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Abstract. We consider rewriting as a tool for solving identity problems
in varieties of idempotent semigroups. It is known that there exist fi-
nite canonical term rewrite systems and finite canonical word rewrite
systems for only a very limited number of those varieties. We present a
finite canonical conditional word rewrite system for a particular variety
in which the classical approaches cannot be applied. Moreover, we ob-
tain infinite single letter deleting rewrite systems for each join-irreducible
variety.
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1 Introduction

Rewriting is one of the main tools in algorithmic algebra. In semigroup theory
one considers the so-called word problems for finitely presented semigroups (i.e.
one looks for an effective description of consequences of a given finite set of
relations over a finite alphabet). It was quite unexpected that there are finite
presentations where the word problem is solvable and where no finite canonical
rewrite system exist – see Squier [14].

On the other hand, solving the identity problems in varieties of universal
algebras (i.e. to decide effectively which identities are valid there) is other cru-
cial topic in algorithmic algebra. Again, one possibility to solve them is to use
rewriting techniques. In contrary to word problems we have to substitute terms
(words) into our rewriting rools. We discuss here rewriting for solving the iden-
tity problems in varieties of idempotent semigroups.

The lattice L(B) of all varieties of idempotent semigroups was described by
Birjukov [3], Fennemore [5], Gerhard [6]. – see Figure 1 in Section 2. The authors
also showed that each proper variety in L(B) could be defined by x2 � x and
single additional identity. In [11,12] the third author presented a transparent
way how to solve the identity problems in all members of L(B) using certain
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invariants. In this paper, we explore the usage and limitations of rewriting to
solve the identity problems in varieties of idempotent semigroups.

Basically three variants of rewrite systems for varieties of semigroups are
studied currently: term rewrite systems, word rewrite systems and conditional
word rewrite systems. In [1], Baader showed that the first two approaches (using
finite systems) are quite restrictive, they apply only in a very limited number of
varieties – see Section 3. Concerning the third approach, a remarkable conditional
word rewrite system for the variety of all idempotent semigroups was found by
Siekmann and Szabó in [13].

In our paper, we first show that a word rewrite system for a certain variety
(C1 in our notation) from [1] can be simplified using a new finite conditional
word rewriting system. In an other variety (B2 in our notation), where a finite
word rewrite system does not exist, we can apply successfully a simple finite
conditional word rewrite system.

All our rules are single letter deleting. Such rules are appropriate when show-
ing confluency – see Remark 1, and when characterizing canonical forms. There-
fore, it was a natural task to find single letter deleting identities for a wide
class of varieties in L(B); more precisely, we do this for all join-irreducible va-
rieties in L(B). Moreover, we show that in those varieties one can reach the
canonical forms using single letter deleting rules (whose systems are infinite in
general). The main result here is the existence of (infinite) word rewrite systems
for those varieties. This can be considered as the first step when looking for
finite conditional rewrite systems for such varieties. Other varieties of idempo-
tent semigroups are joins of the join-irreducible ones and u � v is an identity
in U ∨ V if and only if the words u and v have the same canonical forms both
in U and in V . This fact implies that in order to efficiently solve the identity
problem in proper varieties of idempotent semigroup, it would suffice to have
rewrite systems for join-irreducible varieties.

In our paper we first collect some basic facts from universal algebra and about
varieties of idempotent semigroups. In Section 3 we start with a general approach
of rewriting and we specify it for varieties of groupoids. Then we consider word
rewrite systems for varieties of semigroups and we deal with conditional word
rewrite systems (we modified a bit the usual definition – for instance, the system
from [13] is finite for us – and we also distinguish between letters and words).
Each subsection collects also known results.

In Section 4 we consider finite conditional word rewrite systems for the variety
C1 and for the variety of all idempotent semigroups. A nontrivial example is
presented in the next section. Finally, Section 6 deals with single letter deleting
identities and single letter deleting rewrite systems.

2 Varieties of Idempotent Semigroups

Let X = {x1, x2, ...} be a fixed countable set of variables. As usual, we denote by
X+ the free semigroup over X (i.e. the set of all words over X with the operation
of concatenation). Let λ be the empty word and we denote by X∗ = X+ ∪ {λ}
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the free monoid over X . Let p(r1, r2, . . . ) be the word resulting from p ∈ X+

after simultaneous substitutions r1 for x1, r2 for x2, ... (r1, r2, · · · ∈ X+).
An identity is a pair of words (p, q) ∈ X+×X+; we write p � q. A semigroup

S satisfies the identity p � q if for each homomorphism α : X+ → S, we have
α(p) = α(q). We write Mod(Σ) for the class of all semigroups satisfying all
identities from a given system Σ of identities. Such classes are called varieties.
For a variety V = Mod(Σ), let ∼V be the set of all identities valid in all members
of V ; in other words, the set of all consequences of the system Σ. Let

→Σ = { (sp(r1, r2, . . . )t, sq(r1, r2, . . . )t) | (p, q) ∈ Σ, s, t ∈ X∗, r1, r2, . . . ∈ X+ }.

A well-known result, the so-called completeness of equational logics, by Birkhoff
(see Theorem 14.19 in [4]) assures that ∼V is the equivalence relation generated
by →Σ . Moreover the relations of the form ∼V are exactly the fully invariant
congruences on X+ (i.e. congruences invariant with respect to substitutions).
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Fig. 1. The lattice of varieties of idempotent semigroups
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The lattice of all varieties of idempotent semigroups was independently de-
scribed by Birjukov [3], Fennemore [5] and Gerhard [6].

Varieties of semigroups are usually presented by systems of identities or by
structural properties of their members. In [11,12] we studied the varieties of
unions of groups (idempotent semigroups are unions of trivial groups) and the
basic tools were alternative descriptions of the relations ∼V ’s. We used the fol-
lowing “invariants”.

For p ∈ X+, we define

– the content c(p) ⊆ X of p as the set of all variables in p,
– the head h(p) ∈ X of p as the leftmost variable in p,
– the tail t(p) ∈ X of p as the rightmost variable in p,
– 0(p) ∈ X∗ as the longest initial segment of p containing all but one variable,
– 1(p) ∈ X∗ as the longest final segment of p containing all but one variable,
– −→p ∈ X+ as the sequence of the first occurrences of variables when reading

p from the left,
– ←−p ∈ X+ as the sequence of the first occurrences of variables when reading

p from the right,
– |p| denotes the length of p.

We also put h(λ) = t(λ) = 0(λ) = λ, 00(p) = p, 02(p) = 0(0(p)) and so on.

For the quite simple case of idempotent semigroups the descriptions of the
relations ∼V ’s is transparently explained in [7], Section 1.1.3.

3 Rewriting on Varieties of Semigroups

3.1 Generalities

An excellent source on rewriting is the book by Baader and Nipkow [2]. We recall
here only facts needed in our text.

Consider a binary relation→ on a set M , called rewrite relation. The problem
consists in finding an effective description of the equivalence relation eq(→)
generated by →. We denote by ρ∗ the reflexive transitive closure of ρ ⊆M ×M .
The relation → is

– terminating if there is no infinite sequence a1 → a2 → . . . , a1, a2, . . . ∈M ,
– locally confluent if for each a, b, c ∈ M with b ← a → c, there exists d ∈ M

such that
b→∗ d←∗ c ,

– confluent if for each a, b, c ∈ M with b ←∗ a →∗ c, there exists d ∈ M such
that

b→∗ d←∗ c ,

– canonical if it is terminating and confluent.
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In [9], Neuman proves that a terminating locally confluent relation is conflu-
ent. A→-canonical form of a ∈M is an element b ∈M that a→∗ b and there is
no c ∈M with b→ c. In general, an element needs not have a canonical form or
it can have several of them. In the case of a canonical relation→, every element
a possesses exactly one→-canonical form which we denote by [a]→. In this case,
the elements a and b are in the same equivalence class of the relation eq(→) if
and only if [a]→ = [b]→.

In fact, the main task in rewriting consists in the following: let ∼ be a given
(often not effectively) equivalence relation on a set M and we are looking for a
finite canonical rewrite relation −→ on M generating the relation ∼.

3.2 Term Rewriting and Known Results for Idempotent Semigroups

We are interested only in the signature of single binary operational symbol. Let
G be the free groupoid over X , i.e. the set of all terms over X in the above
signature. For p, r1, r2, · · · ∈ G we define p(r1, r2, . . . ) as the term resulting from
p = p(x1, x2, . . . ) after simultaneous substitutions r1 for x1, r2 for x2, .... A term
rewrite system (TRS in short) is a subset T of G×G. The corresponding rewrite
relation on G is

→T = { (t, t′) ∈ G×G | where t, r1, r2, · · · ∈ G, (u, v) ∈ T, u(r1, r2, . . . )

being a subterm of t and t′ results from t by putting

v(r1, r2, . . . ) in place of u(r1, r2, . . . ) } .

A usage of TRS’s for varieties of idempotent semigroups is very restrictive;
namely:

Result 1 (Baader [1]). Let V be a variety of idempotent semigroups. Then
there exists a TRS TV such that the rewrite relation →TV is canonical on G and
the equivalence it generates coincides with the fully invariant congruence on G
corresponding to the variety V (i.e. with the set of all groupoid identities which
are valid in V) if and only if V ∈ {LZ,RZ,RB}. Moreover, one can take

– TLZ = { (xy)z → x(yz), xy → x },
– TRZ = { (xy)z → x(yz), xy → y },
– TRB = { (xy)z → xz, x(yz)→ xz, xx→ x }.

3.3 Word Rewriting and Known Results for Idempotent Semigroups

According to Baader [1], a word rewrite system (WRS in short) is a subset W
of X+ ×X+. For a rule (p, q) ∈ W we also write p→ q. A WRS W also defines
a rewrite relation →W on X∗ by

→W = { (sp(r1, r2, . . . )t, sq(r1, r2, . . . )t) | (p, q) ∈ W, s, t ∈ X∗, r1, r2, · · · ∈ X+}.

A usage of WRS’s for varieties of idempotent semigroups is applicable also
only for a small number of varieties; namely:
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Result 2 (Baader [1]). Let V be a variety of idempotent semigroups. Then
there exists a WRS WV such that the rewrite relation →WV is canonical and
the equivalence it generates coincides with ∼V if and only if V equals one of the
following varieties:

(i) LZ = Mod(xy � x ),
(ii) RB = Mod(x2 � x, xyx � x ),
(iii) LRB = Mod(x2 � x, xyx � xy ),
(iv) LQNB = Mod(x2 � x, xyxz � xyz ),
(v) LSNB = Mod(x2 � x, xyzxz � xyz ).

or the left-right duals for items (i), (iii)–(v). Moreover, one can take

– WLZ = { xy → x },
– WRB = { x2 → x, xyz → xz },
– WLRB = { x2 → x, xyx→ xy },
– WLQNB = { x2 → x, xyxz → xyz },
– WLSNB = { x2 → x, xyztzx→ xyztx, xzyzx→ xyzx, zxyzx→ zxyx,

zyxzx→ zyx, zyxtzx→ zyxtx }.

3.4 Conditional Word Rewriting Systems: Definitions and Examples

For our purposes we formalize the concept of a conditional word rewrite system
as follows. Here we use two alphabets; we substitute variables for elements of
the first set and words for elements of the second one.

Let A = {a1, a2, . . . } and P = {p1, p2, . . . } be the so-called rule alphabets.
A conditional rule is an triple (�, r, ϕ) where �, r ∈ (A ∪ P )+ and ϕ is a finite
relation on (A∪P )+. A ϕ-substitution is a mapping σ from A to X and from P
to X∗ (in fact, a pair of mappings), naturally extended to the domain (A∪P )+,
satisfying

(u, v) ∈ ϕ implies c(σ(u)) ⊆ c(σ(v)) .

A conditional word rewrite system (CWRS in short) C is a set of conditional
rules. It defines a rewrite relation →C on X+ by

→C = { (sσ(�)t, sσ(r)t) | (�, r, ϕ) ∈ C, σ is a ϕ-substitution, s, t ∈ X∗ } .

In what follows we are a bit informal, for instance, we write

pxqxr → pxqr, p, q, r ∈ X∗, x ∈ X, c(q) ⊆ c(r) ⊆ c(pxq),

instead of

( pxqxr, pxqr, {(q, r), (r, pxq)} ), x ∈ A, p, q, r ∈ P .

Notice that a WRS is a special case of a CWRS; we identify P with X and
we do not use A and conditions.

A significant example of a finite CRWS follows.
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Result 3 (Siekmann and Szabó [13]). Let B = Mod(x2 � x) be the variety
of all idempotent semigroups. Then the conditional rules

– p2 → p, p ∈ X+,
– pqr → pr, p, q, r ∈ X+, c(q) ⊆ c(p) = c(r)

determine a canonical CWRS on X+ such that the equivalence it generates is
exactly ∼B.

The proof of the local confluency is extremely complicated there. Another type
of proof is presented in [8] by Neto and Sezinando; the idea of the proof is to
show that each class of ∼B contains just one word on which conditional rules
can not be applied. We return to that result in Section 4.

Also Nordahl in [10] claims that a certain finite set of conditional rules de-
termines a canonical CWRS such that the equivalence it generates is the fully
invariant congruence on X+ corresponding to the join of the variety of all idem-
potent semigroups and the variety of all commutative semigroups.

4 Two Examples of Finite CWRS with Single Letter
Deleting Rules

First we present a simple CWRS for the variety C1 = LSNB = Mod(x2 �
x, xyzxz � xyz ). According to [11,12], the corresponding fully invariant congru-
ence ≈1 = ∼C1 can be described as follows:

for all u, v ∈ X∗, we have u ≈1 v iff −→u = −→v and ( ∀ k ≥ 0 ) t(0k(u)) = t(0k(v)).

Let C be a CWRS consisting of the following rules:
(C1) x2 → x, x ∈ X ,
(C2) pxy → py, x, y ∈ X, p ∈ X+, x, y ∈ c(p).

Note that each u ∈ X+ can be written in a unique way in the following form:

(∗) u = y1w1y2w2 . . . ynwn where n ≥ 1, y1, . . . , yn ∈ X, w1, . . . , wn ∈ X∗ ,

and for all k ∈ {0, . . . , n− 1}, we have 0k(u) = y1w1y2w2 . . . yn−kwn−k .

Lemma 1. The word of the form (∗) is a →C-canonical form if and only if
(1) w1, . . . , wn ∈ X ∪ {λ}, and
(2) for all j ∈ {1, . . . , n}, we have yj �= wj .

Proof. First we show that for an arbitrary word u ∈ X+ written in the form (∗)
there is such a word v in the form (∗) satisfying conditions (1) and (2) such that
u→∗C v. Indeed, if u has form (∗) and for some j the length of wj is more than
1, we apply rule (C2) to shorten this word. Using this repeatedly, we get a word
satisfying (1). Then using rule (C1) (repeatedly) we can get the desired form.

By definition of the rules (C1) and (C2), they cannot be applied to reduce
words with shape (∗) that satisfy properties (1) and (2). ��
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Lemma 2. (i) We can derive the defining identities for C1 from the rules of C.
(ii) The system C is consistent with C1, i.e. both rules are identities in C1.
(iii) If both u and v are →C-canonical forms and u ≈1 v, then u = v.

Proof. (i): Using rule (C1) one can derive x from xx. Similarly, xyzxz → xyzz
by (C2) and xyzz → xyz by (C1).

(ii): By definition of C1 we have (x2, x) ∈ ≈1 for x ∈ X . Let us consider
x, y ∈ X, p ∈ X+ such that x, y ∈ c(p), i.e. we have pxy → py. We have
−−→pxy = −→p = −→py and t(pxy) = y = t(py). Moreover, 0(pxy) = 0(p) = 0(py).

(iii): Let u and v be →C-canonical forms. By Lemma 1 we can write u =
y1w1 . . . ynwn and v = y′1w′1 . . . y′mw′m, with n, m ≥ 1, y1 . . . , yn, y′1, . . . y′m ∈ X
and w1, . . . , wn, w′1, . . . , w

′
n ∈ X ∪ {λ}. Since u ≈1 v, we have y1y2 . . . yn = −→u =

−→v = y′1y
′
2 . . . y′m from which n = m and y1 = y′1, . . . , yn = y′n follows. Now for

each k ∈ {0, . . . , n−1} we consider wn−k and w′n−k. If wn−k ∈ X then t(0k(u)) =
wn−k and if wn−k = λ then t(0k(u)) = yn−k. Similarly for t(0k(v)). Recall that
t(0k(u)) = t(0k(v)) follows from the assumption u ≈1 v. If wn−k = λ and w′n−k ∈
X at the same moment, then y′n−k = yn−k = t(0k(u)) = t(0k(v)) = w′n−k which
contradicts condition (ii) in Lemma 1. The case wn−k ∈ X and w′n−k = λ is
impossible from the same reason. Thus wn−k = w′n−k = λ or wn−k, w′n−k ∈ X .
In the second case we have wn−k = t(0k(u)) = t(0k(v)) = w′n−k and we can
conclude with wn−k = w′n−k in all cases. Hence we get u = v. ��

Theorem 1. For each u, v ∈ X+, we have that u � v is an identity in C1 if and
only if the words u and v have the same →C-canonical forms.

Proof. Since the rewriting using the rules C shortens the words, the relation→C

is terminating. We show that this relation is also locally confluent. Let u ∈ X+

that can be rewritten to v and to w in single step using C. Those two words have
→C-canonical forms, say v and w. By Lemma 2 (ii) we have that v ≈1 u ≈1 w
and Lemma 2 (iii) gives that v = w.

To complete the proof we have to show that eq(→C) = ≈1. The ⊆-part follows
from Lemma 2 (ii). Lemma 2 (iii) gives the opposite inclusion. ��

The second example of finite CWRS with single letter deleting rules follows.

Remark 1. Having letters instead of words in certain places of a CWRS often
leads to the same canonical forms and showing the (local) confluency is much
easier. For instance, we can modify the second rule from Result 3 to

pxr → pr, p, r ∈ X+, x ∈ X, x ∈ c(p) = c(r) .

On the other hand such modified rules slow down the rewriting.

5 A Finite CWRS for the Variety B2

We consider the variety B2 = Mod(x2 � x, xyz � xyzxzyz ) using the identi-
ties from [5]. According to Proposition 1, proved later in Section 6, the second
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identity can be replaced by xyzxyx � xyzyx. By [11,12], the corresponding fully
invariant congruence ∼2 can be effectively described as follows:

for all u, v ∈ X∗, we have u ∼2 v if and only if ( ∀ k ≥ 0 )
←−−−
0k(u) =

←−−−
0k(v) .

Let D be the CWRS consisting of the following rules:
(D1) xx→ x, x ∈ X ,
(D2) pxqx→ pqx, p, q ∈ X∗, x ∈ X, c(qx) ⊆ c(p),
(D3) pxqxr → pxqr, p, q, r ∈ X∗, x ∈ X, c(q) ⊆ c(r) ⊆ c(pxq).

Lemma 3. Let u be as in (∗) with

w1 = y1,1 . . . y1,�1 , . . . , wn = yn,1 . . . yn,�n , where yi,j ∈ X, �i ≥ 0 .

Then u is a →D-canonical form if and only if
(1) y1 �= y1,1, . . . , yn �= yn,1,
(2) |{y1,1, . . . , y1,�1}| = �1, . . . , |{yn,1, . . . , yn,�n}| = �n,
(3) for j = 2, . . . , n, if 0n+1−j(u) = syj,1t with s, t ∈ X∗ and yj,1 �∈ c(t),

then c(tyj) �⊆ {yj,2, . . . , yj,�j}.

Proof. First we show that for an arbitrary word u ∈ X+ written in the form (∗)
there is such a word v in the form (∗) satisfying conditions (1) – (3) such that
u→∗C v. We use rule (D1) to guarantee condition (1).

Let u have the form (∗) with (1) being satisfied. Let j ∈ {2, . . . , n}, yj,� =
yj,�′ , � �= �′. We use rule (D2) with the first x being yj,� and the second one
being yj,�′ . Using this repeatedly, we get a word satisfying (1) and (2).

Let u have the form (∗) with (1) and (2) being satisfied. Let j ∈ {2, . . . , n},
0n+1−j(v) = syj,1t, s, t ∈ X∗, yj,1 �∈ c(tyj) ⊆ {yj,2, . . . , yj,�j}. We use rule (D3)
where the x’s in (D3) are the above mentioned occurrences of yj,1 and p = s,
q = tyj and r = yj,2 . . . yj,�j . Using this repeatedly, we get a word satisfying (1)
– (3).

Now we show that rules (D1) – (D3) are not applicable to a word u of the
form (∗) satisfying (1) – (3). (D1) cannot be applied to such a u because (1) and
(2) prevent the occurrence of a subword xx in u.

Concerning (D2): due to c(qx) ⊆ c(p) the xqx part of pxqx should be placed
between some yj and yj+1 in u. But it contradicts (2).

Finally, we show that also rule (D3) is not applicable. Indeed, take a word u
of the form (∗) satisfying (1) – (3). Let us examine the possible subwords of u
with shape pxqxr, as in (D3). Notice that q = λ is not possible and therefore
also r �= λ. Due to c(r) ⊆ c(pxq) the word r is a segment of some wj in u. Due
to yj �∈ c(y1w1 . . . yj−1wj−1), the right x in pxqxr is not yj from (∗). We can
suppose that x �∈ c(q), otherwise q = q1xq2 and we can put p′ = pxq1 and use
p′xq2xr → p′xq2r instead with the same effect. If wj = w′xrw′′ then w′ = λ due
to c(w′) ⊆ c(q) ⊆ c(r) and condition (2). Hence x = yj,1 and if we consider s
and t from (3) we have q = tyj . Thus c(q) �⊆ {yj,2, . . . , yj,�j} and consequently
c(q) �⊆ c(r), leading to a contradiction. ��
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Lemma 4. (i) We can derive the defining identities for B2 from the rules of D.
(ii) The system D is consistent with B2, i.e. the rules are identities in B2.
(iii) If both u and v are →D-canonical forms and u ∼2 v, then u = v.

Proof. (i): Using rule (D1) one can derive x from xx. Using (D2) with p = xyz
and q = y one can obtain xyzxyx→D xyzyx.

(ii): By construction, we have xx ∼2 x for x ∈ X .
Consider pxqx→ pqx, p, q ∈ X∗, x ∈ X, c(qx) ⊆ c(p). Then ←−−−pxqx =←−−pqx and

0(pxqx) = 0(pqx). Thus pxqx ∼2 pqx.
Consider pxqxr → pxqr, p, q, r ∈ X∗, x ∈ X, c(q) ⊆ c(r) ⊆ c(pxq). Then

←−−−pxqxr =←−−pxqr and 0(pxqxr) = 0(pxqr). Thus pxqxr ∼2 pxqr.
(iii): Notice that, for a canonical form w with |c(w)| ≥ 2, the word 0(w) is

again a canonical form. Furthermore, for w, t ∈ X∗ with |c(w)| ≥ 2, the fact
w ∼2 t gives 0(w) ∼2 0(t). Indeed, w ∼2 t implies

( ∀ k ≥ 0 )
←−−−
0k(u) =

←−−−
0k(v) .

Using it for k = � + 1, � ≥ 0 we obtain

( ∀ � ≥ 0 )
←−−−−−
0�(0(w)) =

←−−−−−
0�(0(t))

which gives 0(w) ∼2 0(t).
Let u be as in Lemma 3 and let v be another word satisfying u ∼2 v. We use

induction with respect to n = |c(u)|. For n = 1, we have u = v ∈ X . Let n ≥ 2.
Then 0(u) ∼2 0(v) by the remark in the previous paragraph and by the induction
assumptions we have 0(v) = 0(u). We can write u = 0(u)ynyn,1 . . . yn,�n and
v = 0(u)ynzn,1 . . . zn,�′n. Now suppose that �n < �′n (the case �n > �′n is similar).
Due to (2) and ←−u = ←−v we have v = 0(u)ynzn,1 . . . zn,�′′nyn,1 . . . yn,�n . From (1)
we have yn �= zn,1. Let consider the last occurrence of zn,1 in 0(u) from the
right, i.e. 0(u) = u′zn,1u

′′, where zn,1 �∈ c(u′′). Again due to ←−u = ←−v we have
c(u′′yn) ⊆ c(zn,2 . . . zn,�′′nyn,1 . . . yn,�n). Now we can use rule (D3) on v for p = u′,
x = zn,1, q = u′′yn, r = zn,2 . . . zn,�′′nyn,1 . . . yn,�n , leading to a contradiction.

Thus �n = �′n then u = v by (2) and by ←−u =←−v . ��

The proof of the following result is, in fact, the same as that of Theorem 1. The
only difference is the usage of Lemma 4 instead of Lemma 2.

Theorem 2. For each u, v ∈ X+, we have that u � v is an identity in B2 if
and only if the words u and v have the same →D-canonical forms. ��

6 Single Letter Deleting Identities and Single Letter
Deleting Rewrite Systems

To solve the identity problem, a natural goal is to have a WRS for each va-
riety of idempotent semigroups. As mentioned in the introduction one can re-
strict consideration to the join-irreducible varieties from L(B) which are on the
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sides of the lattice L(B) on Figure 1. They can be described inductively by us-
ing the invariant 0 and left-right duality. These descriptions follow from [12],
Theorem 3.6.

For a word u = x1x2 . . . xm ∈ X∗, with x1, x2, . . . , xm ∈ X , the word ur =
xm . . . x2x1, is called the reverse of u. Furthermore, for a relation ρ on X+ we
consider the reverse relation ρr given by ρr = { (ur, vr) | (u, v) ∈ ρ }.

Now we define ρ0 in the following way: for all u, v ∈ X∗, we have

u ρ0 v if ( ∀ k ≥ 0 ) (0k(u) ρ 0k(v)) .

Denote ∼1 = ∼LRB, i.e u ∼1 v if and only if −→u = −→v . Then ∼r
1 = ∼RRB.

For each n ≥ 1, we inductively define ∼n+1 = (∼r
n)0. In particular, ∼2 coincides

with the relation used in Section 5. We denote the corresponding varieties of
idempotent semigroups Bn, i.e. ∼Bn = ∼n. We also denote by ∼0 = { (u, v) ∈
X∗ ×X∗ | c(u) = c(v) }. Then ∼r

0 = ∼0, ∼1 = (∼r
0)

0 and B0 = SL.
If we start from the variety C1 = LSNB we obtain the following similar

sequence of varieties We denote ≈1 = ∼C1 = ∼LSNB (see Section 4). Now for
each n ≥ 1 we define inductively ≈n+1 = (≈r

n)0 and we denote the corresponding
varieties of idempotent semigroups Cn, i.e. ≈Cn = ≈n. We also put u ≈0 v if and
only if u and v have the same content and the first letter. Now ≈1 = (≈r

0)
0,

≈r
0 �= ≈0 and C0 = LNB is not a join-irreducible variety. The positions in the

lattice of varieties of idempotent semigroups is depicted at Figure 2.
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Fig. 2. A part of the lattice of varieties of idempotent semigroups

Remark 2. For each n ≥ 1 we have ∼n ⊆ ≈n−1 ⊆ ∼n−1 and consequently the
considered relations are contained in ∼1. Let ∼ be a relation ∼n or ≈n for some
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n ≥ 1. For u, v ∈ X∗ such that u ∼ v we have −→u = −→v . In particular, if 0(u) = u0,
which means u = u0xu1, u0, u1 ∈ X∗, x �∈ c(u0), c(u1) ⊆ c(u0x), then v = v0xv1

such that v0, v1 ∈ X∗, x �∈ c(v0), c(v1) ⊆ c(v0x) and consequently 0(v) = v0.
Note also that for each k ≥ 1 from u ∼ v it follows that 0k(u) ∼ 0k(v). These
easy observations will be used many times later without a precise reference.

We show that each of the varieties Bn and Cn is defined by single identity of
the following special form. For our purpose we need identities different from the
identities given in [3,5,6]. We denote u1 = xy1x, v1 = xy1 and then for each n ≥ 1
we define inductively un+1 = xy1y2 . . . yn+1u

r
n and vn+1 = xy1y2 . . . yn+1v

r
n. The

identity un � vn is referred as πn.

Proposition 1. For each n ≥ 1, we have Bn = Mod(x2 � x, πn ).

Proof. For n = 1 the statement follows from Bn = LRB. Thus assume n ≥ 2.
We denote wn = xy1 . . . yn.

It is enough to prove that un ∼n vn and that the identity πn is not valid in
the variety V which covers variety Bn in the lattice of varieties of idempotent
semigroups. Indeed, from this we have Bn ⊆ Mod(x2 � x, πn ) � V which gives
the result. The variety V is the join of the variety Bn and the dual variety for
Cn−1. This means that we need to show (un, vn) ∈ ∼n and (un, vn) �∈ ≈r

n−1. One
can show these statements by induction with respect to n.

We see that for each k > 0 we have 0k(un) = 0k(wn) = 0k(vn) and trivially
0k(un) ∼r

n−1 0k(vn). Hence (un, vn) ∈ ∼n if and only if (un, vn) ∈ ∼r
n−1. By the

induction assumption we have (un−1, vn−1) ∈ ∼n−1, hence (ur
n−1, v

r
n−1) ∈ ∼r

n−1

and consequently un = wnur
n−1 ∼r

n−1 wnvr
n−1 = vn, which finishes the proof of

the first statement.
For the relation ≈r

n−1 and n = 2 we can see that u2 = xy1y2xy1x and v2 =
xy1y2y1x, i.e. ur

2 = xy1xy2y1 and vr
2 = xy1y2y1x. Since 0(ur

2) = xy1x and
0(vr

2) = xy1 have not the same last letters, we can conclude (ur
2, v

r
2) �∈ ≈1, thus

(u2, v2) �∈ ≈r
1. We proved the second part for n = 2 and we can assume n ≥ 3.

Now, (un, vn) ∈ ≈r
n−1 if and only if (un−1w

r
n, vn−1w

r
n) ∈ ≈n−1 which is not

true because 0(un−1w
r
n) = un−1, 0(vn−1w

r
n) = vn−1 and we have the induction

assumption that (un−1, vn−1) �∈ ≈r
n−2. ��

In a similar way we can construct identities for the varieties Cn. We put s1 =
xy1y2xy1 and t1 = xy1y2y1. Furthermore, for every n ≥ 1 we put sn+1 =
xy1 . . . yn+2s

r
n and tn+1 = xy1 . . . yn+1t

r
n. The identity sn � tn is referred as

σn. Then one can prove the following result in the same way as Proposition 1.

Proposition 2. For each n we have Cn = Mod(x2 � x, σn).

For n ≥ 1 we consider a rewrite relation −→n on X∗ given in the following way:
for u, v ∈ X∗ we put u −→n v if v is a subword of u, |v| = |u| − 1 and u ∼n v.
Similarly, for u, v ∈ X∗ we put u =⇒n v if v is a subword of u, |v| = |u| − 1
and u ≈n v. Note that the relations −→n and =⇒n are not defined for n = 0
although some statements concerning ∼n and ≈n are also valid in this case.
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Lemma 5. Let V be one of the varieties Bn, Cn or their dual, where n ≥ 0.
If u, v, w ∈ X∗ are such that |v| ≥ 2 and uvw ∼V uw, then there exist words
v0, v1, v2 such that v = v0v1v2, 1 ≤ |v1| < |v| and uvw ∼V uv0v2w.

Proof. We prove the statement by induction with respect to n and the size of
the set c(uvw). We show the detailed proof for varieties Bn and their duals. If
V = B0 then we have c(uvw) = c(uw). This means that c(v) ⊆ c(uw). Let v0 be
the empty word, v1 be the first letter of v and v2 be such that v = v0v1v2 = v1v2.
Then c(v2) ⊆ c(uw) and c(uv2w) = c(uw) = c(uvw) follows.

Now let n ≥ 1 and let V = Bn. Let u, v, w be as in the statement, in particular
we have uvw ∼n uw. If c(uvw) = c(u) then 0(uvw) = 0(u). By the induction
assumption for uvw ∼r

n−1 uw there are v0, v1, v2 such that v = v0v1v2, 1 ≤
|v1| < |v| and uvw ∼r

n−1 uv0v2w. Since 0(uvw) = 0(u) = 0(uv0v2w) we get
uvw ∼n uv0v2w.

Let assume now, that 0(uvw) = us, where s is a prefix of v such that |s| < |v|.
This means that v = sxt, where x ∈ X , c(tw) ⊆ c(usx), x �∈ c(us). Since
c(uw) = c(uvw) we have x ∈ c(w). We consider the first occurrence of x in w,
i.e. w = w0xw1, where w0, w1 ∈ X∗ and x �∈ c(w0). Now from the assumption
uvw ∼n uw we get us = 0(uvw) ∼n 0(uw) = uw0. We can multiply it by
w = w0xw1 to obtain usw ∼n uw0w0xw1 ∼B uw0xw1 = uw. So, if s is not the
empty word λ we are done, we can put v0 = s, v1 = xt and v2 = λ. If s = λ
then t �= λ and we have u ∼n uw0. We can multiply it by xw = xw0xw1 to
obtain uxw ∼n uw0xw0xw1 ∼B uw0xw1 = uw. Thus we have the statement for
v0 = sx = x, v1 = t and v2 = λ.

Finally, assume that 0(uvw) = uvw0 for a certain prefix w0 of w. This means
w = w0xw1 where c(w1) ⊆ c(uvw0x) and x �∈ c(uvw0). Hence we have 0(uw) =
uw0. Now we use the induction assumption for the smaller set c(uvw0) � c(uvw).
From uvw ∼n uw we have uvw0 ∼n uw0 and there are v0, v1, v2 such that
v = v0v2v2 and uvw0 ∼n uv0v2w0. When we multiply it by xw1 we obtain
uvw ∼n uv0v2w. ��

Lemma 6. Let n ≥ 1 and u, v, w ∈ X∗.

i) If uvw ∼n uw, then uvw −→∗n uw.
ii) If uvw ≈n uw, then uvw =⇒∗n uw.

Proof. It follows from Lemma 5 by induction with respect to the length of v. ��

Lemma 7. Let ∼ be one of the relations ∼n, ∼r
n, ≈n and ≈r

n with n ≥ 1. Let
u, v, w, s ∈ X∗ and x, y ∈ X, x �= y.

i) If s = uxvyw ∼ uxvw ∼ uvyw, then uvw ∼ s or uw ∼ s.
ii) If s = uxvxw ∼ uxvw ∼ uvxw, then uvw ∼ s or uxw ∼ s.

Proof. i) We prove the statement by induction with respect to n and with respect
to the number of letters used in s. We prove it even for n = 0. So, let ∼ = ∼0,
which means that t1 ∼ t2 if and only if c(t1) = c(t2). From the assumption
uxvyw ∼ uxvw ∼ uvyw we get that x ∈ c(uvyw) and y ∈ c(uxvw). Since x �= y,
we have x, y ∈ c(uvw) and we get c(uvw) = c(s), i.e. uvw ∼ s.
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Assume that the statement holds for ∼n, which gives the statement for ∼r
n

immediately. Let ∼ = ∼n+1 and s = uxvyw ∼ uxvw ∼ uvyw. Similarly to the
proof of Lemma 5 we distinguish the cases depending on 0(uxvyw).

If 0(uxvyw) = u0, where u0 is a proper prefix of u, then u = u0zu1, z ∈ X ,
u0, u1 ∈ X∗, z �∈ c(u0) and c(u1xvyw) ⊆ c(u0z). Hence 0(uxvw) = 0(uvyw) =
0(uvw) = 0(uw) = u0. Since these words are identical we have uvw ∼n+1 s
if and only if uvw ∼r

n s and we have the same for uw. From the assumption
s = uxvyw ∼n+1 uxvw ∼n+1 uvyw we have s = uxvyw ∼r

n uxvw ∼r
n uvyw

and by the induction assumption we obtain uvw ∼r
n s or uw ∼r

n s. Thus we get
uvw ∼ s or uw ∼ s.

If 0(uxvyw) = u then x �∈ c(u) and c(vyw) ⊆ c(ux). We distinguish two cases
x ∈ c(v) and x �∈ c(v). In the first case let v0, v1 ∈ X∗ be words such that
v = v0xv1, x �∈ c(v0). Then 0(uvyw) = uv0 and we have u ∼ uv0. We multiply
it by xvw = xv0xv1w and we obtain uxvw ∼ uv0xv0xv1w ∼B uv0xv1w = uvw
which means that uvw ∼ s. In the second case x �∈ c(v), since x ∈ c(uvyw) we
have x ∈ c(w), i.e. w = w0xw1 for some words w0, w1 ∈ X∗, x �∈ c(w0). Then
u = 0(uxvyw) ∼n+1 0(uvyw) = uvyw0. If we multiply it by w = w0xw1 we get
uw ∼n+1 uvyw0w0xw1 ∼B uvyw0xw1 = uvyw ∼ s.

If 0(uxvyw) = uxv0, where v0 ∈ X∗ is a prefix of v, |v0| < |v| then v =
v0zv1, z ∈ X , v1 ∈ X∗, z �∈ c(uv0). Then 0(uvyw) = uv0 and we get uxv0 =
0(uxvyw) ∼ 0(uvyw) = uv0. If we multiply it by zv1w we obtain s ∼ uxvw ∼
uvw.

If 0(uxvyw) = uxv then y �∈ c(uxv), but y ∈ c(uxvyw) = c(uxvw). Let w0, w1

be words such that w = w0yw1 and y �∈ c(w0). Hence we have uxv = 0(uxvyw) ∼
0(uvyw) = uv. We multiply it by w = w0yw1 and we obtain uxvw ∼ uvw.

Finally, if 0(uxvyw) = uxvyw0 where w0 ∈ X∗ is a prefix of w, |w0| < |w|
then w = w0zw1, z ∈ X , w1 ∈ X∗, z �∈ c(uxvyw0). Then from the assumption
s = uxvyw ∼ uxvw ∼ uvyw we obtain s′ = uxvyw0 ∼ uxvw0 ∼ uvyw0. If we
use the induction assumption for the set c(s′) then we get uvw0 ∼ s′ or uw0 ∼ s′.
If we multiply it by zw1 we obtain the statement.

For relations ≈n the only difference is that at the beginning for ≈0 we need
to check in addition that all considered words have the same first letter.

ii) For ∼n the statement can be proved in the same manner. The only differ-
ence is that it does not hold for n = 0. Indeed, if u = w = λ, and v = z �= x,
z ∈ X , then we have the assumption xzx ∼0 xz ∼0 zx because they have the
content {x, z}. But v = z and x have different content. This means that we need
to prove the statement for ∼1 first. Assume that −−−−→uxvxw = −−−→uvxw. If x ∈ c(u)
then we see that −−−→uvxw = −−→uvw. If x �∈ c(uv) then from −−−−→uxvxw = −−−→uvxw we see that
c(v) ⊆ c(u) and consequently −−−→uvxw = −−→uxw. Finally, if x �∈ c(u) but x ∈ c(v),
then −−−→uvxw = −−→uvw. We prove the statement for n = 1. The induction step can
we done in the same way as in the proof of item i). For the relations ≈n one can
prove the statement in similar way. ��

Theorem 3. Let n be an arbitrary natural number. Then the rewrite relations
−→n and =⇒n are canonical. Moreover, for all u, v ∈ X∗, we have u ∼n v if
and only if [u]−→n = [v]−→n and u ≈n v if and only if [u]=⇒n = [v]=⇒n .
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Proof. The relation −→n is strictly size-decreasing, hence it is terminating. We
show that −→n is locally confluent. Assume that s = uxvyw −→n uxvw and
uxvyw −→n uvyw. We need to find t such that uxvw −→∗n t and uvyw −→∗n t.
First, assume in addition that x �= y. By Lemma 7 (i) we know that uvw ∼n s
or uw ∼n s. In the first case we have uxvw −→n uvw and also uvyw −→n uvw.
In the second case we have uxvw ∼n uw and uvyw ∼n uw. Now we use Lemma 6
to state uxvw −→∗n uw and also uvyw −→∗n uw. Now we assume that x = y. By
Lemma 7 part ii) we have that uvw ∼ s or uxw ∼ s and one can finish the proof
in the same way as in the case x �= y. We proved that −→n is terminating and
locally confluent and, consequently, it is confluent.

To prove the second part of the statement we first assume that [u]−→n = w =
[v]−→n . Then u −→∗n w and v −→∗n w from which it follows that u ∼n w ∼n v.

Now we assume that u ∼n v. This means that u � v is an identity for Bn.
By Proposition 1, we know that Bn = Mod(x2 � x, πn). From the completeness
of equational logic, there is a sequence of words u = u1, u2, . . . , un = v such
that each pair (ui, ui+1) is of the form (sp(r1, r2, . . . )t, sq(r1, r2, . . . )t) where
p(x1, x2, . . . ) � q(x1, x2, . . . ). More precisely

(p, q) ∈ I = {(x, x2), (x2, x), (un, vn), (vn, un)}

where un and vn form the identity πn from Proposition 1. Each identity from
I is of a very special form, namely it is a letter deleting one. After applying
a considered substitution, we get that p(r1, r2, . . . ) arises from q(r1, r2, . . . ) by
removing a certain factor or vice-versa q(r1, r2, . . . ) arises from p(r1, r2, . . . ) in
the same way. Consequently, the same holds for each pair (ui, ui+1). Since ui ∼n

ui+1 we can apply Lemma 6 to get that for each i we have ui −→∗n ui+1 or
ui+1 −→∗n ui. In both cases we can deduce [ui]−→n = [ui+1]−→n because −→n is
a canonical rewrite relation. Hence we get [u]−→n = [u1]−→n = [u2]−→n = · · · =
[un]−→n = [v]−→n .

The proof for =⇒n is analogical. ��
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