Keller-Segel system

3 - Results: The 2D Keller-Segel system

Oru = Au—V - (uVd,),
0=Ad,+ u.

Modeling features:

- Describing the chemotaxis in biology, [Patlak "53], [Keller-Segel '70], [Nanjundiah
'73], [Hillen-Painter '09]; interacting stochastic many-particles system,
[Othmer-Stevens '90], [Stevens '00]), [Chavanis '08], [Hillen-Painter '08]; as a
diffusion limit of a kinetic model [Chalub-Markowich-Perthame-Schmeiser '04];

- Competition between dispersion of cells (diffusion) and aggregation;

- Rich model from mathematical point of view, [Horstman '03 & '04];
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Basis features du=V - (Vu—uVod,)

The 2D Keller-Segel equation:

Oru=V- (uV(ln u— 4>u)), ¢, = f%/ log |x — y|u(y)dy
R2

- mass conservation: /\/I:/ uo(x)dX:/ u(x, t)dx;
R2

2

- L'-scaling invariance: Vy > 0, wu,(x,t) = %u(?/, %), / Uy = / u;
JR2

JR2

- free energy functional: F(u) = /

R

1 d
— /A Yu s S )
Zu(lnu 2¢) dt]:(u) 0

- stationary solution: Q- .(x) = %Q(xf{a), where

QW) = (7 /Q*SW

V. T. Nguyen (NYUAD) Singularities in Nonlinear PDEs



Diffusion vs. Aggregation Ou=V - (Vu—uVod,)

m If M < 8m: global existence + spreading, [Blanchet-Dolbeault-Perthame '06]. The
proof mainly relies on the free energy functional F(u) and the Log HLS inequality.

m If M=8mand [, |x|*u < +oo: blowup in infinite time,
[Blanchet-Carrillo-Masmoudi '08]. Constructive approaches by [Ghoul-Masmoudi
'18] (radial), [Davila-del Pino-Dolbeault-Musso-Wei '20] (full nonradial):

lu(t)||ree ~ cologt as t— +oo.
m If M > 8n: blowup in finite time, [Childress-Percus '81], [Jager-Luckhaus '92],
[Nagai-Senba '98], [Senba-Suzuki '03]:
' M
(virial identity) %/Rz Ix|>u(x, t)dx = 5(871' - M).
Constructive approaches in the radial setting by [Herrero-Veldzquez '96],
[Raphaél-Schweyer '14]:

o/ 2l 10g(T—0)]

HU(t)HLOO ~ CO? as t—T.
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Results 2D Keller-Segel system

A numerical simulation of finite time singularity

A numerical simulation of blowup for the 2D Keller-Segel system

Oru = Au—V.(uVD,), —Ad,=u.

V. T. Nguyen (NYUAD) Singularities in Nonlinear PDEs



KS1.mp4
Media File (video/mp4)


Finite time blowup for the 2DKS du=V - (Vu—uVod,)

- Type | does not exist, [Senba-Suzuki '11]: d;u = Au — Vu.Vo, + v,
- Type II: "A dominates 0:" ~~ profile, unknown blowup rates.

,—[Theorem 4 ([Collot-Ghoul-Masmoudi-Ng., 2020).} N

m There exists a set O C L' N &, where € = {u: > ;_ o 1Y V¥ull 2 < 400}, of
initial data wo (not necessary radially symmetric) such that

-3t o (528 ]

where a(t) — 3 € R? and Zi:o l(y)cV¥e(t)||2 — 0 as t — T, and X is given

by either
log(T —t
/\(t)~2e7WT+2\/T—texp —M ; (C1)
V2
or A £+1
A(t) ~ c(uo)(T — t)2|log(T — t)| 20D, £> 2 integer. (C2)

m Case (C1) is stable and Case (C2) is (£ — 1)-codimension stable.

\.
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Results 2D Keller-Segel system
Comments

Oeu=V-(Vu—uVd,)

u(z,t) ~ A%(’)Q(ﬁ))
MO ~ oy TV
or

En

A(t) ~ Co(T — t) 5| log(T — ¢)| 7

Fig 1: The form of single-point finite time blowup solutions.

V. T. Nguyen (NYU
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Comments Ou=V - (Vu—uVod,)

m Existing results: formal level (numerical observation, formal matching asymptotic
expansions) and in the radial setting to remove the nonlocal structure difficulty, i.e.

u(x,t) = u(r,t),

r 8r
mi) = [ u@ede. un =20, aeun) =", -,
0
2
deu = 18,(ra,u — g d,) = |9m=0'm- orm , Orm
r r 2r

Refs: [Herrero-Velazquez '96 & '97], [Velazquez '02], [Schweyer-Raphael '14],
[Dyachenko-Lushnikov-Vladimirova '13], ...

m The new result: full nonradial setting, refined description of the stable blowup
mechanism, new (unstable) blowup dynamics, a nature approach via spectral
analysis/robust energy-type method.
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Results 2D Keller-Segel system

Strategy of the new constructive proof Oru=V - (Vu—uVo,)
m Self-similar variables:
1 X
U(X,t)—ﬁW(Z,T), zZ= T—t’ T__|Og(T_t)v

O-w=V-(Vw—wVed,) — %V - (zw)

m Linearized problem: w(z,7) = Q.(z) + n(z,7), where Q. (z) = %Q(f) and 7 solves

o =L"n+ (7 — %) V- (z2Q,) -V - (nd),,), v — 0 unknown,

L=V (Vn—nVodq, — QVb,) -

5V (z0)

= fé’o" n

- Structure of %4y":

L=V @V, M=,

(" comes from the linearization of the energy functional F around Q).

V. T. Nguyen (NYUAD) Singularities in Nonlinear PDEs



Properties of the linearized operator ¥ = V.(Q,V.Z" - ) — 3V.(z")

m In the radial sector, the (nonlocal) operator £ becomes a local operator through the

partial mass setting, i.e. ( = |z|, m¢(¢ fg r)rdr,
v 1 y 17) 7] . 1 o 1
Z f=zac(@7 me), | p= Cac( 2¢) M—éwaﬁ = ¢~ 5C0co.

m [Collot-Ghoul-Masmoudi-Ng., '20]: &/" is self-adjoint in Lw,, , its eigenvalues are

2
spec(#”) = q « —1—n—|—i—|—(’) ! neN —ﬁ
pecl: o mr 2lnv [Inv|? ’ W = Q

The eigenfunction ¢, , solving <7" ¢, = ., @n, is defined by

n

onlQ) =D P 2T (S) Hlot, T =Ty, To = Edemo.

Jj=0

Proof: Schrodinger type operator ~ discreteness, Sturm comparison principle ~~
uniqueness, matching asymptotic expansions + implicit function theorem ~~ (ap,u, ¢, ).
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Results 2D Keller-Segel system

Properties of the linearized operator ¥ = V.(Q,V.Z" - ) — 3V.(z")

m First expression:

/ 1 . v v f
L =L fF — EV.(zf) with A f =V - (QV.A"f) and A#"f = o by,
The operator .%y is self-adjoint in L? with respect to the inner product
(f, &) yv = / f"g dz, (positivity) — dz.
JR2 JRr2 1/

m Second expression:

L= HF—VQ, -V, with HF = Lv. (w,,Vf) +(2Q, - 2)F.
w

The operator " is self-adjoint in L2, with w, = =

m The well-adapted scalar product and coercivity:

v v |Vf]? _lz?
LY(f\/p)#” (F\/p) < —c pdz| p=e % .
R2 R2 QI/
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Results 2D Keller-Segel system

1
Approximate solution Ohw=V-(Vw—-wVd,) — EV - (zw)

m The approximate solution: for £ > 1 integer,

8C¢n,u )

w(2,7) = Qu(2) + ac(7) [e.(l2]) = vou(l2))]  with @n, = c

modification driving the law of blowup

A suitable projection onto g, and compatibility condition, we obtain the leading ODE

- 1 /5
(¢ =1, stable) vr +i — |v=Ce vz

v 4nv [Inv|?
' 1—-7 /+1 1—07 _1+f
(¢ > 2, unstable) vr — 4|+ — |v==Ce 2 700
v nv

m The linearized equation: ¢ = w — w?,

Ore = £"c + Error + SmallLinear + Nonlinear.
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Results 2D Keller-Segel system

Control of the remainder O.e = %c + Error + - - -
m Decomposition: € =% + e+, %(¢) = Bcgms'
Orme = 'me+mg+---, Oret =Lt ...

m For the radial part, we use the spectral gap

(me, /Y m.) 2 goeNH?,,HmEHfg" for me L ¢ny, n=0,..N.
“Yv

Yy
<

d 2 2 I/2
<
arImell, < Iy, + s

=

m For the nonradial part, we use the coerivity of .£” and the well-adapted norm

e

4| = / AP b / e
R R’ v

q

Nt ls < —clle* 5+ CeT | o< m <L

-

® Nonlinear analysis: ...
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4 - Conclusion & Perspectives
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Conclusion and Perspectives

m Existence/Stability of blowup solutions via constructive approaches:

e Spectral analysis: (non)-variational problems whose spectrum of the linearized
operator is fairly understood. ~~ Classification of blowup dynamics.

e Energy methods: robust for various problems (parabolic/hyperbolic) with variational
structures, but gives no answers to the classification question.

e A combination of the two methods is effective for complicated problems.

m Adaptability and Flexibility for studying singularity formation, asymptotic stability, dy-
namical classification, stability and instability of steady states, long-time asymptotic, ...

m Interesting problems:
e multiple-collapse phenomena/ interaction-collision of multi-solitons;

e classification of blowup dynamics (rates & profiles);
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Multiple collapse phenomena

A multiple-collapse phenomenon in the 2D Keller-Segel system
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