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Abstract. The Dolbeault sequence is a fundamental tool for many problems in the function theory of several complex
variables. A lot of attention was paid in the last decades to its analogue in the function theory of several Clifford variables. The
first operator in this resolution is the Dirac operator in several variables. The complete description is known in dimension 4
(i.e., in the case of quaternionic variables, see [1, 6, 4]). Much less is known in higher dimensions. The case of three variables
was described completely (see [18]). The full description of the complex for all dimensions is not known at present. Even
the case of the stable range (i.e., when the number of variables is less or equal to the half of dimension) is still not fully
understood.

There are two different approaches to the stable range case, one based on classical algebraic geometry (the Hilbert syzygy
theory, see [8]), the other one on representation theory (differential invariants in certain parabolic geometries, see [14, 20]).
Differential operators in these resolutions are acting on vector-valued functions. Such spaces of functions are quite complicated
in general and the first problem in the description of the resolution is to understand their dimensions. Both the approaches
mentioned above suggest an answer to this question, although such answers look quite different. The aim of the paper is to
compare these two results and to show that they lead to complicated combinatorial identities.
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THE ANALOGUE OF THE DOLBEAULT SEQUENCE

The Dirac operator ∂x = e1∂x1 + · · ·+em∂xm generalizes the well known Cauchy-Riemann operator ∂z̄ = ∂x + i∂y from
complex analysis to hypercomplex analysis. It acts on functions defined on an open subset in Rm, we shall consider
here values in an irreducible Spin(m) representation Sm. A natural problem in Clifford analysis is to study the space of
monogenic functions, which constitutes the kernel of the Dirac operator (for details, see [12]). A natural generalization
of the theory of several complex variables is then the study of solutions of the Dirac operator Dk := (∂x1 , . . . ,∂xk) in
several Clifford variables. The operator Dk is now acting on functions defined on open subsets in (Rm)k with values in
the spinor representation Sm.

We would like to describe compatibility conditions for the image of D0
k = Dk. More precisely, we want to

characterize k-tuples (g1, . . . , ,gk) on the right hand side of the system
∂x1 f = g1

...
∂xk f = gk

, (1)

as a kernel of a suitable differential operator D1
k . Here the functions g j are of the same type as the function f .

Continuing in the same way with the system associated to D1
k , we are looking for a sequence D j

k , j = 1, . . . , t of
differential operators which form a resolution of the first operator D0

k . If W j denotes the values of the functions at
each step and C ∞(W j) denotes smooth maps on (Rm)k with values in W j, we want to find a complex

0 −→ C ∞(W0)
D0

k−→C ∞(W1)
D1

k−→ . . .−→ C ∞(Wt−1)
D t−1

k−→C ∞(Wt)−→ 0, (2)

which is (locally) exact. We will present in turn two different approaches to the construction of such resolution.



BETTI NUMBERS

The first method is to apply (at least for small values of k and m) the algebraic techniques described in [8] and to
construct a free resolution of the module coker(Pt), where P is the symbol matrix of the operator Dk := (∂x1 , . . . ,∂xk).
Dualizing it, one obtains a complex of polynomial maps and free modules

0 −→ Rβ0 P−→Rβ1 P1−→ . . .−→ Rβt−1
Pt−1−→Rβt −→ 0. (3)

Each map in the complex can be viewed as the symbol of a differential operator. The condition Pi+1 ◦Pi = 0 means
that Pi+1 encodes the compatibility conditions for the system of equations associated to Pi (see [8]). Suppose that we
are in the stable range, i.e. m ≥ 2k where n denotes the dimension of the spinor space Sm. Let us introduce the ring
R := C[x11, . . . ,xkm] and let the matrix P ∈ Matkn,n(R) represent the symbol of the operator D acting on spinor valued
functions on (Rm)k. Then the associated module M := coker(Pt) = Rn/im(Pt) has a finite free resolution

0 −→⊕ jR(− j)βt j −→⊕ jR(− j)βt−1 j −→ . . .−→⊕ jR(− j)β1 j P−→⊕ jR(− j)β0 j −→ 0. (4)

The integer βi j is the ith graded Betti number in degree j. Another important invariant for the module is its Hilbert
series HM (z) = ∑ j dimC(M j)z j where M j is the jth graded component of M . Computational evidence in this case
shows [10] that the Hilbert series is

HM (z) =
n(1+ z)(

k
2)(1− z)(

k+1
2 )

(1− z)mk =
HN(z)

(1− z)km .

The relation between the Hilbert numerator HN(z) and the graded Betti numbers is (see [13])

HN(z) =
d

∑
j=0

t

∑
i=0

(−1)i
βi jz j. (5)

One defines

Bj :=
1
j!

d j

dz j [(1+ z)(
k
2)(1− z)(

k+1
2 )]|z=0 ,

so the numerator is HN(z) = n∑
d
j=0 Bjz j and we have that

Bj =
min(j,(k+1

2 ))
∑

t=max(0,j−(k
2))

(−1)t
((k

2

)
t

)((k+1
2

)
j− t

)
. (6)

Unfortunately, it is only when the resolution is "pure", i.e. for all i there exists exactly one jsuch that βi j 6= 0, that the
Hilbert numerator actually determines the Betti numbers. In our case, this happens only when k = 2 [8].

INVARIANT DIFFERENTIAL OPERATORS, WEYL DIMENSION FORMULA

The Dirac operator is invariant with respect to the group of orthogonal transformations but it is invariant also with
respect to a bigger group of conformal transformation. The Dirac operator Dk in several variables is clearly invariant
with respect to the product SLk × Spin(m) (the second factor acts on each variable separately by the corresponding
rotations, while the first one permutes them; at the same time, elements in Spin(m) act by left multiplication on the
values of the functions). Moreover, the operator Dk is invariant (in a suitable interpretation, for details see [14]) with
respect to a (bigger) parabolic subgroup P of the group G = Spin(k +1,m+1).

The main tool used in the second method for the construction of the resolution is to use this bigger invariance of the
first operator Dk and to build the resolution from differential operators having the same invariance properties. Some
steps in this direction were made in [14] (using the dual formulation in terms of Verma module homomorphisms) and
in [15] (using the Penrose transform techniques, as explained in [3, 2]). As a result of this approach, one gets a clear
description of the spaces in which the functions take values, expressed in terms of the so called Hasse graph.



The spinor representation Sm can be considered as a representation of the Levi factor G0 ' R∗×SL(k)×Spin(m),
which can be characterized by its highest weight for a Cartan subalgebra of G. The Hasse graph is defined to be the
orbit of the affine action of the Weyl group W of G. The Hasse graph was computed in [14], where it is possible to find
more details. We would like to compute dimensions of the corresponding modules, hence we can consider the spaces
V j, j = 1, . . . , t as modules over the semi-simple part SL(k)×Spin(m) of G0.

There is a one-to-one correspondence between irreducible representations of the product of two groups and tensor
products of irreducible representations of individual factors. In our case, the second factor in the tensor product will
always be an irreducible Spin(m) module Sm, hence an irreducible module for the product SL(k)× Spin(m) will be
denoted by a highest weight λ = (λ1, . . . ,λk),λi ∈ Z for SL(k). Given a weight λ , let us denote by λ ′ its conjugate,
i.e. λ ′

j = ]{i|λi ≥ j}. Note that if we use the Young (or Ferrers) diagrams instead of highest weights, conjugation
corresponds to a reflection of the diagram along the diagonal. For our purposes, we shall need only weights of the
form λ = (λ1, . . . ,λk) with k ≥ λ1 ≥ . . .≥ λk ≥ 0 and λ = λ ′. Let us denote the set of such weights by the symbol A .

We define a function σ on A by σ(λ ) = ∑
k
1(λ j − j + 1)+, where (α)+,α ∈ R denotes max(0,α). For example,

σ((3,2,1)) = 3 + 1 + 0 = 4. In terms of diagrams, σ(λ ) equals to the number of boxes below or on the diagonal.
Values of σ(λ ) clearly belong to the interval < 0,

(k+1
2

)
>, the maximum being achieved for λ = (k, . . . ,k).

We can now compute dimensions of the spaces W j appearing in the resolution by invariant operators in the following
way. The length of the resolutions will be t =

(k+1
2

)
and

W j '⊕λ∈A ,σ(λ )= jVλ ⊗Sm, j = 0 . . . ,

(
k +1

2

)
.

The dimension of the module Sm equals to n and the dimension of Vλ can be computed by the formula

dk
λ

=
(λ1 + k−1)!(λ2 + k−2)! · · ·λk!

(k−1)!(k−2)! · · ·2! ∏(h)
(7)

where the term ∏(h) is the product of all the hook lengths associated to the Ferrer diagram λ . Hence we have an
explicit formula for the dimension of the spaces W j.

THE CONJECTURE

We can now compare the results coming from both approaches. We get in such a way some nontrivial relations
involving various combinatorial quantities. The form of the invariant resolution shows that the graded Betti numbers
can be expressed easily using the dimensions of individual irreducible representations appearing in the invariant
resolution. In particular, βi j equals to n times the sum of dimensions of all Vλ over the set of all weights α with
σ(λ ) = j and |λ |= i. Using the relation with the Hilbert series numerator, we get the following conjecture.
Conjecture

For every nonnegative integer j, the j-th coefficient of the Hilbert numerator associated to the Dirac operator in k
variables is

Bj = ∑
λ=λ ′ , |λ |= j

(−1)σ(λ ) dk
λ
.

In low dimensions, the relations can be checked explicitly. We have checked them for k ≤ 6 also using CoCoA [5].
For example, for k = 4, we get

HN(z) = z16−4z15 +20z13−20z12−36z11 +64z10 +20z9−90z8 +20z7 +64z6−36z5−20z4 +20z3−4z+1.

On the other hand, 16 (nontrivial) graded Betti numbers calculated using Weyl dimension formula (7) are given by

β00 = 1,β11 = 4,β23 = 20,β34 = 20,β35 = 36,β46 = 64,β58 = 45,β69 = 20,

β47 = 20,β48 = 45,β6,10 = 64,β7,11 = 36,β7,12 = 20,β8,13 = 20,β9,15 = 4,β10,16 = 1.

Using the relation (5) , we see that the resulting coefficients in the Hilbert series coincides, hence both resolutions
have the same dimensions of the spaces W j, j = 1, . . . , t.

It is probable that the conjecture above will be proved soon by further development of methods used for both
approaches to the construction of analogues of the Dolbeault resolution.
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