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Abstract. Commutative semirings with divisible additive semigroup are stud-
ied. We show that a bounded finitely generated commutative additively divis-
ible semiring is additively idempotent. One-generated commutative additively
divisible semirings are treated in more detail.

It is well known that a commutative field is finite provided that it is a finitely
generated ring. Consequently, no finitely generated commutative ring (whether
unitary or not) contains a copy of the field Q of rational numbers. On the other
hand, it seems to be an open problem whether a finitely generated (commutative)
semiring S can contain a copy of the semiring (parasemifield) Q+ of positive ratio-
nals. Anyway, if S were such a (unitary) semiring with 1S = 1Q+ , then the additive
semigroup S(+) should be divisible. So far, all known examples of finitely gener-
ated additively divisible commutative semirings are additively idempotent. Hence
a natural question arises, whether a finitely generated (commutative) semiring with
divisible additive part has to be additively idempotent.

Analogous questions were studied for semigroups. According to [2, 2.5(iii)], there
is a finitely generated non-commutative semigroup with a divisible element that is
not idempotent. In this context it is of interest to ask whether there are non-finite
but finitely generated divisible semigroups. This is in fact not true. Moreover,
there exist infinite but finitely generated divisible groups (see [3] and [7]).

The present short note initiates a study of (finitely generated) additively divisible
commutative semirings. In particular, we show that a finitely generated commuta-
tive additively divisible semiring that is bounded has to be additively idempotent.
The one-generated case is treated in more detail, but remains an open problem.

1. Preliminaries

Throughout the paper, all algebraic structures involved (as semigroups, semir-
ings, groups and rings) are assumed to be commutative, but, possibly, without
additively and/or multiplicatively neutral elements. Consequently, a semiring is a
non-empty set equipped with two commutative and associative binary operations,
an addition and a multiplication, such that the multiplication distributes over the
addition. A semiring S is called a ring if the additive semigroup of S is a group
and S is called a parasemifield if the multiplicative semigroup of S is a non-trivial
group.

We will use the usual notation: N for the semiring of positive integers, N0 for
the semiring of non-negative integers, Q+ for the parasemifield of positive rationals
and Q for the field of rationals.
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Define a relation ρ(k, t) on N for all k, t ∈ N by (m,n) ∈ ρ(k, t) if and only if
m − n ∈ Zt and either m = n or m ≥ k and n ≥ k. The following result is well
known and quite easy to show:

Proposition 1.1. The relations idN(= ρ(k, 0)) and ρ(k, t), k, t ∈ N, are just all
congruences of the additive semigroup N(+) (and of the semiring N as well).

Let S be a semiring. An element a ∈ S is said to be of finite order if the cyclic
subsemigroup Na = {ka| k ∈ N}, generated by the element a, is finite. We put
ord(a) = card(Na) in this case. If T (S) denotes the set of elements of finite order,
than either T (S) = ∅ or T (S) is a torsion subsemiring (even an ideal) of S (i.e.,
every element of T (S) has finite order).

Lemma 1.2. Let A be a non-empty subset of a semiring such that there exists
m ∈ N with ord(a) ≤ m for every a ∈ A. Then there exists n ∈ N such that
ord(b) ≤ n for every b ∈ 〈A〉. Moreover, there is r ∈ N such that 2rb = rb for every
b ∈ 〈A〉.

Proof. We have Na ∼= N(+)/ρ(ka, ta), where ka, ta ∈ N, ka + ta ≤ m+ 1. Further-
more, 2maa = maa for some ma ∈ N, ma ≤ m + 1. Setting r = (m + 1)!, we get
2rb = rb for every b ∈ 〈A〉. Of course, Nb ∼= N(+)/ρ(kb, tb) and ord(b) = kb + tb−1.
Since 2rb = rb, we have r ≥ kb and tb divides 2r − r = r. Consequently,
kb + tb − 1 ≤ 2r − 1 = n. �

Lemma 1.3. Let a, b ∈ S be such that ka = la + b for some k, l ∈ N, k 6= l. If
ord(b) is finite, then ord(a) is so.

Proof. There are m,n ∈ N such that m < n and mb = nb. Then nka = nla+ nb =
nla+mb = (n−m)la+m(la+ b) = (n−m)la+mka = ((n−m)l +mk)a. Since
k 6= l, we see that (n −m)k 6= (n −m)l and nk 6= (n −m)l +mk. Consequently,
ord(a) is finite. �

Define a relation σS on a semiring S by (a, b) ∈ σS if and only if ma = mb for
some m ∈ N.

Define a relation τS on a semiring S by (a, b) ∈ τS if and only if ma = nb for
some m,n ∈ N.

Lemma 1.4. σS and τS are both congruences of S, σS ⊆ τS , σS/σS
= id and

τS/τS
= id.

Proof. It is easy. �

Lemma 1.5. A semiring S is torsion, provided that the factor-semiring S/σS is
torsion.

Proof. For every a ∈ S there are k, l ∈ N such that (ka, la) ∈ σS , k < l. Further-
more, there is m ∈ N with mka = mla. Clearly, mk < ml, and hence ord(a) is
finite. �

Let S be a semiring and o /∈ S be a new element. Putting x + o = o + x = x
and oo = xo = ox = o we get again a semiring S ∪ {o}. Consider now the semiring
T = N0 × (S ∪ {o}) equipped with component-wise addition and multiplication
given as (n, a)(m, b) = (nm,ma+ nb + ab) for every n,m ∈ N0 and a, b ∈ S ∪ {o}.
Denote U(S) = T \ {(0, o)} the (unitary) subsemiring.

Now, S can always be treated as a natural unitary U(S)-semimodule, with
(n, a)x = nx + ax for every (n, a) ∈ U(S), x ∈ S. (Here (n, o)x = nx and
(0, a)x = ax for n ∈ N and a, x ∈ S.)

Lemma 1.6. Let S be a semiring. If w ∈ S, a, b, c ∈ U(S)w and m ∈ N are such
that ma = mb and mc = w, then a = b.
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Proof. For every d ∈ U(S)w, there is αd ∈ U(S) with d = αdw. Now, a = αaw =
αamc = αcαamw = αcma = αcmb = αcαbmw = αbmc = αbw = b. �

Lemma 1.7. Let T be a subsemiring of a semiring S and let DS(T ) = {a ∈
S| Na ∩ T 6= ∅}. Then:

(i) DS(T ) is a subsemiring of S and T ⊆ DS(T ).
(ii) DS(DS(T )) = DS(T ).

Proof. It is easy. �

2. Additively divisible semirings

Let S(= S(+)) be a semigroup. An element a ∈ S is called divisible (uniquely
divisible, resp.) if for every n ∈ N there exists b ∈ T (a unique, resp.) such that
a = nb.

A semigroup S is called divisible (uniquely divisible, resp.) if every element of S
is divisible (uniquely divisible, resp.). Clearly, S is divisible iff S = nS for every
n ∈ N. The class of divisible semigroups is closed under taking homomorphic images
and cartesian products and contains all divisible groups and all semilattices (i.e.,
idempotent semigroups).

A semiring is called additively divisible (additively uniquely divisible, resp.) if
its additive part is a divisible semigroup (uniquely divisible semigroup, resp.). The
semiring Q+ is additively (uniquely) divisible.

Note, that any semigroup S(+) with an idempotent element e (i.e. e + e = e)
can always be treated as a semiring with a constant multiplication given as ab = e
for every a, b ∈ S.

The following theorem is a consequence of [2, 2.14(i)]. But for completeness (and
using stronger assumptions) we provide a simpler proof.

Theorem 2.1. ([2]) A semigroup S is finitely generated and divisible if and only
if S is a finite semilattice.

Proof. Only the direct implication needs a proof. Let S be a divisible semigroup
generated by a finite set A. We will proceed by induction on the number m of
non-idempotent generators.

If m = 0, then S is generated by a set of idempotents and it follows easily
that S is a finite semilattice. Now, assume that m ≥ 1 and choose a ∈ A with
2a 6= a. Define a relation ρa on S by (u, v) ∈ ρa if and only if u + ka = v + la
for some k, l ∈ N. Then ρa is a congruence of the semigroup and S/ρa is a finite
semilattice by induction. Since S is divisible, we have a = 2b for some b ∈ S and
(a, b) = (2b, b) ∈ ρa (since S/ρa is idempotent). Then ka = b + la for suitable
k, l ∈ N and we get 2ka = 2b+2la = (2l+1)a. Since 2k 6= 2l+1, we conclude that
the cyclic subsemigroup Na generated by {a} is finite.

We have proved that Na is finite for every a ∈ A. Since S is generated by A and
A is finite, one checks easily that S is finite, too. In particular, for every u ∈ S
there is nu ∈ N such that 2nuu = nuu. If n =

∏
nu, then 2nu = nu. Since S is

divisible, nS = S and it follows that S is a finite semilattice. �

Remark 2.2. Let S be a divisible semiring. Then both S/σS and S/τS are addi-
tively uniquely divisible semirings.

Theorem 2.3. A torsion divisible semiring S is additively idempotent if at least
one of the following two condition is satisfied:

(i) S is bounded (i.e., there exists m ∈ N with ord(a) ≤ m for every a ∈ S.);
(ii) S is additively uniquely divisible.
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Proof. (i) If S is bounded, then by 1.2 there exists n ∈ N such that 2na = na for
every a ∈ S. Since S is divisible, we have a = nb, and so 2a = 2nb = nb = a.

(ii) If S is additively uniquely divisible and a ∈ S, then 2ka = ka for some k ∈ N,
so that k(2a) = ka and 2a = a. �

Corollary 2.4. If S is a torsion divisible semiring, then σS is just the smallest
congruence of S such that the corresponding factor-semiring is additively idempo-
tent.

Corollary 2.5. Let S be an additively uniquely divisible semiring. Then T (S) is
additively idempotent.

Example 2.6. Consider a non-trivial semilattice S and the quasicyclic p-group
Zp∞ . Then the product S × Zp∞ is a torsion divisible semigroup that is neither a
semilattice nor a group.

3. Additively divisible semirings - continued

Throughout this section, let S be an additively divisible semiring.

Proposition 3.1. (i) Both the factor-semirings S/σS and S/τS are additively
uniquely divisible.

(ii) If T (S) 6= ∅, then T (S) is an additively divisible ideal S.

Proof. It is easy. �

Proposition 3.2. Assume that the semiring S is generated as an S-semimodule
by a subset A such that ord(a) ≤ m for some m ∈ N and all a ∈ A. Then S is
additively idempotent.

Proof. Put B = {b ∈ S| ord(b) ≤ m}. Then A ⊆ B and sb ∈ B for all s ∈ S and
b ∈ B. Consequently, 〈B〉 = S and, by 1.2, there is n ∈ N with ord(x) ≤ n for
every x ∈ S. Now, it remains to use 2.3(i). �

Corollary 3.3. The semiring S is additively idempotent, provided that it is gen-
erated as an S-semimodule by a finite set of elements of finite orders.

Corollary 3.4. The semiring S is additively idempotent, provided that it is torsion
and finitely generated.

Remark 3.5. (i) The zero multiplication ring defined on Zp∞ is both additively
divisible and additively torsion. Of course, the ring is neither additively idempotent
nor finitely generated. The (semi)group Zp∞(+) is not uniquely divisible.

(ii) Let R be a (non-zero) finitely generated ring (not necessary with unit). Then
R has at least one maximal ideal I and the factor-ring R/I is a finitely generated
simple ring. However, any such a ring is finite and consequently, R is not additively
divisible.

Remark 3.6. Assume that S is additively uniquely divisible.
(i) For all m,n ∈ N and a ∈ S, there is a uniquely determined b ∈ S such

that ma = nb and we put (m/n)a = b. If m1, n1 ∈ N and b1 ∈ S are such that
m/n = m1/n1 and m1a = n1b1, then k = mn1 = m1n and kb1 = mm1a = kb
and b1 = b. Consequently, we get a (scalar) multiplication Q+ × S → S (one
checks easily that q(a1 + a2) = qa1 + qa2, (q1 + q2)a = q1a+ q2a, q1(q2a) = (q1q2)a
and 1a = a for all q1, q2 ∈ Q+ and a1, a2, a ∈ S) and S becomes a unitary Q+-
semimodule. Furthermore, qa1 · a2 = a1 · qa2 for all q ∈ Q+ and a1, a2 ∈ S, and
therefore S is a unitary Q+-algebra.

(ii) Let a ∈ S be multiplicatively but not additively idempotent (i.e., a2 = a 6=
2a). Put Q = Q+a. Then Q is a subalgebra of the Q+-algebra S and the mapping
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ϕ : q 7→ qa is a homomorphism of the Q+-algebras and, of course, of the semirings
as well. Since a 6= 2a, we have ker(ϕ) 6= Q+ × Q+. But Q+ is a congruence-simple
semiring and it follows that ker(ϕ) = id. Consequently, Q ∼= Q+.

Put T = Sa. Then T is an ideal of the Q+-algebra S, Q ⊆ T (we have qa =
qa · a ∈ T ) and a = 1Q = 1T is a multiplicatively neutral element of T . The
mapping s 7→ sa, s ∈ S, is a homomorphism of the Q+-algebras. Consequently,
T is additively uniquely divisible. Furthermore, T is a finitely generated semiring,
provided that S is so.

Proposition 3.7. Assume that 1S ∈ S. Then:

(i) S is additively uniquely divisible.
(ii) Either S is additively idempotent or S contains a subsemiring Q such that

Q ∼= Q+ and 1S = 1Q.
(iii) If ord(1S) is finite, then S is additively idempotent.

Proof. For every m ∈ N, there is sm ∈ S such that 1S = msm. That is, sm =
(m1S)−1. If ma = mb, then a = smma = smmb = b and we see that S is additively
uniquely divisible. The rest is clear from 3.6. �

Proposition 3.8. If the semiring S is non-trivial and additively cancellative, then
S is not finitely generated.

Proof. The difference ring R = S − S of S is additively divisible, and hence it is
not finitely generated by 3.5(ii). Then S is not finitely generated either. �

Lemma 3.9. If T is a subsemiring of S, then the subsemiring DS(T ) (see 1.7) is
additively divisible.

Proof. It is easy. �

4. One-generated additively divisible semirings

In this section, let S be an additively divisible semiring generated by a single
element w ∈ S.

Proposition 4.1. The semiring S is additively uniquely divisible.

Proof. Follows from 1.6. �

Lemma 4.2. The semiring S is additively idempotent, provided that ord(wm) is
finite for some m ∈ N.

Proof. Let n ∈ N be the smallest number with ord(wn) finite. If n = 1, then the
result follows from 3.3, and so we assume, for contrary, that n ≥ 2. Since S(+)
is divisible, there are v ∈ S, k ∈ N0 and a polynomial f(x) ∈ N0[x] · x such that
w = 2v and v = kw+w2f(w). Hence wn−1 = 2kwn−1 +2wnf(w). By assumption,
2wnf(w) is of finite order. If k = 0, then clearly ord(wn−1) is finite, and if k ≥ 1,
then ord(wn−1) is finite, by 1.3, the final contradiction. �

For n ∈ N denote Sn = 〈{a1 . . . an| ai ∈ S}〉.

Lemma 4.3. If u ∈ S is such that w = wu, then u = 1S.

Proof. Let w = wu. Since S = U(S)w, for every a ∈ S there is αa ∈ U(S) such
that a = αaw. Hence a = αaw = αawu = au for every a ∈ S. Thus u = 1S . �

Corollary 4.4. 1S ∈ S (i.e. S is unitary) if and only if S2 = S. In this case:

(i) w−1 ∈ S.
(ii) Sn = Sm for all n,m ∈ N.
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Proof. Let S2 = S. Then w ∈ S = S2 and there is a non-zero polynomial f(x) ∈
N0[x] · x such that w = wf(w). By 4.3, f(w) = 1S . Now, since 1S ∈ S = S2, we
have similarly that 1S = wu for some u ∈ S. Hence w−1 = u ∈ S. The rest is
obvious. �

Lemma 4.5.

(i) For every n ∈ N there are a, b ∈ S such that w + awn = 2w + bwn.
(ii) For all n,m ∈ N there are c, d ∈ S such that mwn +mcwn = wn +mdwn.

Proof. Let n ∈ N. Consider a congruence ρ of the semiring S such that (x, y) ∈ ρ iff
x+a′wn = y+b′wn for some a′, b′ ∈ S. Then the additive semigroup S/ρ is finitely
generated, hence idempotent by 2.1. Thus (w, 2w) ∈ ρ and there are a, b ∈ S such
that w + awn = 2w + bwn.

Now, let m ∈ N. Since S is additively divisibile, there is u ∈ S such that
wn = mu. By the additive idempotency of S/ρ we have (wn, u) = (mu, u) ∈ ρ.
Hence there are c, d ∈ S such that wn + cwn = u + dwn. Finally, mwn +mcwn =
wn +mdwn. �

Lemma 4.6. Let k ∈ N, k ≥ 2 and u ∈ S ∪ {0} be such that w = kw + u. Then
there exists a ∈ S ∪ {0} such that x = 2x+ ax for every x ∈ S.

Proof. Let u = mw+wf(w), where m ∈ N0 and f(x) ∈ N0[x] ·x. If f(x) = 0, then
ord(w) is finite, S is idempotent by 3.3 and we can put a = 0.

Hence assume that f(x) 6= 0. Put n = m + k and b = f(w) ∈ S. We have
w = nw + wb. Adding (n − 2)w to both sides of this equality, we get (n − 1)w =
2(n − 1)w + wb. Since w is a generator and S is additively divisible we have
b = (n − 1)a for some a ∈ S and for every x ∈ S there is αx ∈ U(S) such that
x = (n − 1)αxw. Hence x = αx(n− 1)w = αx(2(n− 1)w + (n − 1)wa) = 2x + xa
for every x ∈ S. �

Remark 4.7. Let x, v ∈ S be such that x = 2x+ v. Put u = x+ v. Then:

(i) u is an idempotent and x = x+ u.
(ii) Let v′ ∈ S be such that x = 2x+ v′. Then u = x+ v′.
(iii) The set {a ∈ S| x = x+ a} is a subsemigroup of S(+).

Lemma 4.8. S is additively divisible if and only if for every prime integer p there
is vp ∈ S with w = pvp.

Proof. The direct implication is trivial. Conversely, if w = pvp, then w ∈ pS, and
so pS = S, since pS is an ideal of the semiring S. Furthermore, given m ∈ N,
m ≥ 2, we have m = pk1

1 . . . pkn

n , and hence mS = S as well. �

Remark 4.9. (i) Let p1, . . . , pn be prime numbers. Put m = p1 · · · pn and S =
Zm−1. Then S is generated (as a semiring) by the element w = [1]m−1 and w = mw.
Hence for every i = 1, . . . , n there is vpi

such that w = pivpi
, but S is not additively

idempotent.
(ii) Let S = Z2. Then S is one-generated and for every prime number p 6= 2 and

every x ∈ S we have x = px, but S is again not additively idempotent.

Clearly, S is additively divisible, iff for every n ∈ N there is a non-zero poly-
nomial fn(x) ∈ N0[x] · x such that w = nfn(w). By [2, 2.5(i)], every divisible
element in a finitely generated commutative semigroup has to be idempotent. As-
suming now, that the degree of the polynomials fn is bounded, we get that S is
additively idempotent. To illustrate some other situations and techniques see the
next examples.
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Example 4.10. Let n,m, k, l ∈ N be such that nl−1 6= mk−1 and suppose that
w = nwk and w = mwl. Then S is additively idempotent.

Indeed, nmkwkl = n(mwl)k = nwk = w = mwl = m(nwk)l = mnlwkl. Since
nmk 6= mnl, wkl is of finite order and S is additively idempotent by 4.2.

Example 4.11. Let w = 2(w + w2) and w = 3(w + w3). Then S is additively
idempotent.

Indeed, adding these two equalities we get 2w = 5w + 2w2 + 3w3. Now, since
w2 = 2w2 + 2w3 we can substitute 2w = 5w + (2w2 + 2w3) + w3 = 5w + w2 + w3.
Hence 4w = 10w+(2w2+2w3) and by the same substitution we get 4w = 10w+w2.
Finally, 8w = 20w+ 2w2 = 18w+ (2w+ 2w2) = 19w and w is of finite order. Thus
S is additively idempotent by 4.2.

Lemma 4.12. TS = {ϕ ∈ End(S(+))| (∃α ∈ U(S))(∀x ∈ S) ϕ(x) = αx} is a
unitary additively divisible two-generated semiring.

Moreover, S is additively idempotent if and only if TS is so.

Proof. We only need to show, that idS ∈ TS is an additively divisible element. Let
n ∈ N. Then w = na for some a ∈ S and a = αaw for some αa ∈ U(S). Now, for
every x ∈ S there is αx ∈ U(S) such that x = αxw. Hence x = αxw = αxnαaw =
nαax. Thus idS = nαa. The rest is easy. �

5. One-generated additively divisible semirings - continued

This section is an immediate continuation of the preceding one. We assume that
S is non-trivial. Since the congruence S × S is generated by {(w, 2w), (w,w2)}, S
has at least one (proper) maximal congruence λ and the factor-semiring T = S/λ
is congruence-simple. Of course, T is additively divisible and one-generated. We
denote by ψ the natural projection of S onto T . According to [1, 10.1], T is an
additively idempotent semiring, T is finite and just one of the following three cases
takes place:

(a) T ∼= Z3;
(b) T ∼= Z4;
(c) T ∼= V (G) for a non-trivial finite cyclic group G.

The definitions are as follows:

Z3 :
+ 0 1
0 0 0
1 0 1

· 0 1
0 0 0
1 0 0

Z4 :
+ 0 1
0 0 0
1 0 1

· 0 1
0 1 1
1 1 1

Let G(·) be an abelian group, o /∈ G. Put V (G) = G ∪ {o} and define x + y =
y + x = o, x+ x = x and xo = ox = o for all x, y ∈ V (G), x 6= y.

Theorem 5.1. If T ∼= Z3, then S is additively idempotent.

Proof. The congruence λ has just two blocks, say A = ψ−1(0) and B = ψ−1(1),
where A is a bi-ideal of S, SS ⊆ A and w ∈ B, B + B ⊆ B. Then w2, w3, · · · ∈ A
and it follows that B = Nw. On the other hand, w = 2v for some v ∈ S and we
have v ∈ B. This means that ord(w) is finite and it follows from 4.2 that S is
additively idempotent. �

Proposition 5.2. Assume that T ∼= Z4. Then:

(i) The congruence λ has just two blocks A = ψ−1(0) and B = ψ−1(1).
(ii) A is an ideal of S(+) and w ∈ A.
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(iii) B is an ideal of S and SS ⊆ B.
(iv) B is an additively uniquely divisible semiring and B is generated by the set

{w2, w3}.
(v) A(+) is a uniquely divisible semigroup.
(vi) 1S /∈ S.

Proof. We have A = {n1w + n2w
2 + · · · + nkw

k| k ∈ N, ni ∈ N0, n1 6= 0} and
B = {m2w

2 + · · · +mlw
l| 2 ≤ l ∈ N,mj ∈ N0,

∑
mj 6= 0}. The rest follows from

4.1, 4.3 and 4.4. �

In the remaining part of this section, assume that T ∼= V (Zm) = Zm ∪ {o} =
{o, 0, 1, . . . ,m − 1} for some 2 ≤ m ∈ N (here Zm(+) = {0, 1, . . . ,m − 1} is the
m-element cyclic group of integers modulo m). Furthermore, put A = ψ−1(o) and
Bk = ψ−1(k) for every k = 0, 1, . . . ,m − 1. Since ψ(w) has to be a generator
of Zm, we can (without loss of generality) assume that w ∈ B1, w

2 ∈ B2, . . . ,
wm−1 ∈ Bm−1 and wm ∈ B0.

Proposition 5.3.

(i) B0 = {n1w
m + n2w

2m + · · · + nlw
lm| l ∈ N, ni ∈ N0,

∑
ni 6= 0}.

(ii) B0 is a subsemiring of S and B0 is an additively uniquely divisible semiring
generated by a single element, namely by the element wm.

(iii) B1, . . . , Bm−1 are uniquely divisible subsemigroups of S(+).
(iv) Bk = {n1w

k + n2w
k+m + · · · + nlw

k+(l−1)m| l ∈ N, ni ∈ N0,
∑
ni 6= 0} for

every 1 ≤ k ≤ m− 1.
(v) BkBl ⊆ Bt, t = k + l (mod m) for all 0 ≤ k, l ≤ m − 1 and Bk + Bl ⊆ A

for k 6= l.
(vi) A is an bi-ideal of S and an additively uniquely divisible semiring.

Proof. It is easy. �

Proposition 5.4. Assume that 1S ∈ S. Then:

(i) 1S ∈ B0 and 1S = n1w
m + n2w

2m + · · ·+nlw
lm, where l ∈ N, ni ∈ N0 and∑

ni 6= 0.
(ii) w−1 = n1w

m−1 + · · · + nlw
lm−1 ∈ Bm−1.

(iii) w−m = n11S + n2w
m + · · · + nlw

(l−1)m ∈ B0.
(iv) S is additively idempotent if and only if B0 is so (i.e., iff 1S = 2S).
(v) If S is not additively idempotent, then wt 6= 1S for any t ∈ N.

Proof. The first four assertions follow easily from 5.3. To show (v), assume on the
contrary that wt = 1S for some t ∈ N. Then the semigroup S(+) is generated by
{1S, w, . . . , w

t}. Hence S is additively idempotent by 2.1, a contradiction. �

In the end, note that although the one-generated structure is quite simple on
the first look, it seems that it will involve a lot of effort to solve even this case.

6. A few conjectures

In this last section we present some other open questions that are influenced by
our main problem (namely by the conjecture (A) - see below).

Example 6.1. Given a multiplicative abelian group G and an element o /∈ G, put
U(G) = G ∪ {o} and define addition and multiplication on U(G) (extending the
multiplication on G) by x + y = xo = ox = o for all x, y ∈ U(G). Then U(G)
becomes an ideal-simple semiring.

Consider the following statements:

(A) Every finitely generated additively divisible semiring is additively idempo-
tent.
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(A1) Every finitely generated additively uniquely divisible semiring is additively
idempotent.

(B) No finitely generated semiring contains a copy of Q+.
(B1) No finitely generated semiring with a unit element contains a copy of Q+

sharing the unit.
(C) Every finitely generated infinite and ideal-simple semiring is additively

idempotent or a copy of the semiring U(G) (see 6.1) for an infinite finitely
generated abelian group G.

(D) Every parasemifield that is finitely generated as a semiring is additively
idempotent.

Proposition 6.2. (A) ⇔ (A1) ⇒ (B) ⇔ (B1) ⇒ (C) ⇔ (D).

Proof. First, it is clear that (A) ⇒ (A1) and (B) ⇒ (B1). Furthermore, (C) ⇔ (D)
by [4, 5.1]. Now, assume that (A1) is true and let S be a finitely generated additively
divisible semiring. By 3.1, S/σS is additively uniquely divisible and, of course, this
semiring inherits the property of being finitely generated. By (A1), the semiring
S/σS is additively idempotent, and hence the semiring S is additively torsion by
1.5. Finally, S is additively idempotent by 3.4. We have shown that (A1) ⇒ (A)
and consequently, (A) ⇔ (A1).

Next, let (B1) be true and let S be a finitely generated semiring containing a
subsemiring Q ∼= Q+. Put P = S1Q. Then P is an ideal of S, 1Q = 1P , Q ⊆ P and
the map s 7→ s1Q is a homomorphism of S onto P . Thus P is a finitely generated
semiring and this is a contradiction with (B1). We have shown that (B1) ⇒ (B)
and consequently, (B) ⇔ (B1).

Now, we are going to show that (A) ⇒ (B1). Indeed, let S be a finitely generated
semiring such that 1S ∈ S and S contains a subsemiring Q with 1S ∈ Q and
Q ∼= Q+. If a ∈ S and m ∈ N, then b = (m1S)−1a ∈ S and mb = a. It follows that
S is additively divisible, and hence additively idempotent by (A). But Q is not so,
a contradiction. We have shown that (A) ⇒ (B1).

It remains to show that (B1) ⇒ (D). Let S be a parasemifield that is not
additively idempotent and letQ denote the subparasemifield generated by 1S. Then
Q ∼= Q+, 1Q = 1S and S is not finitely generated due to (B1). �

Note that using the Birkhoff’s theorem we can consider an equivalent version of
the conjecture (A):

(A’) Every finitely generated subdirectly irreducible additively divisible semiring
is additively idempotent.

Of course, it would be sufficient if such a semiring were finite. Unfortunately,
this is not true. Assume for instance the semiring S = V (G) with G = Z(+).
By [1, 10.1], S is simple and two-generated. Nevertheless, it is an open question
whether also one-generated subdirectly irreducible additively divisible semiring can
be infinite.

Finally, Mal’cev [6] proved that every finitely generated commutative semigroup
is residually finite (i.e. it is a subdirect product of finite semigroups). Notice, that
also the additive part of a freely finitely generated additively idempotent semiring
is a residually finite semigroup. If this is true also for every finitely generated
additively divisible semiring, we get a nice positive answer to the conjecture (A).
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