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Abstract—We provide two new characterizations for finitely
generated varieties with Taylor terms. The first characteri-
zation is using “absorbing sets” and the second one “cyclic
operations”. These new conditions allow us to reprove the
conjecture of Bang-Jensen and Hell (proved by the authors,
comp. STOC’08, SICOMP’09) and the characterization of
locally finite Taylor varieties using weak near-unanimity op-
erations (proved by McKenzie and Maroti, Alg.Univ. 2009)
in an elementary and self-contained way. The research is
closely connected to the algebraic approach to CSP and
previous results obtained by authors using similar tools [comp.
STOC’08, SICOMP’09, FOCS’09 etc.].

Keywords-Constraint Satisfaction Problem; Taylor condi-
tions;

I. INTRODUCTION

The Constraint Satisfaction Problem has been studied by
computer scientists for over twenty years. It provides a
common framework for many theoretical problems as well
as for many real-life applications.

The results contained in this paper follow a long line
of research devoted to verifying the Constraint Satisfaction
Problem Dichotomy Conjecture of Feder and Vardi [14]. In
general a Constraint Satisfaction Problem is a decision prob-
lem: given a number of variables and constraints imposed
on them we ask whether the variables can be evaluated in
such a way that all the constraints are met. The conjecture of
Feder and Vardi deals with so called non-uniform CSP —
the CSP when we ask about the complexity of the same
question, but the set of allowed constrains is finite and
fixed. The conjecture states that, for every finite, fixed set
of constraints (a fixed template), the CSP defined by it is
NP-complete or solvable in a polynomial time i.e. the class
of CSP’s exhibits a dichotomy.

The conjecture of Feder and Vardi dates back to 1993,
but the first breakthrough in the research appeared in 1997
in the work of Jeavons, Cohen and Gyssens [19]. The
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new approach was refined later by Bulatov, Jeavons and
Krokhin [12], [10]. At heart of the new approach lies a proof
that the complexity of CSP, for a fixed template, depends
only on the set of certain operations — polymorphisms of
the template. Thus the study of templates gives way to the
study of algebras associate to them.

One of the most useful tools provided by this new ap-
proach is the theorem of Bulatov, Jeavons and Krokhin [12],
[10] stating that whenever an algebra associated with a core
template does not lie in a Taylor variety then the CSP defined
by the template is NP-complete. In the same paper authors
conjecture that in all the other cases the associated CSP’s
are solvable in a polynomial time. This algebraic dichotomy
conjecture has been neither confirmed nor disproved, as all
the known partial results agree with this classification.

The algebraic approach provided new tools for tackling
CSP’s and a number of new results appeared. The result
of Schaefer [21], proving dichotomy for two–element tem-
plates, have been extended by Bulatov [11] to three–element
domains. The conjecture of Bang-Jensen and Hell [1] was
positively verified [6], [7]. New algorithms were devised [9],
[13], [18] and pre-algebraic algorithms were characterized
in algebraic terms [3], [4]. In a vast majority of cases the
hardness results were obtained by means of the theorem of
Bulatov, Jeavons and Krokhin.

In order to prove the algebraic dichotomy conjecture one
has to devise an algorithm that works for any relational
structure with corresponding algebra in a Taylor variety. As
the term-condition originally provided by Taylor is difficult
to work with, a search for equivalent, but more elegant and
useful conditions is ongoing [20], [22]. The characterization
of locally finite Taylor varieties in terms of weak near-
unanimity operations due to Maroti and McKenzie [20] is
one of the most powerful tools in this area. The proof of this
characterization is using a deep algebraic theory of Hobby
and McKezie [17]. Mentioned above proof of the conjecture
of Bang-Jensen and Hell hinges on this characterization;
also the algebraic characterization of problems of bounded
width [4] relies on (provided in [20]) similar characterization
of congruence meet semi-distributive, locally finite varieties.

In this paper we provide two new characterizations of
finitely generated Taylor varieties. The first characterization
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is expressed in terms of absorbing subalgebras developed
and successfully applied by authors in [6], [7], [3], [4].
The second one uses cyclic terms and, in case of finitely
generated varieties, is a stronger version of the weak near-
unanimity condition given by Maroti and McKezie [20].
These new characterizations already proved to be useful.
Not only provide they new tools for attacking the algebraic
dichotomy conjecture, but allow us to present easy and
elementary proofs for some of the results mentioned above.

The proofs of these new characterizations do not rely
on the results of [20], [17], moreover they allow us to
reprove the weak near-unanimity characterization of locally
finite Taylor varieties without the overhead of the tame
congruence theory. We use them to present an elementary
proof of the conjecture of Bang-Jensen and Hell, and even
easier proof of the theorem of Hell and Nešetřil [16].
Finally we translate the algebraic dichotomy conjecture into
combinatorial terms. The results of this paper show that
the tools developed for CSP can be successfully applied
to algebraic questions which indicates a deep connection
between CSP and universal algebra.

In section II we introduce the necessary notions concern-
ing algebras and CSP. In section III we introduce absorbing
subalgebras and state the absorbing theorem; the proofs
missing in this section can be found in [2]. In section IV we
use the absorbing subalgebra characterization to provide an
elementary proof of the conjecture of Bang-Jensen and Hell
in a slightly stronger version which is needed in section V.
Finally in section V we state the characterization using cyclic
terms (proven in [2]) and prove the corollaries: the theorem
of Hell and Nešetřil [16] and the weak near-unanimity
characterization of locally finite Taylor varieties of Maroti
and McKenzie [20].

II. PRELIMINARIES

A. Notation for sets

For a set A and a natural number n elements of An are the
n-tuples of elements of A. We index its coordinates starting
from zero, for example (a0, a1, . . . , an−1) ∈ An.

Let R be a subset of a cartesian product A1×A2×· · ·×An.
R is called subdirect (R ⊆S A1 × · · · × An) if, for every
i = 1, 2, . . . , n, the projection of R to i-th coordinate is the
whole set Ai.

Given R ⊆ A × B and S ⊆ B × C, by S ◦ R we mean
the following subset of A× C:

S ◦R = {(a, c) : ∃ b ∈ B (a, b) ∈ R, (b, c) ∈ S}.

If R ⊆ A×A and n is a natural number greater than zero,
then we define

R◦n = R ◦R ◦ · · · ◦R︸ ︷︷ ︸
n

.

B. Algebras and varieties

A signature is a finite set of symbols with natural num-
bers (the arities) assigned to them. An algebra of a signature
Σ is a pair A = (A, (tA)t∈Σ), where A is a set, called the
universe of A, and tA is an operation on A of arity ar(t),
that is, a mapping Aar(t) → A. We always use a boldface
letter to denote an algebra and the same letter in a plain
type to denote its universes. We often omit the superscripts
of operations when the algebra is clear from the context.

A term in a signature Σ is a formal expression using
variables and compositions of symbols in Σ. In this paper
we introduce a special notation for a particular case of
composition of terms: given a k-ary term t1 and an l-ary
term t2 we define

t1 � t2(x0, x1, . . . , xkl−1)

to be

t1(t2(x0, . . . , xl−1), t2(xl, . . . ), . . . , t2(. . . , xkl−1)).

For an algebra A and a term h in the same signature Σ,
hA has the natural meaning in A and is called a term
operation of A. Again, we usually omit the superscripts of
term operations when the algebra is clear from the context.
The set of all term operations of A is called the clone of
term operations of A and it is denoted Clo(A).

For a pair of terms s, t over a signature Σ, we say that
an algebra A in the signature Σ satisfies the identity s ≈ t
if the term operations sA and tA are the same.

There are three fundamental operations on algebras of a
fixed signature Σ: forming subalgebras, factoralgebras and
products. A subset B of the universe of an algebra A is
called a subuniverse, if it is closed under all operations
(equivalently term operations) of A. Given a subuniverse
B of A we can form the algebra B by restricting all the
operations of A to the set B. In this situation we write
B ≤ A or B ≤ A. We call the subuniverse B (or
the subalgebra B) proper if ∅ 6= B 6= A. The smallest
subalgebra of A containing a set B ⊆ A is called the
subalgebra generated by B and will be denoted by SgA(B).
It can be equivalently described as the set of elements
which can be obtained by applying term operations of A
to elements of B.

Given a family of algebras Ai, i ∈ I we define its product∏
i∈I Ai to be the algebra with the universe equal to the

cartesian product of Ai’s and with operations computed
coordinatewise. The product of algebras A1, . . . , An will
be denoted by A1 × · · · × An and a product of n copies
of an algebra A — An. R is a subdirect subalgebra of
A1 ×A2 × · · · ×An if R is subdirect in A1 × A2 · · ·An

and, in such a case, we write R ≤S A1 × · · · ×An.
An equivalence relation ∼ on the universe of an algebra

A is a congruence, if it is a subalgebra of A2. The
corresponding factor algebra A/ ∼ has, as the universe,
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the set of ∼-blocks and the operations are defined using
(arbitrarily chosen) representatives.

A variety is a class of algebras of the same signature
closed under forming isomorphic copies, subalgebras, fac-
toralgebras and products. For a pair of terms s, t over a
signature Σ, we say that a class of algebras V in the signature
Σ satisfies the identity s ≈ t if every algebra in the class
does. By Birkhoff’s theorem, a class of algebras is a variety
if and only if there exists a set of equations E such that the
members of V are precisely those algebras which satisfy all
the equations from E.

A variety V is called locally finite, if every finitely
generated algebra contained in V is finite. V is called finitely
generated, if there exists a finite set K of finite algebras such
that V is the smallest variety containing K. In such a case V
is actually generated by a single, finite algebra, the product
of members of K. Every finitely generated variety is locally
finite, and if a variety is generated by a single algebra then
all identities satisfied in this algebra are also satisfied in the
variety.

C. Taylor varieties

A term s is idempotent in a variety (or an algebra), if it
satisfies the identity

s(x, x, . . . , x) ≈ x.

An algebra (a variety) is idempotent if all its terms are.
A term t of arity at least 2 is called a weak near-unanimity

term of a variety (or an algebra), if t is idempotent and
satisfies

t(y, x, x, . . . , x) ≈ t(x, y, x, x, . . . , x) ≈ · · ·
· · · ≈ t(x, x, . . . , y, x) ≈ t(x, x, . . . , x, y).

A term t of arity at least 2 is called a cyclic term of a
variety (or an algebra), if t is idempotent and satisfies

t(x0, x1, . . . , xk−1) ≈ t(x1, x2, . . . , xk−1, x0).

Finally a term t of arity k is called a Taylor term of a
variety (or an algebra), if t is idempotent and for every j < k
it satisfies an identity of the form

t(�0,�1, . . . ,�k−1) ≈ t(40,41, . . . ,4k−1),

where all �i’s and 4i’s are substituted with either x or y,
but �j is x while 4j is y.

Definition II.1. An idempotent variety V is called Taylor if
it has a Taylor term.

Study of Taylor varieties has been a recurring subject in
universal algebra for many years. One of the first character-
izations is due to Taylor [23]

Theorem II.2 (Taylor [23]). Let V be an idempotent variety.
The following are equivalent.

• V is a Taylor variety.
• V doesn’t contain a two-element algebra whose every

(term) operation is a projection.

Further research led to discovery of other equivalent condi-
tions [22], [20]. One of the most important ones is the result
of Maroti and McKenzie [20]

Theorem II.3 (Maroti and McKenzie [20]). Let V be an
idempotent, locally finite variety. The following are equiva-
lent.
• V is a Taylor variety.
• V has a weak near-unanimity term.

This result, together with a similar characterization provided
in the same paper for congruence meet semi-distributive
varieties, found deep applications in CSP [6], [7], [4].

D. Relational structures and CSP

Let Σ be a signature as in Section II-B. A relational
structure of the signature Σ is a pair A = (A, (RA)R∈Σ),
where A is a set, called the universe of A, and RA is a
relation on A of arity ar(R), that is, a subset of Aar(R).

Let A,B be relational structures of the same signa-
ture. A mapping f : A → B is a homomorphism
from A to B, if it preserves R for all R ∈ Σ,
that is, (f(a0), f(a1), . . . , f(aar(R)−1)) ∈ RB for any
(a0, . . . , aar(R)−1) ∈ RA. A finite relational structure A is a
core, if every homomorphism from A to itself is bijective.

For a fixed relational structure A of a signature Σ CSP(A)
is the following decision problem:

INPUT: A rel. str. X of the signature Σ.
QUESTION: Does X map homomorphically to A?

It is easy to see that if A′ is a core of A (i.e. a core
which is contained in A and such that A can be mapped
homomorphically into it) then CSP(A) and CSP(A′) are
identical.

The celebrated conjecture of Feder and Vardi [14] states
that the class of CSP’s exhibits a dichotomy:

The dichotomy conjecture of Feder and Vardi. For any
relational structure A the problem CSP(A) is solvable in a
polynomial time, or NP-complete.

E. Algebraic approach to CSP

A mapping f : An → A is compatible with an m-ary
relation R on A if the tuple(

f(a0
0, a

1
0, . . . , a

n−1
0 ), . . . , f(a0

m−1, a
1
m−1, . . . , a

n−1
m−1)

)
belongs to R whenever (ai

0, . . . , a
i
m−1) ∈ R for all i < n.

A mapping compatible with all the relations in a relational
structure A is a polymorphism of this structure.

For a given relational structure A = (A, (RA)R∈Σ) we
define an algebra IdPol(A) (often denoted by just A).
This algebra A has an underlying set equal to A and the
operations of A are the idempotent polymorphisms of A (we
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formally define a signature of A to be identical with the set
of it’s operations).

It follows from an old result [8], [15] that a relation R of
arity k is a subuniverse of IdPol(A)k if and only if R can
be positively primitively defined from relations in R and
singleton unary relations identifying every element of A.
That is, R can be defined by a formula which uses relations
in R, singleton unary relations on A, the equality relation
on A, conjunction and existential quantification.

Already the first results on the algebraic approach to
CSP [19], [12], [10] show that whenever a relational struc-
ture A is a core then IdPol(A) fully determines the compu-
tational complexity of CSP(A). Moreover Bulatov, Jeavons
and Krokhin showed [12], [10] that

Theorem II.4 (Bulatov, Jeavons and Krokhin [12], [10]).
Let A be a finite relational structure which is a core. If
IdPol(A) does not lie in a Taylor variety, then CSP(A) is
NP -complete.

In the same paper they conjectured that these are the only
cases of finite cores which give rise to NP-complete CSP’s.

The dichotomy conjecture of Bulatov, Jeavons and
Krokhin. Let A be a finite relational structure which is a
core. If IdPol(A) does not lie in a Taylor variety, then
CSP(A) is NP -complete. Otherwise is it solvable in a
polynomial time.

This conjecture is supported by many partial results on the
complexity of CSPs [11], [6], [7], [4], [18] and it renewed
interest in properties of finitely generated Taylor varieties.

III. ABSORBING SUBALGEBRAS AND ABSORPTION
THEOREM

In this section we introduce the concept of an absorbing
subalgebra, state the absorption theorem and prove some of
its corollaries. We begin with the definition of an absorbing
subalgebra.

Definition III.1. Let A be an algebra and t ∈ Clo(A). We
say that a subalgebra B of A is an absorbing subalgebra
of A with respect to t if, for any k < ar(t), any choice
of ai ∈ A such that ai ∈ B for all i 6= k we have
t(a0, . . . , aar(t)−1) ∈ B.

We say that B is an absorbing subalgebra of A, or that
B absorbs A (and write B /A), if there exists t ∈ Clo(A)
such that B is an absorbing subalgebra of A with respect
to t.

We also speak about absorbing subuniverses i.e. universes
of absorbing subalgebras. Absorbing subalgebras are closed
under taking intersection and / is a transitive relation:

Proposition III.2. Let A be an algebra.
• If C /B /A, then C /A.
• If B /A and C /A, then B ∩ C /A.

Proof: We start with a proof of the first item. Assume
that B absorbs A with respect to t (of arity m) and that C
absorbs B with respect to s (of arity n). We will show that C
is an absorbing subalgebra of A with respect to s�t. Indeed,
take any tuple (a0, . . . , amn−1) ∈ Amn such that ai ∈ C for
all but one index, say j, and consider the evaluation of s �
t(a0, . . . , amn−1). Every evaluation of the term t appearing
in s � t is of the form

t(aim, . . . , aim+m−1)

and therefore whenever j does not fall into the interval
[im, im + m − 1] the result of it falls in C (as C is a
subuniverse of A). In the case when j is in the interval we
have a term t evaluated on the elements of C (and therefore
elements of B) in all except one coordinate. The result of
such an evaluation falls in B (as B absorbs A with respect
to t). Thus s is applied to a tuple consisting of elements of
C on all but one position, and on this position the argument
comes from B. Since C absorbs B with respect to s the
results falls in C and the first part of the proposition is
proved.

For the second part we consider B / A and C / A; it
follows easily that B ∩ C / C. Now it is enough to apply
the first part.
Among the absorbing subuniverses of a fixed algebra we
distinguish those minimal with respect to inclusion:

Definition III.3. If B /A and no proper subalgebra of B
absorbs A, we call B a minimal absorbing subalgebra of
A (and write B // A).

Alternatively, we can say that B is a minimal absorbing
subalgebra of A, if B /A and B has no proper absorbing
subalgebras. Equivalence of these definitions follows from
transitivity of /. Observe also that two minimal absorbing
subuniverses of A are either disjoint or coincide, but the
union of all minimal absorbing subuniverses need not be
the whole set A.

Let A, B be algebras of the same type (often members
of a Taylor variety) and R be a subuniverse of A × B. In
such a case we use the following notation: for X ⊆ A and
Y ⊆ B we put

X+R = {b ∈ B : ∃ a ∈ X (a, b) ∈ R}
Y −R = {a ∈ A : ∃ b ∈ Y (a, b) ∈ R}

When R is clear from the context we write just X+ and
Y −. The following lemma shows that these operations
preserve (absorbing) subalgebras.

Lemma III.4. Let R ≤ A×B, where A,B are algebras of
the same signature. If X ≤ A and Y ≤ B, then X+ ≤ B
and Y − ≤ A. Moreover, if R ≤S A × B and X /A and
Y /B, then X+ /B and Y − /A.

Proof: Suppose X ≤ A and take any term t, say of arity
j, in the given signature. Let b0, . . . , bj−1 ∈ X+ be arbitrary.

103103



From the definition of X+ we can find a0, . . . , aj−1 ∈ X
such that (ai, bi) ∈ R for all 0 ≤ i < j. Since R is a subuni-
verse of A ×B, the pair (t(a0, . . . , aj−1), t(b0, . . . , bj−1))
is in R. But t(a0, . . . , aj−1) ∈ X as X is a subuniverse of
A. Therefore t(b0, . . . , bj−1) ∈ X+ and we have shown that
X+ is closed under all term operations of B i.e. X+ ≤ B.

Suppose X absorbs A with respect to a term t of arity
j. Let 0 ≤ k < j be arbitrary and let b0, . . . , bj ∈ B
be elements such that bi ∈ X+ for all i 6= k. Then, for
every i, i 6= k, we can find ai ∈ X such that (ai, bi) ∈ R.
Also, since the projection of R to the second coordinate
is B, we can find ak ∈ A such that (ak, bk) ∈ R.
We again have (t(a0, . . . , aj−1), t(b0, . . . , bj−1)) ∈ R and
t(a0, . . . , aj−1) ∈ X (as X absorbs A with respect to t). It
follows that t(b0, . . . , bj−1)) ∈ X+ and that X+ / B with
respect to t.

The remaining two statements are proved in an identical
way.

When R ≤ A×B it is helpful to draw this situation as a
bipartite undirected graph in the following sense: the vertex
set is the disjoint union of A (draw it on the left) and B (on
the right) and two elements a ∈ A from the left side and
b ∈ B from the right side are adjacent if (a, b) ∈ R. Note
that R ≤S A×B if and only if every vertex in this graph has
a neighbor. Such a relation R is linked if the corresponding
graph is connected:

Definition III.5. Let R ⊆ A × B and let a, a′ ∈ A. We
say that a, a′ ∈ A are linked in R via c0, . . . , c2n, if a =
c0, c2n = a′ and (c2i, c2i+1) ∈ R and (c2i+2, c2i+1) ∈ R
for all i = 0, 1, . . . , n− 1.

We say that R ⊆S A× B is linked, if a, a′ are R-linked
for any a, a′ ∈ A.

These definitions and basic properties allow us to state
the absorption theorem which is the first main result of the
paper.

Theorem III.6. Let V be an idempotent, locally finite
variety, then TFAE:

• V is a Taylor variety;
• for any finite A,B ∈ V and any linked R ≤S A×B:

– R = A×B or
– A has a proper absorbing subuniverse or
– B has a proper absorbing subuniverse.

A proof of this theorem can be found in [2]. The proof
is self-contained and elementary. In section IV we use
Theorem III.6 to reprove a stronger version of the “smooth
theorem” [6], [7] which, in turn, will be used to prove
Theorem V.3. This approach simplifies significantly the
known proof of “smooth theorem”, and does not rely on
the involved algebraic results results from [20].

IV. NEW PROOF OF THE “SMOOTH THEOREM”
The “smooth theorem” classifies the computational com-

plexity of CSP’s generated by smooth digraphs (digraphs,
where every vertex has at least one incoming and at least one
outgoing edge). This classification was conjectured by Bang-
Jensen and Hell [1] and confirmed by the authors in [6], [7].
The proof presented in those papers heavily relied on the
results of McKenzie and Maroti [20] which characterized
the locally finite Taylor varieties in terms of weak near-
unanimity operations. We present an alternative proof of the
“smooth theorem” which depends only on Theorem III.6.
The “smooth theorem” states:

Theorem IV.1. Let H be a smooth digraph. If each com-
ponent of the core of H is a circle, then CSP(H) is
polynomially decidable. Otherwise CSP(H) is NP-complete.

A. Basic digraph notions

A digraph is a pair G = (V,E), where V is a finite set of
vertices and E ⊆ V × V is a set of edges. If the digraph is
fixed we write a → b instead of (a, b) ∈ E. A loop is an
edge of the form (a, a). G is said to be smooth if every vertex
has an incoming and an outgoing edge, in other words, G is
smooth, if E is a subdirect product of V and V . A smooth
part of a digraph G is the largest induced subdigraph of G
which is smooth (the subdigraph can be empty).

An oriented path is a digraph P with vertex set P =
{p0, . . . , pk} and edge set consisting of k edges — for all
i < k either (pi, pi+1), or (pi+1, pi) is an edge of P. An
initial segment of such a path is any path induced by P
on vertices {p0, . . . , pi} for some i < k. We denote the
oriented path consisting of k edges pointing forward by
· k−→ · and, similarly the oriented path consisting of k edges
pointing backwards by · k←− ·. The concatenation of paths
is performed in the natural way. A (k, n)-fence (denoted
by F[k, n]) is the oriented path consisting of 2kn edges, k
forward edges followed by k backward edges, n times i.e.:

· k−→ · k←− · · · · k−→ · k←− ·︸ ︷︷ ︸
n

The algebraic length of an oriented path is the number
of forward edges minus the number of backward edges (and
thus all the fences have algebraic length zero). Let G be
a digraph, let P be an oriented path with vertex set P =
{p0, . . . , pk}, and let a, b be vertices of G. We say that a is
connected to b via P, if there exists a homomorphism f :
P→ G such that f(p0) = a and f(pk) = b. We sometimes
write a k−→ b when a is connected to b via · k−→ ·. If a k−→
a (for some k) then a is in a cycle and any image of the
path · k−→ · with the same initial and final vertex is a cycle.
A circle is a cycle which has no repeating vertices and no
chords.

The relation “a is connected to b via some path” is an
equivalence, its blocks (or sometimes the corresponding
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induced subdigraphs) are called weak components of G.
The vertices a and b are in the same strong component if
a

k−→ b
k′−→ a for some k, k′. For a subset B of A and an

oriented path P we set

BP = {c : ∃b ∈ B b is connected to c via P }.

Note that B·
k−→· is formally equal to B+E◦k but we prefer

the first notation.
Finally, G has algebraic length k, if there exists a vertex

a of G such that a is connected to a via a path of algebraic
length k and k is the minimal positive number with this
property. The following proposition summarizes easy results
concerning reachability via paths:

Proposition IV.2. Let G be a smooth digraph, then:

• for any vertices a, b in G if a is connected to b via · k−→ ·
then a is connected to b via every path of algebraic
length k;

• for any vertex a and any path P there exists a vertex b
and a path Q which is an initial segment of some fence
such that {a}P ⊆ {b}Q;

• if H ⊆ G is such that H ·→· ⊇ H or H ·←· ⊇ H then
the digraph G restricted to H contains a cycle (i.e. the
smooth part of H is non-empty)

Proof: The first item of the proposition follows directly
form the definition of a smooth digraph.

We prove the second item by induction on the length of
P. If the length is zero there is nothing to prove. Therefore
we take an arbitrary path P of length n and arbitrary a ∈ A.
The proof splits into two cases depending on the direction
of the last edge in P We consider the case when the last
edge of P points forward first and set P′ to be P take away
last edge. The inductive assumption for a and P′ provides
vertex b and path Q′ (an initial fragment of a fence F[k, l]).
If algebraic length of Q′ strictly smaller than k we put Q′′′
to be a path such that the concatenation of Q′ and Q′′′ is
an initial fragment of a fence F[k, l + 1] and such that the
algebraic length of Q′′′ is one; then the concatenation of Q′
and Q′′′ proves the second item of the proposition (as, by the
first item of the proposition, every element reachable from
{b}Q′ by · → · is also reachable by Q′′′). If the algebraic
length of Q′ equals k we consider a path Q′′ obtained from
Q′ by substituting each subpath of shape · → · ← · with
· 2−→ · 2←− ·. Path Q′′ is an initial fragment of F[k + 1, l] we
have {b}Q′ ⊆ {b}Q′′ (as the digraph is smooth) – now we
can find Q′′′ as in the previous case.

If the last edge of P points backwards we proceed with
dual reasoning. If algebraic length of Q′ is greater than zero
we obtain Q′′′ of algebraic length −1 as before and the
proposition is proved. If algebraic length of Q′ is zero we
substitute b with any vertex b′ such that b′ → b and alter Q′

by substituting each · ← · → · with · 2←− · 2−→ ·. The new

path is an initial fragment of F[k+ 1, l] and we can proceed
as in previous case.

For the third item of the proposition. Without loss of
generality we can assume the first possibility and choose
an arbitrary b0 ∈ H . As H ⊆ H ·→· there is an element
b1 ∈ H such that b1 → b0. Repeating the same reasoning
for b1, b2, . . . we obtain a sequence of vertices in H such
that bi+1 → bi. As H is finite, we obtain a cycle in H and
the last item of the proposition is proved.

B. Reduction of the problem

We present a number of elementary reductions of Theo-
rem IV.1. Bang-Jensen and Hell [1] showed that if digraph H
has a core which is a disjoint union of circles then CSP(H)
is solvable in a polynomial time. On the other hand, using
Theorem II.4 and the fact that CSPs of a relational structure
and its core are the same, it suffices to prove that:

Theorem IV.3. If a smooth digraph admits a Taylor poly-
morphism then it retracts onto the disjoint union of circles.

Finally Theorem IV.3 reduces to the theorem below and an
elementary proof of this reduction can be found in [6], [7].

Theorem IV.4. If a smooth digraph has algebraic length
one and admits a Taylor polymorphism then it contains a
loop.

In fact, in the reminder of this section, we prove a stronger
version of Theorem IV.4:

Theorem IV.5. Let A be a finite algebra in a Taylor variety
and let G = (A,E) be a smooth digraph of algebraic length
one such that E is a subuniverse of A2. Then G contains a
loop; moreover if there exists I /A such that I is contained
in a weak component of G of algebraic length 1, then the
loop can be found in some J such that J // A.

C. The proof

Our proof of Theorem IV.5 proceeds by induction on the
size of the vertex set of G = (A,E). If |A| = 1 there is
nothing to prove (as the only smooth digraph on such a
set contains a loop); for the induction step we assume that
Theorem IV.5 holds for all smaller digraphs.

Claim IV.5.1. Let H be a weak component of G of algebraic
length one, then there exists a ∈ H and a path P such that
{a}P contains a cycle.

Proof: We choose a ∈ H to be the element of the
component H such that there is a path Q of algebraic length
one connecting a to a. We define the sequence of sets B0 =
{a} and Bi = BQ

i−1 recursively. As a is connected to a
via Q we have B0 ⊆ B1 and therefore Bi ⊆ Bi+1 for any
i (as by definition Bi−1 ⊆ Bi implies that BQ

i−1 ⊆ BQ
i i.e.

Bi ⊆ Bi+1). As Q is of algebraic length one we can use
Proposition IV.2 to infer that {a}·→· ⊆ B1 and further that
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{a}·
k−→· ⊆ Bk for any k. These facts together imply that

k⋃
i=0

{a}·
i−→· ⊆ Bk

and, as the digraph is finite, we can find a cycle in one of the
Bk’s. Take P to be the Q concatenated with itself sufficiently
many times to witness the claim.
Claim IV.5.2. Let H be a weak component of G of algebraic
length one, then there exists a ∈ H and a fence F such that
{a}F = H .

Proof: Let us choose a ∈ H and P′ as provided
by Claim IV.5.1. Set B to be the set of elements of
{a}P′ which belong to some cycle fully contained in {a}P′ .
Proposition IV.2 implies that BF[|A|,1] contains all elements
reachable by · i−→ · or · i←− · (for any i), from any element
of B. Indeed if such a c is reachable from b ∈ B by · i←− ·
then it is reachable by · |A|←−− · from some b′ ∈ B and further
by F[|A|, 1] from some b′′ ∈ B. In the other case b i−→ c for

some b ∈ B. There obviously exists d such that d
|A|←−− c

and since b i−→ c
|A|−−→ d we have some j ≤ |A| and b

j−→ d.

Thus there exists b′ ∈ B with b′
|A|−−→ d and c is reachable

by F[|A|, 1] from b′.
In a similar way we can show that BF[|A|,|A|] = H . Thus,

for an appropriate path P we have a connected to every
element of H by P. The second item of Proposition IV.2
provides b and an initial segment Q of a fence F such that
b is connected to every element from H by Q. Obviously
b is connected to every element of H by F as well and the
claim is proved.

The remaining part of the proof splits into two cases: in
the first case the algebra A has an absorbing subuniverse in
a weak component of algebraic length one and in the second
it doesn’t. Let us focus on the first case and define I / A
contained in a weak component (denoted by H) of algebraic
length one of G.
Claim IV.5.3. There is a fence F such that IF = H .

Proof: Let a and F′ be provided by Claim IV.5.2. We
put F to be a concatenation of F′ with itself. Since a ∈ IF′ ,
then IF = H .
Let P be the longest initial segment of F (provided by
Claim IV.5.3) such that IP 6= H . Put S = IP. By multiple
application of Lemma III.4 we infer that S is a subuniverse
of A and that S /A. The following lemma will be of use
in both of the cases:

Lemma IV.6. Let A be a finite algebra and let G = (A,E)
be a smooth digraph such that E is a subuniverse of A2. If
B is a subuniverse of A (an absorbing subuniverse of A)
then the smooth part of (B,E∩(B×B)) forms a subuniverse
of A (an absorbing subuniverse of A respectively).

Proof: Note that if the smooth part of (B,E∩(B×B))

is empty then the lemma holds. Assume it is non-empty and
let A, G, B be as in the statement of the lemma. We put
B1 ⊆ B to be the set of all the vertices in B with at least one
outgoing and at least one incoming edge in E∩(B×B) (i.e.
an outgoing edge and an incoming edge to elements of B).
As B1 = B ∩ B+E ∩ B−E Lemma III.4 implies that B1

is a subuniverse (absorbing subuniverse resp.) of A. We put
B2 = B1 ∩B+E

1 ∩B−E
1 and continue the reasoning. Since

A is finite we obtain some k such that Bk = Bk+1. Thus G
restricted to Bk has no sources and no sinks – this proves
the lemma.

The definition of S implies that S·→· = H ⊇ S or S·←· =
H ⊇ S, and therefore, by Proposition IV.2, S contains a
cycle. Thus the smooth part of G restricted to S, denoted
by S′, is non-empty and, by Lemma IV.6, it absorbs A. If
the digraph G restricted to S′ has algebraic length one and
is weakly connected, then we use the inductive assumption:

• either G restricted to S′ has no absorbing subuniverses
in a weak component of algebraic length one; in such
a case, as it is weakly connected, it has no absorbing
subuniverses at all — therefore S′ / / A and the
inductive assumption provides a loop in S′, or

• G restricted to S′ has an absorbing subuniverse; then
it has a loop in J // S′ and, as J // A, the theorem
is proved.

Therefore to conclude the first case of the theorem it remains
to prove

Claim IV.6.1. G restricted to S′ is a weakly connected
digraph of algebraic length 1.

Proof: Assume that S′ absorbs A with respect to t of
arity k and let m,n be natural numbers such that every two
vertices of H are connected via the (m,n)-fence (implied
by Claim IV.5.2) denoted by F. We will show that any two
vertices a, b ∈ S′ are connected via the (m,nk)-fence in the
digraph G restricted to S′.

As the digraph G restricted to S′ is smooth, a is connected
to a via F and b is connected to b via F (by Proposition IV.2).
Let f : F→ S′ and g : F→ S′ be the corresponding digraph
homomorphisms. Moreover, a is connected to b via F in the
digraph G and we take the corresponding homomorphism
h : F → G. For every i = 0, 1, . . . , k − 1 we consider the
following matrix with k rows and 2nm + 1 columns: To
the first (k− i− 1) rows we write f -images of the vertices
of F, to the (k − i)th row we write h-images, and to the
last i rows we write g-images. We apply the term operation
t to columns of this matrix. Since E ≤ A2 we obtain a
homomorphism from F to G which realizes a connection
from

t(a, a, . . . , a︸ ︷︷ ︸
(k−i)

, b, b, . . . , b︸ ︷︷ ︸
i

)
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to

t(a, a, . . . , a︸ ︷︷ ︸
(k−i−1)

, b, b, . . . , b︸ ︷︷ ︸
(i+1)

).

Moreover, since all but one member of each column are
elements of S′ and S′ / A, we actually get a homomor-
phism F → S′. By joining these homomorphisms for
i = 0, 1, . . . , k − 1 we obtain that a = t(a, a, . . . , a) is
connected to b = t(b, b, . . . , b) via the (m,nk)-fence in S′.

As S′ ⊆ H all the elements of S′ are connected in H ,
and, using the paragraph above, also in S′. Moreover we
can take two elements a, b ∈ S′ such that a → b. As a is
connected to b via a (m,nk)-fence in S′ the algebraic length
of G restricted to S′ is one.

It remains to prove the case of Theorem IV.5 when there
is no absorbing subuniverse in any weak component of G of
algebraic length one. We choose such a component and call
it H . By Claim IV.5.2 there is an a ∈ H and F such that
H = {a}F. Since {a} is a subuniverse the reasoning similar
to the one in the first case shows that H is a subuniverse as
well. If H  A we are done by the inductive assumption.
Therefore H = A and there is no absorbing subuniverse
in A. Let k be minimal such that there exists m and a ∈
A with {a}F[k,m] = A. This implies that E◦k ≤S A ×
A is linked and, as there is no absorbing subuniverse in
A, Theorem III.6 implies that E◦k = A × A. In particular
the digraph G is strongly connected. Choose any a ∈ A
and consider the fence F[k − 1,m′] for m′ large enough
so that B = {a}F[k−1,m′] = {a}F[k−1,m′+1]. B is a proper
subuniverse of A (by yet again the same reasoning) and
it suffices to prove that the smooth part of G restricted to
B (which is going to be a subuniverse by Lemma IV.6) has
algebraic length 1.

Claim IV.6.2. The smooth part of B, denoted by B′, is non-
empty and has algebraic length one.

Proof: Note that, by definition of B, BF[k−1,1] = B.
Choose an arbitrary b ∈ B and let a ∈ A be such that b k−1−−→
a (such an a exists as G is smooth). Since E◦k = A × A
we get b k−→ a. Consider the first element b1 on this path:
b→ b1 and b1 ∈ B as b k−1−−→ a

k−1←−− b0. Therefore b→ b1
in E ∩ (B × B) and thus B·←· ⊇ B. By Proposition IV.2
the smooth part of B is non-empty.

It is easy to see that for any b ∈ B′ and any a
i−→ b

whenever i ≤ k − 1 then a ∈ B (as BF[k−1,1] = B). Let us
choose b, b′ ∈ B′ such that b k−1−−→ b′ in B′. As E◦k = A×A
we have b k−→ b′ in A. By the remark at the beginning of
this paragraph all the vertices on the path b k−→ b′ are in B,
and, since b, b′ are in B′, the whole path falls in B′. This
gives a path of algebraic length one connecting b to b in B′

which proves the claim.

V. CYCLIC TERMS IN TAYLOR VARIETIES

Our approach to cyclic terms hinges on the following
definition:

Definition V.1. An n-ary relation R on a set A is called
cyclic, if for all a0, . . . , an−1 ∈ A

(a0, a1, . . . , an−1) ∈ R ⇒ (a1, a2, . . . , an−1, a0) ∈ R.

The following easy consequence of the definition can be
found in [5].

Lemma V.2. Let A be a finite, idempotent algebra then
TFAE:
• A has a k-ary cyclic term;
• every cyclic subalgebra of Ak contains a constant

tuple.

Our proof of the theorem below is based on this fact and
uses Theorem III.6 and Theorem IV.5. The details of the
proof are to be found in [2].

Theorem V.3. Let V be an idempotent variety generated by
a finite algebra A then TFAE:
• V is a Taylor variety;
• V (equivalently the algebra A) has a cyclic term;
• V (equivalently the algebra A) has a cyclic term of

arity p, for every prime p > |A|.

We provide more information on the arities of possible
cyclic terms in the algebra. Let A be a finite algebra and let
C(A) be the set of arities of cyclic operations of A i.e.:

C(A) = {n : A has a cyclic term of arity n}.

It have been shown in [5]

Proposition V.4 ([5]). Let A be a finite algebra let m,n be
natural numbers. Then the following are equivalent.
(i) m,n ∈ C(A);

(ii) mn ∈ C(A).

This implies that C(A) is fully determined by its prime
elements. The assumption “finitely generated’ cannot be
relaxed to “locally finite” [5] and there are algebras in Taylor
varieties with no cyclic terms of arities smaller than their
size [5]. However the following simple corollary provides,
under special circumstances, additional elements in C(A).

Corollary V.5. Let A be a finite, idempotent algebra and
α be a congruence of A. If A/α and every α-block in A
have cyclic operation of arity k then so does A.

Proof: To apply Lemma V.2 we focus on an arbitrary
cyclic subalgebra B of Ak. Our first objective is to find
a tuple in B with all elements congruent to each other
modulo α. Let us choose any tuple (a0, . . . , ak−1) ∈ B
and let c(x0, . . . , xk−1) be the operation of A which
gives rise to the cyclic operation of A/α. Therefore
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c(a0, . . . , ak−1), c(a1, . . . , ak−1, a0), . . . all lie in one con-
gruence block of α (as the results of these evaluations are
equal in A/α). Now we apply the term c(x0, . . . , xk−1) in
B to (a0, . . . , ak−1), (a1, . . . , ak−1, a0), . . . and obtain the
tuple (c(a0, . . . , ak−1), c(a1, . . . , ak−1, a0), . . . ) in B with
all coordinates in the same congruence block.

Let C be a congruence block of α such that Ck ∩B 6= ∅.
It is easy to see that in such a case Ck ∩ B is a cyclic
subalgebra of Ck. As the block C has a cyclic operation of
arity k then, again by Lemma V.2, we obtain a constant in
Ck ∩B and the corollary is proved.
And this leads to the following easy observation.

Corollary V.6. Let A be a finite, idempotent algebra in
Taylor variety. Let 0A = α0 ⊆ · · · ⊆ αn = 1A be an
increasing sequence of congruences on A. If p is a prime
number such that, for every i ≥ 1, every class of αi splits
into less than p classes of αi−1 then A has a p-ary cyclic
term.

A. Consequences of the Theorem V.3

We present two immediate consequences. First we reprove
a theorem of Hell and Nešetřil [16]. It follows immediately
from the smooth theorem of Section IV, but the following
proof is an elegant way of presenting it.

Corollary V.7 (Hell and Nešetřil [16]). Let G be an undi-
rected graph without loops. If G is bipartite then CSP(G) is
solvable in a polynomial time. Otherwise it is NP-complete.

Proof: Without loss of generality we can assume that
G is a core. If the graph G is bipartite then it is a single
edge and CSP(G) is solvable in a polynomial time. Assume
now that G is not bipartite — therefore there exists a cycle
a

2k+1−−−→ a of odd length in G. As vertex a is in a 2-
cycle (i.e. an undirected edge) therefore we can find a path
a

i(2k+1)+j2−−−−−−−→ a for any non-negative numbers numbers i
and j. Thus, for any number l ≥ 2k we have a l−→ a. Let p
be any prime greater than max{2k, |A|} and t be any p-ary
polymorphism of G. Let a = a0 → a1 → · · · → ap−1 → a.
Then

t(a0, . . . , ap−1)→ t(a1, . . . , ap−1, a0)

and, if t were a cyclic operation we would have

t(a0, . . . , ap−1) = t(a1, . . . , ap−1, a0)

which implies a loop in G. This contradiction shows that
G has no cyclic polymorphism for some prime greater than
the size of the vertex set which, by Theorem V.3, implies
that the associated variety is not Taylor and therefore by
Theorem II.4 CSP(G) is NP-complete.

A second consequence of Theorem V.3 is a proof of a
result of Maroti and McKenzie [20]

Corollary V.8 (Maroti and McKenzie [20]). Let V be a
locally finite idempotent variety then TFAE:

• V is a Taylor variety;
• V has weak near-unanimity term.

Proof: Every weak near-unanimity term is a Taylor
term, and therefore only one implication is interesting. Let
V be a Taylor variety. Let F be a free algebra in V on two
generators. As V is locally finite the algebra F is finite, it
generates a Taylor variety and thus, by Theorem V.3 has a
cyclic operation c. Since in F we have c(x0, . . . , xp−1) ≈
c(x1, . . . , xp−1, x0) then

c(y, x, x, . . . , x) ≈ c(x, y, x, x, . . . , x) ≈ · · ·
· · · ≈ c(x, x, . . . , y, x) ≈ c(x, x, . . . , x, y)

holds in V and the corollary is proved.
Finally we are able to restate the algebraic dichotomy
conjecture of Bulatov, Jeavons and Krokhin:

The dichotomy conjecture of Bulatov, Jeavons and
Krokhin. Let A be a relational core. Let p be a prime
number greater than the size o the universe of A. If every
positively primitively defined cyclic relation in Ap has a
constant then CSP(A) is solvable in a polynomial time.
Otherwise it is NP-complete.

This statement is equivalent to the original algebraic di-
chotomy conjecture by Theorem V.3 and Lemma V.2.
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