NOTES ON ADDITIVELY DIVISIBLE COMMUTATIVE
SEMIRINGS

TOMAS KEPKA AND MIROSLAV KORBELAR

ABSTRACT. Commutative semirings with divisible additive semigroup are stud-
ied. We show that a bounded finitely generated commutative additively divis-
ible semiring is additively idempotent. One-generated commutative additively
divisible semirings are treated in more detail.

It is well known that a commutative field is finite provided that it is a finitely
generated ring. Consequently, no finitely generated commutative ring (whether
unitary or not) contains a copy of the field Q of rational numbers. On the other
hand, it seems to be an open problem whether a finitely generated (commutative)
semiring S can contain a copy of the semiring (parasemifield) QT of positive ratio-
nals. Anyway, if S were such a (unitary) semiring with 15 = 1g+, then the additive
semigroup S(+) should be divisible. So far, all known examples of finitely gener-
ated additively divisible commutative semirings are additively idempotent. Hence
a natural question arises, whether a finitely generated (commutative) semiring with
divisible additive part has to be additively idempotent.

Analogous questions were studied for semigroups. According to [2, 2.5(iii)], there
is a finitely generated non-commutative semigroup with a divisible element that is
not idempotent. In this context it is of interest to ask whether there are non-finite
but finitely generated divisible semigroups. This is in fact not true. Moreover,
there exist infinite but finitely generated divisible groups (see [3] and [7]).

The present short note initiates a study of (finitely generated) additively divisible
commutative semirings. In particular, we show that a finitely generated commuta-
tive additively divisible semiring that is bounded has to be additively idempotent.
The one-generated case is treated in more detail, but remains an open problem.

1. PRELIMINARIES

Throughout the paper, all algebraic structures involved (as semigroups, semir-
ings, groups and rings) are assumed to be commutative, but, possibly, without
additively and/or multiplicatively neutral elements. Consequently, a semiring is a
non-empty set equipped with two commutative and associative binary operations,
an addition and a multiplication, such that the multiplication distributes over the
addition. A semiring S is called a ring if the additive semigroup of S is a group
and S is called a parasemifield if the multiplicative semigroup of S is a non-trivial
group.

We will use the usual notation: N for the semiring of positive integers, Ny for
the semiring of non-negative integers, Q* for the parasemifield of positive rationals
and Q for the field of rationals.
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Define a relation p(k,t) on N for all k,¢t € N by (m,n) € p(k,t) if and only if
m —n € Zt and either m = n or m > k and n > k. The following result is well
known and quite easy to show:

Proposition 1.1. The relations idy(= p(k,0)) and p(k,t), k,t € N, are just all
congruences of the additive semigroup N(+) (and of the semiring N as well).

Let S be a semiring. An element a € S is said to be of finite order if the cyclic
subsemigroup Na = {ka| k € N}, generated by the element a, is finite. We put
ord(a) = card(Na) in this case. If 7(.5) denotes the set of elements of finite order,
than either 7(S) = 0 or 7(S) is a torsion subsemiring (even an ideal) of S (i.e.,
every element of 7(5) has finite order).

Lemma 1.2. Let A be a non-empty subset of a semiring such that there exists
m € N with ord(a) < m for every a € A. Then there exists n € N such that
ord(b) < n for every b € (A). Moreover, there is v € N such that 2rb = rb for every
be (A).

Proof. We have Na = N(+)/p(ka,ta), where kq,t, € N, kg +t, < m + 1. Further-
more, 2mqa = mga for some m, € N, m, < m + 1. Setting r = (m + 1)!, we get
2rb = rb for every b € (A). Of course, Nb = N(+)/p(ks, tp) and ord(b) = kp +1tp — 1.
Since 2rb = rb, we have r > k; and t, divides 2r — r = r. Consequently,
kp+t,—1<2r—1=n. O

Lemma 1.3. Let a,b € S be such that ka = la + b for some k,l € N, k # 1. If
ord(b) is finite, then ord(a) is so.

Proof. There are m,n € N such that m < n and mb = nb. Then nka = nla+nb =
nla +mb= (n—m)la+ m(la +b) = (n —m)la + mka = ((n — m)l + mk)a. Since
k # 1, we see that (n — m)k # (n — m)l and nk # (n — m)l + mk. Consequently,
ord(a) is finite. O

Define a relation og on a semiring S by (a,b) € og if and only if ma = mb for
some m € N.

Define a relation 7¢ on a semiring S by (a,b) € 7g if and only if ma = nb for
some m,n € N.

Lemma 1.4. og and 75 are both congruences of S, o0s C Ts, 0g/55 = id and
’7'5/7_5 = Zd

Proof. Tt is easy. O

Lemma 1.5. A semiring S is torsion, provided that the factor-semiring S/og is
torsion.

Proof. For every a € S there are k,l € N such that (ka,la) € og, k < l. Further-
more, there is m € N with mka = mla. Clearly, mk < ml, and hence ord(a) is
finite. O

Let S be a semiring and o ¢ S be a new element. Putting z +0o=0+2z ==
and 0o = xo = oxr = o we get again a semiring S U {o}. Consider now the semiring
T = Ny x (S U {o}) equipped with component-wise addition and multiplication
given as (n,a)(m,b) = (nm, ma + nb + ab) for every n,m € Ny and a,b € SU {o}.
Denote U(S) =T \ {(0,0)} the (unitary) subsemiring.

Now, S can always be treated as a natural unitary U(S)-semimodule, with
(n,a)r = nz + ax for every (n,a) € U(S), = € S. (Here (n,0)x = nz and
(0,a)r =ax forn e Nand a,z € S.)

Lemma 1.6. Let S be a semiring. If w € S, a,b,c € U(S)w and m € N are such
that ma = mb and mc = w, then a = b.
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Proof. For every d € U(S)w, there is ag € U(S) with d = aqw. Now, a = a,w =
QgMC = QeOgMW = aema = aemb = a.apmw = apyme = apw = b. O

Lemma 1.7. Let T be a subsemiring of a semiring S and let Ds(T) = {a €
S| NanT #0}. Then:

(i) Ds(T) is a subsemiring of S and T C Dg(T).

(i) Ds(Ds(T)) = Ds(T).

Proof. Tt is easy. O

2. ADDITIVELY DIVISIBLE SEMIRINGS

Let S(= S(+)) be a semigroup. An element a € S is called divisible (uniquely
divisible, resp.) if for every n € N there exists b € T' (a unique, resp.) such that
a = nb.

A semigroup S is called divisible (uniquely divisible, resp.) if every element of S
is divisible (uniquely divisible, resp.). Clearly, S is divisible iff S = n.S for every
n € N. The class of divisible semigroups is closed under taking homomorphic images
and cartesian products and contains all divisible groups and all semilattices (i.e.,
idempotent semigroups).

A semiring is called additively divisible (additively uniquely divisible, resp.) if
its additive part is a divisible semigroup (uniquely divisible semigroup, resp.). The
semiring Q7 is additively (uniquely) divisible.

Note, that any semigroup S(+4) with an idempotent element e (i.e. ¢+ e = ¢)
can always be treated as a semiring with a constant multiplication given as ab = e
for every a,b € S.

The following theorem is a consequence of [2, 2.14(i)]. But for completeness (and
using stronger assumptions) we provide a simpler proof.

Theorem 2.1. ([2]) A semigroup S is finitely generated and divisible if and only
if S is a finite semilattice.

Proof. Only the direct implication needs a proof. Let S be a divisible semigroup
generated by a finite set A. We will proceed by induction on the number m of
non-idempotent generators.

If m = 0, then S is generated by a set of idempotents and it follows easily
that S is a finite semilattice. Now, assume that m > 1 and choose a € A with
2a # a. Define a relation p, on S by (u,v) € p, if and only if u + ka = v + la
for some k,l € N. Then p, is a congruence of the semigroup and S/p, is a finite
semilattice by induction. Since S is divisible, we have a = 2b for some b € S and
(a,b) = (2b,b) € p, (since S/p, is idempotent). Then ka = b + la for suitable
k,l € N and we get 2ka = 2b+ 2la = (21 + 1)a. Since 2k # 21+ 1, we conclude that
the cyclic subsemigroup Na generated by {a} is finite.

We have proved that Na is finite for every a € A. Since S is generated by A and
A is finite, one checks easily that S is finite, too. In particular, for every u € S
there is n, € N such that 2n,u = nyu. If n = [[ny, then 2nu = nu. Since S is
divisible, nS = S and it follows that S is a finite semilattice. O

Remark 2.2. Let S be a divisible semiring. Then both S/og and S/7s are addi-
tively uniquely divisible semirings.

Theorem 2.3. A torsion divisible semiring S is additively idempotent if at least
one of the following two condition is satisfied:

(i) S is bounded (i.e., there exists m € N with ord(a) < m for every a € S.);
(ii) S is additively uniquely divisible.
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Proof. (1) If S is bounded, then by 1.2 there exists n € N such that 2na = na for
every a € S. Since S is divisible, we have a = nb, and so 2a = 2nb = nb = a.

(ii) If S is additively uniquely divisible and a € S, then 2ka = ka for some k € N,
so that k(2a) = ka and 2a = a. O

Corollary 2.4. If S is a torsion divisible semiring, then og is just the smallest
congruence of S such that the corresponding factor-semiring is additively idempo-
tent.

Corollary 2.5. Let S be an additively uniquely divisible semiring. Then T (S) is
additively idempotent.

Example 2.6. Consider a non-trivial semilattice S and the quasicyclic p-group
Zp~. Then the product S x Zy is a torsion divisible semigroup that is neither a
semilattice nor a group.

3. ADDITIVELY DIVISIBLE SEMIRINGS - CONTINUED
Throughout this section, let S be an additively divisible semiring.

Proposition 3.1. (i) Both the factor-semirings S/os and S/7s are additively
uniquely divisible.
(i) If T7(S) # 0, then T(S) is an additively divisible ideal S.

Proof. Tt is easy. O

Proposition 3.2. Assume that the semiring S is generated as an S-semimodule
by a subset A such that ord(a) < m for some m € N and all a € A. Then S is
additively idempotent.

Proof. Put B = {b € S| ord(b) < m}. Then A C B and sb € B for all s € S and
b € B. Consequently, (B) = S and, by 1.2, there is n € N with ord(z) < n for
every x € S. Now, it remains to use 2.3(i). O

Corollary 3.3. The semiring S is additively idempotent, provided that it is gen-
erated as an S-semimodule by a finite set of elements of finite orders.

Corollary 3.4. The semiring S is additively idempotent, provided that it is torsion
and finitely generated.

Remark 3.5. (i) The zero multiplication ring defined on Zy~ is both additively
divisible and additively torsion. Of course, the ring is neither additively idempotent
nor finitely generated. The (semi)group Zpe (+) is not uniquely divisible.

(ii) Let R be a (non-zero) finitely generated ring (not necessary with unit). Then
R has at least one maximal ideal I and the factor-ring R/I is a finitely generated
simple ring. However, any such a ring is finite and consequently, R is not additively
divisible.

Remark 3.6. Assume that S is additively uniquely divisible.

(i) For all m,n € N and a € S, there is a uniquely determined b € S such
that ma = nb and we put (m/n)a = b. If my,n; € N and b; € S are such that
m/n = my/ny and mia = niby, then k = mny; = min and kby = mmya = kb
and by = b. Consequently, we get a (scalar) multiplication QT x S — S (one
checks easily that (a1 + a2) = qa1 + qas, (q1 + g2)a = q1a + g2a, ¢1(q2a) = (q142)a
and la = a for all ¢1,¢q2 € QT and aj,as,a € S) and S becomes a unitary Q-
semimodule. Furthermore, ga; - as = a; - gas for all ¢ € QT and ai,as € S, and
therefore S is a unitary QT-algebra.

(ii) Let a € S be multiplicatively but not additively idempotent (i.e., a®> = a #
2a). Put Q = QTa. Then Q is a subalgebra of the Q*-algebra S and the mapping
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¢ : q — ga is a homomorphism of the QT-algebras and, of course, of the semirings
as well. Since a # 2a, we have ker(y) # QT x QT. But Q* is a congruence-simple
semiring and it follows that ker(y) = id. Consequently, @ = Q™.

Put T = Sa. Then T is an ideal of the QT-algebra S, @ C T (we have ga =
ga-a € T) and a = 1g = 1l is a multiplicatively neutral element of T. The
mapping s — sa, s € S, is a homomorphism of the Qt-algebras. Consequently,
T is additively uniquely divisible. Furthermore, T" is a finitely generated semiring,
provided that S is so.

Proposition 3.7. Assume that 1g € S. Then:
(i) S is additively uniquely divisible.
(ii) FEither S is additively idempotent or S contains a subsemiring Q such that
Q = Q+ and 15 = 1Q.
(iii) If ord(1lg) is finite, then S is additively idempotent.
Proof. For every m € N, there is s,, € S such that 1g = ms,,. That is, s, =

(mlg)~t. If ma = mb, then a = s,,ma = s,,mb = b and we see that S is additively
uniquely divisible. The rest is clear from 3.6. U

Proposition 3.8. If the semiring S is non-trivial and additively cancellative, then
S is not finitely generated.

Proof. The difference ring R = S — S of S is additively divisible, and hence it is
not finitely generated by 3.5(ii). Then S is not finitely generated either. (]

Lemma 3.9. If T is a subsemiring of S, then the subsemiring Dg(T) (see 1.7) is
additively divisible.

Proof. Tt is easy. O

4. ONE-GENERATED ADDITIVELY DIVISIBLE SEMIRINGS

In this section, let S be an additively divisible semiring generated by a single
element w € S.

Proposition 4.1. The semiring S is additively uniquely divisible.

Proof. Follows from 1.6. ]

Lemma 4.2. The semiring S is additively idempotent, provided that ord(w™) is
finite for some m € N.

Proof. Let n € N be the smallest number with ord(w™) finite. If n = 1, then the
result follows from 3.3, and so we assume, for contrary, that n > 2. Since S(+)
is divisible, there are v € S, k € Ny and a polynomial f(z) € Ng[z] - « such that
w = 2v and v = kw+ w? f(w). Hence w" ™1 = 2kw" ! + 2w" f(w). By assumption,
2w f(w) is of finite order. If k = 0, then clearly ord(w™!) is finite, and if k > 1,
then ord(w™~1) is finite, by 1.3, the final contradiction. O

For n € N denote S™ = ({a1...a,| a; € S}).
Lemma 4.3. Ifu € S is such that w = wu, then u = 1g.

Proof. Let w = wu. Since S = U(S)w, for every a € S there is a, € U(S) such
that a = a,w. Hence a = a,w = agwu = au for every a € S. Thus u = 1g. O

Corollary 4.4. 15 € S (i.e. S is unitary) if and only if S*> = S. In this case:
(i) wtes.
(if) S™=S™ for alln,m € N.
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Proof. Let S? = S. Then w € S = S? and there is a non-zero polynomial f(z) €
No[z] - « such that w = wf(w). By 4.3, f(w) = 1g. Now, since 15 € S = 52, we
have similarly that 1g = wu for some u € S. Hence w™! = u € S. The rest is
obvious. (]

Lemma 4.5.

(i) For every n € N there are a,b € S such that w + aw™ = 2w + bw™.
(ii) For all n,m € N there are ¢,d € S such that mw"™ + mecw™ = w™ + mdw™.

Proof. Let n € N. Consider a congruence p of the semiring S such that (z,y) € p iff
x+adw” = y+bw" for some a’, b’ € S. Then the additive semigroup S/p is finitely
generated, hence idempotent by 2.1. Thus (w, 2w) € p and there are a,b € S such
that w + aw™ = 2w + bw™.

Now, let m € N. Since S is additively divisibile, there is u € S such that
w™ = mu. By the additive idempotency of S/p we have (w™,u) = (mu,u) € p.
Hence there are ¢,d € S such that w™ + cw™ = u + dw™. Finally, mw™ + mcw™ =
w™ + mdw™. (]

n

Lemma 4.6. Let k € N, k > 2 and u € SU {0} be such that w = kw + u. Then
there exists a € SU{0} such that x = 2z + ax for every x € S.

Proof. Let u = mw+ wf(w), where m € Ny and f(x) € Ng[z] - «. If f(z) =0, then
ord(w) is finite, S is idempotent by 3.3 and we can put a = 0.

Hence assume that f(z) # 0. Put n = m+k and b = f(w) € S. We have
w = nw + wb. Adding (n — 2)w to both sides of this equality, we get (n — 1)w =
2(n — 1)w + wb. Since w is a generator and S is additively divisible we have
b= (n—1)a for some a € S and for every x € S there is a, € U(S) such that
z = (n—1)azw. Hence x = a,(n — Dw = . (2(n — Dw + (n — N)wa) = 2z + za
for every z € S. (]

Remark 4.7. Let z,v € S be such that x = 2x +v. Put u = x + v. Then:

(i) w is an idempotent and x = = + u.
(ii) Let v' € S be such that z = 2z +v'. Then u =z +v'.
(iii) The set {a € S| ¢ = x + a} is a subsemigroup of S(+).

Lemma 4.8. S is additively divisible if and only if for every prime integer p there
is vp € S with w = pvp.

Proof. The direct implication is trivial. Conversely, if w = pv,, then w € pS, and
so pS = S, since pS is an ideal of the semiring S. Furthermore, given m € N,
m > 2, we have m = plfl ...pkn and hence mS = S as well. O

Remark 4.9. (i) Let p1,...,p, be prime numbers. Put m = p;---p, and S =
Zm—1. Then S is generated (as a semiring) by the element w = [1],,,—1 and w = mw.
Hence for every ¢ = 1,...,n there is v, such that w = p;v,,, but S is not additively
idempotent.

(ii) Let S = Zsy. Then S is one-generated and for every prime number p # 2 and
every x € S we have x = px, but S is again not additively idempotent.

Clearly, S is additively divisible, iff for every n € N there is a non-zero poly-
nomial fp(x) € Ny[z] -  such that w = nf,(w). By [2, 2.5(i)], every divisible
element in a finitely generated commutative semigroup has to be idempotent. As-
suming now, that the degree of the polynomials f, is bounded, we get that S is
additively idempotent. To illustrate some other situations and techniques see the
next examples.
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Example 4.10. Let n,m,k,l € N be such that n'~! # m*~! and suppose that
w = nw® and w = mw'. Then S is additively idempotent.
Indeed, nmFuwk! = n(mw')* = nwk = w = mw' = m(nwk)! = mnlw*. Since

nmF # mn!, w* is of finite order and S is additively idempotent by 4.2.

Example 4.11. Let w = 2(w + w?) and w = 3(w + w?®). Then S is additively
idempotent.

Indeed, adding these two equalities we get 2w = 5w + 2w? + 3w?. Now, since
w? = 2w? + 2w3 we can substitute 2w = 5w + (2w? + 2w3) + w3 = 5w + w? + wd.
Hence 4w = 10w+ (2w?+2w3) and by the same substitution we get 4w = 10w+ w?.
Finally, 8w = 20w + 2w? = 18w + (2w + 2w?) = 19w and w is of finite order. Thus
S is additively idempotent by 4.2.

Lemma 4.12. Ts = {¢ € End(S(+))| Ba € U(S))(Vz € S) p(z) = az} is a
unitary additively divisible two-generated semiring.
Moreover, S is additively idempotent if and only if Ts is so.

Proof. We only need to show, that idg € Ts is an additively divisible element. Let
n € N. Then w = na for some a € S and a = a,w for some a, € U(S). Now, for
every x € S there is a,; € U(S) such that x = a,w. Hence z = a,w = azna,w =
nagx. Thus idg = na,. The rest is easy. O

5. ONE-GENERATED ADDITIVELY DIVISIBLE SEMIRINGS - CONTINUED

This section is an immediate continuation of the preceding one. We assume that

S is non-trivial. Since the congruence S x S is generated by {(w,2w), (w,w?)}, S
has at least one (proper) maximal congruence A and the factor-semiring 7' = S/
is congruence-simple. Of course, T is additively divisible and one-generated. We
denote by ¢ the natural projection of S onto T. According to [1, 10.1], T is an
additively idempotent semiring, 7" is finite and just one of the following three cases
takes place:

(a) T'= Zs;

(¢) T2 V(G) for a non-trivial finite cyclic group G.

The definitions are as follows:

0 0
1 1
Let G(:) be an abelian group, o ¢ G. Put V(G) = G U {o} and define z +y =
y+x=o0,z+x=2xand xzo=ox =o for all z,y € V(G),z # y.

Zgl

o OO
=l
— = O
i L

1
0 Z4Z
0

=l
S OO
=l
S OO
— o+

Theorem 5.1. If T' =2 Z3, then S is additively idempotent.

Proof. The congruence \ has just two blocks, say A = ¢~1(0) and B = ¢~1(1),
where A is a bi-ideal of S, SS C Aand w € B, B+ B C B. Then w?,w?,--- € A
and it follows that B = Nw. On the other hand, w = 2v for some v € S and we
have v € B. This means that ord(w) is finite and it follows from 4.2 that S is
additively idempotent. O

Proposition 5.2. Assume that T = Z,. Then:

(i) The congruence X has just two blocks A =~1(0) and B = ¢~1(1).
(ii) A is an ideal of S(+) and w € A.
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(iii) B is an ideal of S and SS C B.
(iv) B is an additively uniquely divisible semiring and B is generated by the set
{w?, w}.

(v) A(+) is a uniquely divisible semigroup.

(vi) 1g ¢ S.
Proof. We have A = {njw + naw? + --- + npw*| k € N;n; € No,n; # 0} and
B = {mow?+---+mu!| 2 <1 €N, m; € No, Y m; # 0}. The rest follows from
4.1, 4.3 and 4.4. O

In the remaining part of this section, assume that T' = V(Z,,) = Z,, U {o} =
{0,0,1,...,m — 1} for some 2 < m € N (here Z,,(+) = {0,1,...,m — 1} is the
m-element cyclic group of integers modulo m). Furthermore, put A = 1»~!(0) and
By = ¢~1(k) for every k = 0,1,...,m — 1. Since ¥(w) has to be a generator
of Zm, we can (without loss of generality) assume that w € By, w? € Ba,...,
w™ ! € B,,_1 and w™ € By.

Proposition 5.3.
(i) By = {niw™ + ngw?™ + - + nuw'™| 1 € N,n; € No, Y. n; # 0}.
(ii) By is a subsemiring of S and By is an additively uniquely divisible semiring
generated by a single element, namely by the element w™
(iii) Bi,...,Bm—1 are uniquely divisible subsemigroups of S(+).
(iv) By = {nlwk + nowkt™ 4 ... 4 nlwk+(l71)m| leN,n; € Ng,> n; # 0} for
every 1 <k <m—1.
(v) BxB; C B, t =k+1 (mod m) for all0 < k,l<m—1and B+ B, C A
for k #1.

(vi) A is an bi-ideal of S and an additively uniquely divisible semiring.

Proof. Tt is easy. O

Proposition 5.4. Assume that 1g € S. Then:
(i) 1s € By and 15 = njw™ 4 now?™ + - - -+ ngw!™, where l € N, n; € Ny and

=nw™ !+ '™t € By,

(i) w™

(iil) w™™ =n1lg + now™ + - -- + muw—H™ € By,

(iv) S is additively zdempotent if and only if Bo is so (i.e., iff 1s = 2g).
)

(v) If S is not additively idempotent, then wt # 1g for any t € N.

Proof. The first four assertions follow easily from 5.3. To show (v), assume on the
contrary that w? = 1g for some t € N. Then the semigroup S(+) is generated by
{1s,w,...,w'}. Hence S is additively idempotent by 2.1, a contradiction. O

In the end, note that although the one-generated structure is quite simple on
the first look, it seems that it will involve a lot of effort to solve even this case.

6. A FEW CONJECTURES

In this last section we present some other open questions that are influenced by
our main problem (namely by the conjecture (A) - see below).

Example 6.1. Given a multiplicative abelian group G and an element o ¢ G, put
U(G) = G U {o} and define addition and multiplication on U(G) (extending the
multiplication on G) by x +y = xo = ox = o for all z,y € U(G). Then U(G)
becomes an ideal-simple semiring.

Consider the following statements:
(A) Every finitely generated additively divisible semiring is additively idempo-
tent.
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(A1) Every finitely generated additively uniquely divisible semiring is additively
idempotent.

(B) No finitely generated semiring contains a copy of Q.

(B1) No finitely generated semiring with a unit element contains a copy of Q"
sharing the unit.

(C) Every finitely generated infinite and ideal-simple semiring is additively
idempotent or a copy of the semiring U(G) (see 6.1) for an infinite finitely
generated abelian group G.

(D) Every parasemifield that is finitely generated as a semiring is additively
idempotent.

Proposition 6.2. (A) & (Al) = (B) & (B1) = (C) & (D).

Proof. First, it is clear that (A) = (Al) and (B) = (B1). Furthermore, (C) < (D)
by [4, 5.1]. Now, assume that (A1) is true and let S be a finitely generated additively
divisible semiring. By 3.1, S/og is additively uniquely divisible and, of course, this
semiring inherits the property of being finitely generated. By (A1), the semiring
S/og is additively idempotent, and hence the semiring S is additively torsion by
1.5. Finally, S is additively idempotent by 3.4. We have shown that (A1) = (A)
and consequently, (A) < (Al).

Next, let (B1) be true and let S be a finitely generated semiring containing a
subsemiring @ = Q*. Put P = S1g. Then P is anideal of S, 1o = 1p, Q@ C P and
the map s — slg is a homomorphism of S onto P. Thus P is a finitely generated
semiring and this is a contradiction with (B1). We have shown that (B1) = (B)
and consequently, (B) < (B1).

Now, we are going to show that (A) = (B1). Indeed, let S be a finitely generated
semiring such that 1g € S and S contains a subsemiring @ with 1g € @ and
Q=Q*t. Ifac Sand m € N, then b= (mls) ta € S and mb = a. It follows that
S is additively divisible, and hence additively idempotent by (A). But @ is not so,
a contradiction. We have shown that (A) = (B1).

It remains to show that (B1) = (D). Let S be a parasemifield that is not
additively idempotent and let @) denote the subparasemifield generated by 1g. Then
Q= Q", 1g = 1g and S is not finitely generated due to (B1). O

Note that using the Birkhoff’s theorem we can consider an equivalent version of
the conjecture (A):

(A’) Every finitely generated subdirectly irreducible additively divisible semiring
is additively idempotent.

Of course, it would be sufficient if such a semiring were finite. Unfortunately,
this is not true. Assume for instance the semiring S = V(G) with G = Z(+).
By [1, 10.1], S is simple and two-generated. Nevertheless, it is an open question
whether also one-generated subdirectly irreducible additively divisible semiring can
be infinite.

Finally, Mal’cev [6] proved that every finitely generated commutative semigroup
is residually finite (i.e. it is a subdirect product of finite semigroups). Notice, that
also the additive part of a freely finitely generated additively idempotent semiring
is a residually finite semigroup. If this is true also for every finitely generated
additively divisible semiring, we get a nice positive answer to the conjecture (A).
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