
SYMMETRIES OF FINITE HEISENBERG GROUPS FOR
MULTIPARTITE SYSTEMS
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Abstract. A composite quantum system comprising a finite number k of sub-
systems which are described with position and momentum variables in Zni ,

i = 1, . . . , k, is considered. Its Hilbert space is given by a k-fold tensor product

of Hilbert spaces of dimensions n1, . . . , nk. Symmetry group of the respective
finite Heisenberg group is given by the quotient group of certain normalizer.

This paper extends our previous investigation of bipartite quantum systems

to arbitrary multipartite systems of the above type. It provides detailed de-
scription of the normalizers and the corresponding symmetry groups. The

new class of symmetry groups represents a very specific generalization of finite

symplectic groups over modular rings.
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1. Introduction

The Heisenberg Lie algebra and the Heisenberg-Weyl group lie at the heart
of quantum mechanics [1]. Therefore their symmetries induced by unitary auto-
morphisms play very important role in quantum kinematics as well as quantum
dynamics. The growing interest in quantum communication science has pushed the
study of quantum systems with finite-dimensional Hilbert spaces to the forefront,
both single systems and composite systems. For them the finite Heisenberg groups
provide the basic quantum observables. It is then clear that the symmetries of
finite Heisenberg groups uncover deeper structure of finite-dimensional quantum
mechanics.

Our continuing interest in finite-dimensional quantum mechanics goes back to the
paper [2] where finite-dimensional quantum mechanics was developed as quantum
mechanics on configuration spaces given by finite sets equipped with the structure
of a finite Abelian group. In our recent paper [3] detailed characterization was

Key words and phrases. finite Heisenberg group, generalized Pauli matrices, quantum phase

space, GLn(C), inner automorphisms, matrix ring, normalizer, multipartite quantum system,
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given of the symmetry groups of finite Heisenberg groups for composite quantum
systems consisting of two subsystems with arbitrary dimensions n, m. In this
contribution these results for bipartite systems are extended to the general finitely
composed systems consisting of an arbitrary number k of subsystems with arbitrary
dimensions n1, . . . , nk. Their Hilbert spaces are given by k-fold tensor products of
Hilbert spaces of dimensions n1, . . . , nk.

In the course of work it turned out that — even if the idea of the present paper
is similar to [3] — intermediate steps could not be taken over literally from [3], but
had to be carefully developed in the general multipartite situation.

The exposition starts with introductory material on finite-dimensional quantum
mechanics in section 2; the new symmetry groups are described in section 3. The
reader will see that they deserve to be called generalized finite symplectic groups.

Certain subclass of the family of symmetry groups derived here also serves as
suitable starting point for an alternative proof of existence of the maximal set of
mutually unbiased bases in Hilbert spaces of prime power dimensions [5, 6]. Their
group theoretical construction presented in [7] was based on the symmetry groups
SL2(Zp) of the finite Heisenberg groups for Hilbert spaces of prime dimensions. In
section 6 it is based on the subclass Sp2k(Zp) of our symmetry groups which are
applied in generalized fashion to the Hilbert spaces of prime power dimensions pk.

2. Finite-dimensional quantum mechanics

Finite-dimensional quantum mechanics (FDQM) [8, 9] has been developed as
quantum mechanics on configuration spaces given by finite sets equipped with the
structure of a finite Abelian group [2]. For reader’s convenience we very briefly
repeat the basic notions of FDQM for a single-component system with the Hilbert
space `2(Zn) of arbitrary dimension n ∈ N. In this case the cyclic group Zn serves
as the underlying configuration space.

We follow the notation of [3], where further details can be found. For a given
n ∈ N we set

ωn := e2πi/n ∈ C.

Let Qn and Pn denote the generalized Pauli matrices of order n,

Qn := diag(1, ωn, ω2
n, . . . , ωn−1

n ) ∈ GLn(C)

and
Pn ∈ GLn(C), where (Pn)i,j := δi,j−1, i, j ∈ Zn.

They are unitary operators in `2(Zn). Let In denote the n × n unit matrix. The
subgroup of unitary matrices in GLn(C) generated by Qn and Pn,

Πn := {ωj
nQk

nP l
n|j, k, l ∈ {0, 1, . . . , n− 1}}

is called the finite Heisenberg group. Recall that the order of Πn is n3, the center
is Z(Πn) = {ωj

nIn|j ∈ {0, 1, . . . , n− 1}} and PnQn = ωnQnPn.
For M ∈ GLn(C) let AdM ∈ Int(GLn(C)) be the inner automorphism of the

group GLn(C) induced by operator M ∈ GLn(C), i.e.

AdM (X) = MXM−1 for X ∈ GLn(C).

Definition 2.1. We define Pn as the group

Pn = {AdQi
nP j

n
|(i, j) ∈ Zn × Zn}.

It is an Abelian subgroup of Int(GLn(C)) and is generated by two commuting
automorphisms AdQn

, AdPn
,

Pn = 〈AdQn
,AdPn

〉 .
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A geometric view is sometimes useful that Pn is isomorphic to the quantum phase
space identified with the Abelian group Zn × Zn [10, 7].

It is also useful to recall the usual properties of the matrix tensor product ⊗.
Let A,A′ ∈ GLn(C), B,B′ ∈ GLm(C) and α ∈ C. Then:

(i) (A⊗B)(A′ ⊗B′) = AA′ ⊗BB′.
(ii) α(A⊗B) = (αA)⊗B = A⊗ (αB).
(iii) A⊗B = Inm if and only if there is non-zero α ∈ C such that A = αIn and

B = α−1Im.
Finally we introduce main notions for the multipartite situation.

Definition 2.2. Let n1, . . . , nk ∈ N and N = n1 . . . nk. We define

P(n1,...,nk) = {AdM1⊗···⊗Mk
| Mi ∈ Πni

} ⊆ Int GLN (C)

In the following we shall work with generating elements of P(n1,...,nk),

A2i−1 := In1···ni−1 ⊗ Pni
⊗ Ini+1···nk

, A2i := In1···ni−1 ⊗Qni
⊗ Ini+1···nk

,

for i = 1, . . . , k and the corresponding inner automorphisms

ej := AdAj
for j = 1, . . . , 2k.

Clearly, P(n1,...,nk) is a direct product of groups 〈ej〉, where j = 1, . . . , 2k.

Lemma 2.3. Let n1 . . . nk = N . Then P(n1,...,nk) is a maximal Abelian subgroup
of diagonalizable automorphisms in Int(GLN (C)).

This subgroup has been called a MAD-group [11] and it is the subgroup of
Int(GLN (C)) such that its centralizer in Int(GLN (C)) is equal to P(n1,...,nk). The
proof for the bipartite case was given in [3].

In section 3 the group Sp[n1,...,nk] is introduced as a matrix subgroup of GLN (C).
Its further properties are given in section 4. The proof that Sp[n1,...,nk] is indeed the
symmetry group is contained in section 5, Theorem 5.9. Finally, section 6 contains
a new constructive proof of existence of mutually unbiased bases in Hilbert spaces
of prime power dimensions as application of the symmetry groups.

3. The symmetry group Sp[n1,...,nk]

In this section the group Sp[n1,...,nk] is defined and its principal properties are de-
scribed. It will be constructed in several steps. Through this section let n1, . . . , nk ∈
N be fixed numbers.

Our construction starts with a set of block matrices:

Definition 3.1. Let M[n1,...,nk] be a set consisting of k× k matrices H composed
of 2× 2 blocks

Hij =
ni

gcd(ni, nj)
Aij

where Aij ∈ M2(Zni
) for i, j = 1, . . . , k are 2× 2 matrices over Zni

.
It is useful to take such matrices over Z,

S[n1,...,nk] :=
{

H ∈ Mk(M2(Z))| Aij ∈ M2(Z), Hij =
ni

gcd(ni, nj)
Aij , i, j = 1, . . . , k

}
,

and using a special diagonal matrix D := diag
(

lcm(n1,...,nk)
n1

I2, . . . ,
lcm(n1,...,nk)

nk
I2

)
∈

S[n1,...,nk] to define a congruence ≡ on S[n1,...,nk]

H ≡ G ⇔ DH ≡lcm(n1,...,nk) DG where H, G ∈ S[n1,...,nk].

Further an adjoint H∗ ∈ S[n1,...,nk] of H ∈ S[n1,...,nk], Hij = ni
gcd(ni,nj)

Aij is defined by

(H∗)ij =
ni

gcd(ni, nj)
AT

ji.

For convenience we put ` := lcm(n1, . . . , nk) in this section.
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Remark 3.2. The above definitions lead to the following properties of M[n1,...,nk].
(1) Let d, n, a, b ∈ Z and d | n. Then congruence n

d a ≡n
n
d b is equivalent to

a ≡d b, i.e. a = b (mod d).
(2) By (1), we see that M[n1,...,nk] = S[n1,...,nk]/≡.
(3) Let i, j, m ∈ {1, . . . , k}. Then ni

gcd(ni,nj)

∣∣ ni

gcd(ni,nm)
nm

gcd(nm,nj)
.

Indeed, gcd(nm, nj)·gcd(ni, nm) divides nmni and also njnm. Hence gcd(nm, nj)·
gcd(ni, nm) divides gcd(nmni, nmnj) = nm gcd(ni, nj) and thus

nm gcd(ni,nj)

gcd(ni,nm) gcd(nm,nj)
∈

Z.

(4) Using (3) we get that S[n1,...,nk] is a subring of Mk(M2(Z)).
(5) It is easy to verify that DH = (H∗)T D for every H ∈ S[n1,...,nk].
(6) ≡ is a ring congruence on S[n1,...,nk]. Thus, by (2) and (4), M[n1,...,nk] is

(with the usual matrix multiplication and addition) a ring.
It is enough to show that I := {H ∈ S[n1,...,nk]| H ≡ 0} is an ideal in S[n1,...,nk].

Let H, G ∈ S[n1,...,nk] and H ∈ I. Then DH ≡` 0. Hence by (5) we have

D(GH) ≡` (G∗)T (DH) ≡` 0 and GH ∈ I. The rest is obvious.

(7) M[n1,...,nk] has a natural action (via the matrix multiplication) on the quan-
tum phase space Z2

n1
× · · · × Z2

nk
.

Clearly, Z2
n1 × · · · × Z2

nk
can be viewed as factor of Z2k through the equivalence:

x ≡ y if and only if Dx ≡` Dy, where x, y ∈ Z2k. One needs only to show

that H ≡ G and x ≡ y implies Hx ≡ Gy for H, G ∈ S[n1,...,nk] and x, y ∈ Z2k.

Let DH ≡` DG and Dx ≡` Dy. Then DHx ≡` (DG)x ≡` (G∗)T (Dx) ≡`

(G∗)T Dy ≡` DGy and thus Hx ≡ Gy.

(8) M[n1,...,nk] is a finite set of matrices closed under usual matrix multiplica-
tion and containing the unit matrix as neutral element, i.e. it is a finite
monoid.

Property (7) can be naturally extended to any endomorphism of the quantum
phase space:

Proposition 3.3. For every α ∈ End(Z2
n1
× · · · × Z2

nk
) there is a unique H ∈

M[n1,...,nk] such that α(x) = Hx for every x ∈ Z2
n1
× · · · × Z2

nk
. The map

Φ : End(Z2
n1
× · · · × Z2

nk
) →M[n1,...,nk],

where Φ(α) := H is a ring isomorphism.

Proof. Let {f1, . . . , f2k} be the canonical generating set of Z2
n1
× · · · × Z2

nk
. For

every α ∈ End(Z2
n1
× · · · × Z2

nk
) there are hij ∈ Z such that α(fj) =

∑2k
i=1 hijfi.

The order of f2i−1 and f2i is ni for i = 1, . . . , k. Hence we have 1 = α(nif2i−1) =∑2k
j=1(nihj,2i−1)fj and 1 = α(nif2i) =

∑2k
j=1(nighj,2i)fj . Thus nih2j−1,2i ≡nj

0 ≡nj
nih2j,2i for every j = 1, . . . , k. It follows that ni

gcd(ni,nj)
h2j−1,2i ≡nj/ gcd(ni,nj)

0 ≡nj/ gcd(ni,nj)
ni

gcd(ni,nj)
h2j,2i and h2j−1,2i, h2j,2i ∈ nj

gcd(ni,nj)
Z for every j =

1, . . . , k. Now, consider hij modulo dni/2e. Put H = (hij)i,j=1,...,2k ∈ M[n1,...,nk]

and the rest is easy. �

Remark 3.4. Properties of the adjoint operation on S[n1,...,nk] and on M[n1,...,nk].
(1) Let H,G ∈ S[n1,...,nk]. Then (H∗)∗ = H, (H+G)∗ = H∗+G∗ and (HG)∗ =

G∗H∗, i.e. the operation ∗ is an involutive ring anti-homomorphism.
Let Hij = ni

gcd(ni,nj)
Aij ∈ Zni and Gij = ni

gcd(ni,nj)
Bij ∈ Zni for i, j = 1, . . . , k.

Then (G∗H∗)ij =
k∑

m=1

ni
gcd(ni,nm)

nm
gcd(nm,nj)

BT
miA

T
jm =

= ni
gcd(ni,nj)

k∑
m=1

nm gcd(ni,nj)

gcd(ni,nm) gcd(nm,nj)
(AjmBmi)

T = (HG)∗ij . The rest is obvi-

ous.
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(2) Let H,G ∈ S[n1,...,nk]. Then H ≡ G implies H∗ ≡ G∗. Thus the operation
∗ is well defined on M[n1,...,nk].
Indeed, let DH ≡` DG. Then DH∗ ≡` HT D ≡` GT D ≡` DG∗ and H∗ ≡ G∗.

Finally, we are going to define Sp[n1,...,nk].

Definition 3.5. Denote

J = diag(J2, . . . , J2) ∈M[n1,...,nk] where J2 =
(

0 1
−1 0

)
and put

(1) Sp[n1,...,nk] = {H ∈M[n1,...,nk]| H∗JH = J}.

The following proposition implies that Sp[n1,...,nk] is a finite subgroup of the
monoid M[n1,...,nk].

Proposition 3.6. Let M be a finite monoid and x 7→ x∗ an involutive anti-
homomorphism of M (i.e. (x∗)∗ = x and (xy)∗ = y∗x∗ for every x, y ∈ M).
Let j ∈ M be such that j∗j = 1. Then G = {x ∈ M| x∗jx = j} is a group.
Moreover, G = {x ∈M| xjx∗ = j}.

Proof. Let x, y ∈ G. Then (xy)∗j(xy) = y∗(x∗jx)y = y∗jy = j. Hence xy ∈ G and
G is closed under multiplication.

Since j has a left inverse, it is invertible, jj∗ = 1 and thus 1, j, j∗ ∈ G. For x ∈ G
we have x∗jx = j, hence (j∗x∗j)x = 1. Thus x is invertible, x−1 = j∗x∗j and
1 = xx−1 = xj∗x∗j. It follows j∗ = xj∗x∗ and applying the ∗ operation we get
j = xjx∗ = (x∗)∗jx∗, since (x∗)∗ = x. Finally x∗ ∈ G, x−1 = j∗x∗j ∈ G and G is a
group. By a similar argument, xjx∗ = j implies x∗jx = j. �

Corollary 3.7. Sp[n1,...,nk] is a finite subgroup of the monoid M[n1,...,nk].

We will not prove this assertion, since the proof is analogous to that in [3,
5.8]. We only recall that we use an observation saying that in a finite monoid an
element is invertible if it has a one-sided inverse (left or right) (see e.g. [3, 5.7]).
Further important ingredients are that J ∈ Sp[n1,...,nk], J−1 = J∗ and the element
J2 = −1 commutes with every H ∈ M[n1,...,nk]. It follows that H−1 = J∗H∗J for
H ∈ Sp[n1,...,nk].

Proposition 3.8. Let H = (hij)i,j=1,...,2k ∈ M[n1,...,nk], hij = ndi/2e
gcd(ndi/2e,ndj/2e)

aij

and aij ∈ Zndi/2e for i, j = 1, . . . , 2k. Then H ∈ Sp[n1,...,nk] if and only if

k∑
m=1

ndi/2e

gcd(nm, ndi/2e)
· nm

gcd(nm, ndj/2e)
(a2m−1,ia2m,j − a2m−1,ja2m,i) ≡ndi/2e wij

for every i, j = 1, . . . , 2k (where J = (wij)i,j=1,...,2k ∈ Sp[n1,...,nk]).

Proof. We only transcribe the equation H∗JH = J using h∗ij = ndi/2e
gcd(ndi/2e,ndj/2e)

aji,
w2m−1,2m = 1, w2m,2m−1 = −1 for m = 1, . . . , k and wij = 0 otherwise. �

Due to (1) the new groups Sp[n1,...,nk] represent a very specific generalization of
symplectic groups over modular rings, thus providing sufficient reason for our nota-
tion. Clearly, for composite systems consisting of subsystems of equal dimensions
n1 = · · · = nk the new groups reduce to the well known symplectic groups [20].

Corollary 3.9. If n1 = · · · = nk = n, i.e. N = nk, the symmetry group is
Sp[n,...,n]

∼= Sp(2k, Zn).
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These cases are of particular interest, since they uncover symplectic symmetry
of k-partite systems composed of subsystems with the same dimensions. This cir-
cumstance was found, to our knowledge, first in [13] for k = 2 under additional
assumption that n = p is prime, leading to Sp(4,Fp) over the field Fp. We have
generalized this result in [3] to bipartite systems with arbitrary (non-prime) n = m
leading to the symmetry group Sp(4, Zn) over the modular ring Zn. The above
corollary extends this fact also to multipartite systems. Similar result has inde-
pendently been obtained in [14], where symmetries of tensored Pauli gradings of
sl(nk, C) were investigated.

4. Characterization of Sp[n1,...,nk]

In this section we are going to prove Theorem 4.7 describing by which elements
Sp[n1,...,nk] is generated. Let n1, . . . , nk ∈ N be again fixed numbers.

Definition 4.1. Let ` ∈ Z, 1 ≤ i < j ≤ k. We define special matrices Gij(`) ∈
M[n1,...,nk] with 2× 2 blocks

(
Gij(`)

)
rs

:=


I2 if r = s

nr

gcd(nr,ns)` ·
(

0 0
1 0

)
if (r, s) = (i, j), (j, i)

0 otherwise

where r, s = 1, . . . , k.

Further we note that

SL2(Zn1)× · · · × SL2(Znk
) ∼=

∼=
{
diag(H1, . . . ,Hk) ∈M[n1,...,nk]

∣∣∣ Hi ∈ M2(Zni
) & detHi ≡ni

1
}
.

Thus we can assume SL2(Zn1) × · · · × SL2(Znk
) to be naturally embedded into

Sp[n1,...,nk].

Lemma 4.2. Gij(`) = Gij(1)` for every ` ∈ Z and 1 ≤ i < j ≤ k and Gij(1) ∈
Sp[n1,...,nk].

Proof. First consider a permutation π of the set {1, . . . , k}. It induces an isomor-
phism ϕπ : M[n1,...,nk] → M[nπ(1),...,nπ(k)]. It is clear that H ∈ Sp[n1,...,nk] if and
only if ϕπ(H) ∈ Sp[nπ(1),...,nπ(k)]

for every H ∈ M[n1,...,nk]. Hence it is enough to
show our assertion for G12(`) only and this is equivalent to the case k = 2 which
was already treated in [3], Lemma A.4, where G12(`) was denoted r(k). �

Remark 4.3. Let u = (a, b)T ∈ Z2. Then there are A,A′ ∈ SL2(Z) such that
Au = (0, gcd(a, b))T and A′u = (gcd(a, b), 0)T .
We can assume u 6= 0. Then there are k, l ∈ Z such that ka + lb = gcd(a, b) =: d. Now

just put A =
(

b/d −a/d
k l

)
and A′ = J2A.

Now let G briefly denote the subgroup of Sp[n1,...,nk] which is generated by
SL2(Zn1) × · · · × SL2(Znk

) and {Gij(1)| 1 ≤ i < j ≤ k}. We are going to prove
Theorem 4.7 that G = Sp[n1,...,nk]. For this aim we need some auxiliary notions.

Remark 4.4.
(1) Consider the elements of S[n1,...,nk] as k×k matrices of 2×2 blocks. Let Σk

be the set of all last (i.e. the k-th) columns of the elements of S[n1,...,nk] and,
similarly, let Σ∗

k be the set of all last (i.e. the k-th) rows of the elements
of S[n1,...,nk]. Clearly, the involution ∗ on S[n1,...,nk] induces a bijection
Σk → Σ∗

k (we will use the same notation for it).
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(2) The congruence ≡ on S[n1,...,nk] induces naturally equivalences on Σk and
Σ∗

k (we will use again the same notation for them and denote [U ] the
equivalence class containing an element U). Hence it easily follows that
U,U ′ ∈ Σk, U ≡ U ′ and H,H ′ ∈ S[n1,...,nk], H ≡ H ′ imply U∗ ≡ (U ′)∗ and
HU ≡ H ′U ′. Moreover, (HU)∗ = U∗H∗.

(3) Now, put Ωk := Σk/≡ and Ω∗
k := Σ∗

k/≡. By (1), (2) and 3.4, we have a well
defined map Ωk → Ω∗

k induced by ∗ and there is a natural action (via the
matrix multiplication) of the ring M[n1,...,nk] on the set Ωk.

(4) Let U,U ′ ∈ Σk, U ≡ U ′ and T, T ′ ∈ Σ∗
k, T ≡ T ′. Then TU ≡nk

T ′U ′.
Clearly, there are H, H ′ ∈ S[n1,...,nk] such that U (respectively U ′) is the last

column of H (H ′, resp.) and H ≡ H ′. Similarly, there are G, G′ ∈ S[n1,...,nk]

such that T (T ′, resp.) is the last row of G (G′, resp.) and G ≡ G′. Then TU

(T ′U ′, resp.) is the block on the (k, k)-position of the matrix GH (G′H ′, resp.).

By 3.2 part (7) we have GH ≡ G′H ′ and thus TU ≡nk T ′U ′.

(5) Finally, the set ∆k := {[U ] ∈ Ωk| U∗JU ≡nk
J2} is by (4) well defined.

Using (2) and (3) we see that ∆k is invariant under the action of the group
Sp[n1,...,nk] (this action is a restriction of the action of M[n1,...,nk] on Ωk

that was considered above).

Put d(i,j) = ni

gcd(ni,nj)
and note that d(i,i) = 1.

Proposition 4.5. G acts transitively on ∆k.

Proof. In this proof we will consider an element from Ωk as an ordered pair of its
columns, i.e. as (v, u) where v, u ∈ K = Z2

n1
× · · ·×Z2

nk
are 2k-tuples. First, notice

that for v0 = (0, . . . , 0, 1, 0) and u0 = (0, . . . , 0, 1) we have (v0, u0) ∈ ∆.
Now assume that some (v, u) ∈ ∆k is given. To prove our assertion, we construct

for some n ∈ N a sequence (v, u) = (v0, u0), . . . , (vn, un) = (v0, u0) in ∆k and a
sequence H1, . . . ,Hn in G such that (vj+1, uj+1) = Hj+1(vj , uj) for j = 0, . . . , n−1.
We divide the proof into several steps.

(1) By 4.3, there are Bi ∈ SL2(Zni
) for i = 1, . . . , k such that for H1 :=

diag(B1, . . . , Bk) ∈ G we have

u1 := H1u =
(
d(1,k)a1, 0, . . . , d(k,k)ak, 0

)T

for some ai ∈ Zni .
(2) Let

v1 :=
(
d(1,k)b1, d(1,k)c1, . . . , d(k,k)bk, d(k,k)ck

)T
.

Then, by the definition of ∆k, we have
∑k

m=1 d(k,m)d(m,k)amcm ≡nk
−1. Put

H2 := diag(I2, . . . , I2, B) ∈ G, where B :=
(

1 0
ck 1

)
. Then

u2 := H2u1 =
(
d(1,k)a1, 0, . . . , d(k−1,k−1)ak−1, 0, ak, akck

)T
.

Now, by induction on 1 ≤ m ≤ k − 1, we get that for Hm+2 := Gm,k(cm) is

um+2 := Hm+2um+1 =

=
(
. . . , d(m+1,k)am+1, 0, . . . , d(k−1,k)ak−1, 0, ak,

(
akck +

m∑
i=1

d(k,i)d(i,k)aici

))T
.

Thus
uk+1 =

(
. . . , ak,−1

)T
.

(3) Using a similar argument as in step (1), we get that there is Hk+2 ∈ G such
that

uk+2 := Hk+2uk+1 =
(
0, d(1,k)a

′
1, . . . , 0, d(k−1,k−1)a

′
k−1, 1, 0

)T
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for some a′i ∈ Zni
. Further put Hk+3 := G1,k(−a′1) · · ·Gk,k(−a′k) ∈ G. Then,

clearly,
uk+3 := Hk+3uk+2 =

(
0, . . . , 0, 1, 0

)T
.

(4) Using again a similar argument as in step (1), we get that there is Hk+4 ∈ G
such that

uk+4 := Hk+4uk+3 =
(
0, . . . , 0, 1

)T

and
vk+4 :=

(
0, d(1,k)b

′
1, . . . , 0, d(k−1,k)b

′
k−1, b

′, c′
)T

for some b′i ∈ Zni
, b′, c′ ∈ Znk

. Now we get from the defining equation for ∆k that
b′ ≡nk

1. Put B′ :=
(

1 0
−c′ 1

)
. Then for Hk+5 := diag(I2, . . . , I2, B

′) ∈ G we get
that

uk+5 := Hk+5uk+4 =
(
0, . . . , 0, 1

)T

and
vk+5 := Hk+5vk+4 =

(
0, d(1,k)b

′
1, . . . , 0, d(k−1,k)b

′
k−1, 1, 0

)T
.

So we are in an analogous situation to step (3) and thus there is Hk+6 ∈ G such
that

uk+6 := Hk+6uk+5 =
(
0, . . . , 0, 1

)T

stays unchanged and

vk+6 := Hk+6vk+5 =
(
0, . . . , 0, 1, 0

)T
.

�

Lemma 4.6. Let H ∈M[n1,...,nk−1] and T ∈ Σ∗
k−1 be such that

(
H 0
T I2

)
∈ Sp[n1,...,nk].

Then T = 0 and H ∈ Sp[n1,...,nk−1]
.

Proof. There is U ∈ Σk such that T = U∗. We have(
J 0
0 J2

)
=

(
H∗ U
0 I2

) (
J 0
0 J2

) (
H 0
U∗ I2

)
=

(
H∗JH + UJ2U

∗ UJ2

J2U
∗ J2

)
.

Hence U∗ = 0 and H∗JH = J . �

Theorem 4.7. The group Sp[n1,...,nk] is generated by SL2(Zn1) × · · · × SL2(Znk
)

and {Gij(1)| 1 ≤ i < j ≤ k}.

Proof. Let G ∈ Sp[n1,...,nk] and U ∈ Σk be the last column of G. Then U ∈
∆k by 3.8. Hence by 4.5 there is G′ ∈ G such that G′G =

(
H 0
T I2

)
for some

H ∈ M[n1,...,nk−1] and T ∈ Σ∗
k−1. Using 4.6, we have G′G =

(
H 0
0 I2

)
with H ∈

Sp[n1,...,nk−1]
. Now, by repeating this argument several times, we find G̃ ∈ G such

that G̃G = I2k. Hence G = G̃−1 ∈ G and we conclude with Sp[n1,...,nk] = G. �

5. The normalizer of P(n1,...,nk)

In this section the normalizer is completely described and the main theorem
5.10 is proved. It contains our principal result that the symmetry group, being the
quotient of the normalizer, is indeed isomorphic to Sp[n1,...,nk].

For the sake of proving this isomorphism between the groupN (P(n1,...,nk))/P(n1,...,nk)

and Sp[n1,...,nk], we will consider elements of M[n1,...,nk] as matrices 2k×2k instead
of taking them as matrices k × k of blocks 2× 2, as we did so far. More precisely,
H ∈ Sp[n1,...,nk] will be treated as H = (hij)i,j=1,...,2k, where

hij =
ndi/2e

gcd(ndi/2e, ndj/2e)
aij

for some aij ∈ Zndi/2e and all i, j = 1, . . . , 2k.
8



Definition 5.1. Define

N (P(n1,...,nk)) := NInt(GLn1···nk
(C))(P(n1,...,nk)),

the normalizer of P(n1,...,nk) in Int(GLn1···nk
(C)). Further define

N (Pn) := NInt(GLn(C))(Pn),

the normalizer of Pn in Int(GLn(C)), and

N (Pn1)× · · · × N (Pnk
) := {AdM1⊗···⊗Mk

| Mi ∈ N (Pni)} ⊆ Int(GLn1···nk
(C)).

Remark 5.2.
(1) Clearly, N (Pn1)× · · · × N (Pnk

) ⊆ N (P(n1,...,nk)).
(2) Consider now the usual natural homomorphism

Ψ : N (P(n1,...,nk)) → Aut(P(n1,...,nk))

Ψ(AdM )(AdX) := AdMAdXAd−1
M

for every AdM ∈ N (P(n1,...,nk)) and AdX ∈ P(n1,...,nk).
We have ker(Ψ) = CInt(GLn1...nk

(C))(P(n1,...,nk)) = P(n1,...,nk), by lemma
2.3.

(3) Further put

λij = exp
(
2πi

wij

ndi/2e

)
for i, j = 1, . . . , 2k where wij are the entries of the matrix J ∈ Sp[n1,...,nk].
Thus we have Am

i An
j = λmn

ij An
j Am

i for every i, j = 1, . . . , 2k and m,n ∈ Z.

Lemma 5.3. ΦΨ(N (P(n1,...,nk))) ⊆ Sp[n1,...,nk].

Proof. Let AdG ∈ N (P(n1,...,nk)), where G ∈ Int(GLn1···nk
(C). By 3.3, there is

H = (hij)i,j=1,...,2k ∈M[n1,...,nk] such that ΦΨ(AdG) = H. Hence

AdGAjG−1 = Ψ(AdG)(ej) =
2k∏
i=1

e
hij

i =
2k∏
i=1

Ad
A

hij
i

and there are 0 6= νj ∈ C such that

GAjG
−1 = νjA

h1,j

1 · · ·Ah2k,j

2k

for j = 1, . . . , 2k. Hence

GAiAjG
−1 = GAiG

−1GAjG
−1 = νiνjA

h1,i

1 · · ·Ah2k,i

2k A
h1,j

1 · · ·Ah2k,j

2k =

= νiνj

( k∏
m=1

λ
h2m,ih2m−1,j

2m,2m−1

)
A

h1,i+h1,j

1 · · ·Ah2k,i+h2k,j

2k

using the commuting relations (where the only non-commuting elements are A2m−1

and A2m for m = 1, . . . , k). On the other hand,

GAiAjG
−1 = λijGAjAiG

−1 = νiνjλij

( k∏
m=1

λ
h2m,jh2m−1,i

2m,2m−1

)
A

h1,i+h1,j

1 · · ·Ah2k,i+h2k,j

2k .

Thus
k∏

m=1
e−2πi(h2m,ih2m−1,j/nm) = λij

k∏
m=1

e−2πi(h2m,jh2m−1,i/nm) for every i, j =

1, . . . , 2k. Hence

exp
(
2πi

(
− wij

ndi/2e
+

k∑
m=1

h2m−1,ih2m,j − h2m−1,jh2m,i

nm

))
= 1.
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Since hij = ndi/2e
gcd(ndi/2e,ndj/2e)

aij for some aij ∈ Zndi/2e , by 3.3, we get

− wij

ndi/2e
+

k∑
m=1

nm

gcd(nm, ndi/2e) gcd(nm, ndj/2e)
(a2m−1,ia2m,j − a2m−1,ja2m,i) ∈ Z

This means that
k∑

m=1

ndi/2e

gcd(nm, ndi/2e)
· nm

gcd(nm, ndj/2e)
(a2m−1,ia2m,j − a2m−1,ja2m,i) ≡ndi/2e wij

for every i, j = 1, . . . , 2k. Hence, by 3.8, H ∈ Sp[n1,...,nk]. �

Definition 5.4. Let 1 ≤ i < j ≤ k. Put

Tij = Ini+1···nj−1 ⊗Q

nj
gcd(ni,nj)
nj

and
Rij = In1···ni−1 ⊗ diag(Ini+1···nj

, Tij , . . . , T
ni−1
ij )⊗ Inj+1···nk

.

Remark 5.5. Let R be a ring and Mn(R) be the ring of n × n matrices with
entries from R. For a ∈ R denote Q[a] := diag(1, a, a2, . . . , an−1) ∈ Mn(R) and
P ∈ Mn(R), where (P )i,j := δi,j−1 · 1R for i, j ∈ Zn. Let E denote the identity
matrix.

(1) Let a ∈ R be such that an = 1. Then PQ[a] = (aE)Q[a]P .
(2) Let a, b, ω ∈ R be such that ab = ωba. Then Q[a](bE) = Q[ω](bE)Q[a].

Lemma 5.6. Let 1 ≤ i < j ≤ k. Then AdRij ∈ N (P(n1,...,nk)) and ΦΨ(AdRij ) =
Gij(−1) ∈ Sp[n1,...,nk].

Proof. Rij is a regular diagonal matrix, so are A2m, m = 1, . . . , k, and thus these
matrices commute. Further, for m such that 1 ≤ m < i or j < m ≤ k, the matrices
Rij and A2m−1 also commute. Let be now m such that i < m < j, then

A2m−1 = In1···ni−1 ⊗ diag(U,U, . . . , U)⊗ Inj+1···nk

where U = Ini+1···nm−1 ⊗ Pnm
⊗ Inm+1···nj−1 ⊗ Inj

and

Rij = In1···ni−1 ⊗ diag(V 0, V 1, . . . , V ni−1)⊗ Inj+1···nk

where V = Ini+1···nm−1 ⊗ Inm
⊗ Inm+1···nj−1 ⊗Q

nj
gcd(ni,nj)
nj . Hence UV = V U and we

have the commutativity of Rij and A2m−1 again.
Now we treat the rest of the cases. Put n = ni, R = Mni+1···nj

(C) and a = Tij .
By 5.5(1), we have

diag(T 0
ij , Tij , T

2
ij , . . . , T

ni−1
ij )(Pni

⊗ Ini+1···nj
)
(
diag(T 0

ij , Tij , T
2
ij , . . . , T

ni−1
ij )

)−1

=

= Q[a]PQ−1
[a] = P (aE)−1 = (Pni ⊗ Ini+1···nj )(Ini ⊗ Tij)−1.

Tensoring this by In1···ni−1 and Inj+1···nk
we get RijA2i−1R

−1
ij = A2i−1A

−
nj

gcd(ni,nj)

2j .
Put b = Ini+1···nj−1 ⊗ Pnj

and ω = e−2πi/ gcd(ni,nj) · Ini+1···nj
. Then ab = ωba

and by 5.5(2) we have

diag(T 0
ij , Tij , T

2
ij , . . . , T

ni−1
ij )(Ini···nj−1 ⊗ Pnj

)
(
diag(T 0

ij , Tij , T
2
ij , . . . , T

ni−1
ij )

)−1

=

= Q[a](bE)Q−1
[a] = Q[ω](bE) = (Qni

⊗ Ini+1···nj
)
− ni

gcd(ni,nj) (Ini···nj−1 ⊗ Pnj
)

Tensoring this by In1···ni−1 and Inj+1···nk
we get RijA2j−1R

−1
ij = A

− ni
gcd(ni,nj)

2i A2j−1.
We conclude with ΦΨ(AdRij

) = Gij(−1) where Gij(`) is defined in 4.1. �
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Remark 5.7. We recall now results achieved in [12] that we use further. Assume
the case k = 1 and denote n := n1. Using our notation we get that ΦΨ(N (Pn)) =
SL2(Zn). Further, the group SL2(Zn) is generated by

(
1 1
0 1

)
and

(
0 −1
1 0

)
and the

group and N (Pn) is generated by AdPn
,AdQn

,AdDn
and AdSn

, where

(Dn)ij := δijε
−iω

(i
2)

n

with ε =
√
−1 for n even and ε = 1 for n odd and

(Sn)ij := ωij
n /
√

n.

Moreover, ΦΨ(Dn) =
(

1 1
0 1

)
, ΦΨ(Sn) =

(
0 −1
1 0

)
and ker(ΦΨ) = Pn.

As an immediate consequence we have the following proposition.

Proposition 5.8. ΦΨ(N (Pn1)× · · · × N (Pnk
)) = SL2(Zn1)× · · · × SL2(Znk

).

Theorem 5.9. (i) N (P(n1,...,nk))/P(n1,...,nk)
∼= Sp[n1,...,nk]

(ii) The group N (P(n1,...,nk)) is generated by N (Pn1)× · · · × N (Pnk
) and

{AdRij | 1 ≤ i < j ≤ k}.

Proof. (i) By 4.7, Sp[n1,...,nk] is generated by {Gij(1)| 1 ≤ i < j ≤ k} and
SL2(Zn1) × · · · × SL2(Znk

). Hence, by 5.3, 5.6 and 5.8, ΦΨ(N (P(n1,...,nk))) =
Sp[n1,...,nk]. Using 3.3 and ker(Ψ) = P(n1,...,nk) we get ker(ΦΨ) = P(n1,...,nk).

(ii) Let N be a subgroup of N (P(n1,...,nk)) generated by N (Pn1)× · · · ×N (Pnk
)

and {AdRij | 1 ≤ i < j ≤ k}. Then ker(ΦΨ) = P(n1,...,nk) ⊆ N (Pn1) × · · · ×
N (Pnk

) ⊆ N and, by 5.6, 5.8 and 4.7, ΦΨ(N ) = Sp[n1,...,nk]. Hence N =
N (P(n1,...,nk)). �

Theorem 5.10. There is a group G(n1,...,nk) ⊆ Un1···nk
(C) such that N (P(n1,...,nk)) =

{AdM | M ∈ G(n1,...,nk)}. In particular, G(n1,...,nk) is generated by the matrices

In1···ni−1 ⊗ Pni
⊗ Ini+1···nk

In1···ni−1 ⊗Qni ⊗ Ini+1···nk

In1···ni−1 ⊗Dni
⊗ Ini+1···nk

In1···ni−1 ⊗ Sni
⊗ Ini+1···nk

for i = 1, . . . , k and
Rij

for 1 ≤ i < j ≤ k.

Proof. Follows immediately from 5.7 and 5.9. �

6. Mutually unbiased bases and the symmetry group

We use our result to show connections to mutually unbiased bases and apply
it for an alternative construction of the maximal set of such bases in the vector
space Cpn

, where p ∈ P is a prime number. We follow the idea of Bandyopadhyay,
Boykin, Roychowdhury and Vatan in [6] but provide a different proof.

First, recall the main point from [6]:
Denote

Πp(n) := {M1 ⊗ · · · ⊗Mn ∈ GLpn(C)| Mi ∈ Πp}.
For α = (k1, . . . , kn, `1, . . . , `n)T ∈ Z2n

p put

A[α] := Qk1
p P `1

p ⊗ · · · ⊗Qkn
p P `n

p ∈ Πp(n).

For an 2n × n matrix U over Zp assign a set of operators C(U) := {A[αi]| i =
1, . . . , n}, where αi is the i-th column of the matrix U .

11



We consider the standard scalar product on the vector space Cpn

. MUB’s are now
constructed as orthonormal sets of common eigenvectors of mutually commuting
operators from C(U) for suitably chosen U . Using the commutator relations for P
and Q we easily get that A[α] and A[β] commute if and only if αT J ′β = 0, where
J ′ :=

(
0 −In

In 0

)
. Thus C(U) consists of mutually commuting operators if and only

if UT J ′U = 0. Now a special system (∗) of such matrices fulfilling this condition is
chosen, namely (

In
0

)
and

(
Ai

In

)
for i = 1, . . . , pn (∗)

where Ai ∈ Mn(Zp) are symmetric and Ai − Aj are regular for i 6= j. (For an
existence of such a system see 6.7.)

We will now apply our previous result concerning the normalizer to get a different
proof that the system (∗) indeed provides a set of pn + 1 mutually unbiased bases.
Moreover, we show that there is a group generating the MUB’s from the canonical
basis via a natural action.

Assuming the notion from previous chapters, consider the case ni = p for every
i = 1, . . . , n. Then P(p,...,p)

∼= (Zp)2n is a vector space over Zp of the dimension 2n.
In the previous chapters we have considered the homomorphism

N (P(p,...,p))
Φ→ End(P(p,...,p)) ∼= End(Z2

p × · · · × Z2
p) ∼= M[p,...,p]

where the isomorphism End(P(p,...,p)) ∼= M[p,...,p] was given with respect to the
basis (AdA1 , . . . ,AdA2n

) of P(p,...,p), where A2i−1 = Ipi−1 ⊗ Pp ⊗ Ipn−i and A2i =
Ipi−1 ⊗Qp ⊗ Ipn−i for i = 1, . . . , n.

For our convenience, we will assume a permutated basis, namely

(AdA2 ,AdA4 , . . . ,AdA2n
,AdA1 ,AdA3 , . . . ,AdA2n−1).

The corresponding automorphism of M[p,...,p] = M2n(Zp), given by a permutation
matrix, transforms the symmetry group Sp[p,...,p] into the group

Sp2n(Zp) := {H ∈ M2n(Zp)| HT J ′H = J ′}.
Thus we can reformulate our result as follows:

There is an epimorphism χ : N (P(p,...,p)) → Sp2n(Zp) such that AdMAdA[α]Ad−1
M =

AdA[χ(AdM )α] for every α ∈ Z2n
p and AdM ∈ N (P(p,...,p)) (where M ∈ Upn(C)).

Remark 6.1. Let AdM ∈ N (P(p,...,p)), U ∈ Z2n×n
p and αi be the i-th column of

U .
Then for every i = 1, . . . , n there is 0 6= λi ∈ C such that M · A[αi] · M−1 =

λiA[χ(AdM )αi]. Moreover, if u ∈ Cpn

is a common eigenvector of the set of opera-
tors C(U), then Mu is a common eigenvector of the set of operators C(χ(AdM )U).

Note that for A ∈ Mn(Zp) is
(

In A
0 In

)
∈ Sp2n(Zp) if and only if A is symmetric.

Proposition 6.2. Let A,B ∈ Mn(Zp) be symmetric and A−B be a regular matrix.
Then:

(i) There is H ∈ Sp2n(Zp) such that H
(

In
0

)
=

(
In
0

)
and H

(
A
In

)
=

(
0
In

)
.

(ii) There is G ∈ Sp2n(Zp) such that G
(

A
In

)
=

(
In
0

)
and G

(
B
In

)
=

(
0
D

)
for

some regular D ∈ Mn(Zp).

Proof. Put H =
(

In −A
0 In

)
and G =

(
(A−B)−1 −(A−B)−1B
−In A

)
. �

Remark 6.3. Note that J ′
(

In
0

)
=

(
0
In

)
. Now, for m ∈ N the matrix Sm ∈ Mm(C)

(see 5.7) is unitary, SmQmS−1
m = Pm and SmPmS−1

m = Q−1
m . Hence AdSp⊗···⊗Sp ∈

N (P(p,...,p)) and χ(AdSp⊗···⊗Sp) = J ′.
12



Corollary 6.4. Let U =
(

In
0

)
or U =

(
A
In

)
where A ∈ Mn(Zp) is a symmetric

matrix. Then there is an orthonormal basis of common eigenvectors for the operator
set C(U).

Proof. For U =
(

In
0

)
clearly the standard basis E is the desired basis. Let U =

(
A
In

)
where A ∈ Mn(Zp) is a symmetric matrix. By 6.2 (putting e.g. B = A − In)
there are G ∈ Sp2n(Zp) such that

(
A
In

)
= G−1

(
In
0

)
and M ∈ Upn(C) such that

AdM ∈ N (P(p,...,p)) and χ(AdM ) = G. Using 6.1 and the unitarity of M , we obtain
the desired basis as {M−1e| e ∈ E}. �

Proposition 6.5. (i) Let D ∈ Mn(Zp) be regular and B be a basis of common
eigenvectors for C

(
0
D

)
. Then B is also a basis of common eigenvectors for C

(
0
In

)
.

(ii) Let B be an orthonormal basis of common eigenvectors for C
(

In
0

)
and u from

B. Then either u or −u belongs to the standard basis E of Cpn

.
(iii) Let B (B′, resp.) be an orthonormal basis of common eigenvectors for C

(
In
0

)
(C

(
0
In

)
, resp.). Then B and B′ are mutually unbiased.

Proof. (i) Since D is invertible, we have that for every i = 1, . . . , n lies Ipi−1 ⊗Pi⊗
Ipn−i in the group generated by {A[αj ]| j = 1, . . . , n} where αj is the j-the column
of

(
0
D

)
. Our assertion now follows immediately.

(ii) Let Ep be the standard basis of Cp. Since u is an eigenvector of Qp ⊗ Ipn−1

it is of the form u = ei1 ⊗ v for some i1 = 1, . . . , p and v ∈ Cpn−1
. Now, u = ei1 ⊗ v

is an eigenvector of Ip ⊗ Qp ⊗ Ipn−2 , hence it is of the form u = ei1 ⊗ ei2 ⊗ w

for some i2 = 1, . . . , p and w ∈ Cpn−2
. Repeating this argument we get that

u = λei1 ⊗ · · · ⊗ ein
for ij = 1, . . . , p and λ ∈ C. Since u is normalized, it follows

that λ = ±1.
(iii) Put M = Sp ⊗ · · · ⊗ Sp ∈ Upn(C) (see 6.3). By 6.1 and 6.3, is M−1B′

an orthonormal basis of common eigenvectors for C
(

In
0

)
. Hence, by (ii), there are

matrices R1, R2 ∈ GLpn(C) with only one non-zero entry (either 1 or −1) in each
column and row, such that M−1B′ = R1E and B = R2E . Now, let u be from
B = R2E and u′ from B′ = MR1E . Then there are i, j ∈ {1, . . . , pn} such that
u = R2ei and MR1ej with ei, ej from E . Hence |(u, u′)| = |(R2ei,MR1ej)| =
|(RT

2 MR1)ij | = 1/
√

pn, which means that B and B′ are mutually unbiased. �

Corollary 6.6. Let U and U ′ be matrices from the system (∗) and B (B′, resp.)
be an orthonormal basis of common eigenvectors for C(U) (C(U ′), resp.). Then B
and B′ are mutually unbiased.

Proof. By 6.2, 6.3 and 5.10 there is M ∈ Upn(C) such that χ(AdM )U =
(

In
0

)
and

χ(AdM )U ′ =
(

0
D

)
for some regular D ∈ Mn(Zp). By 6.5(i) and 6.1, MB (MB′,

resp.) is an orthonormal basis of common eigenvectors for C
(

In
0

)
(C

(
0
In

)
, resp.).

Hence by 6.5(iii), the bases MB and MB′ are mutually unbiased. Finally, since M
is unitary, the bases B and B′ are also mutually unbiased. �

Thus we have shown, using our knowledge of a normalizer of P(p,...,p), that
having a system (∗), there are pn + 1 mutually unbiased bases in a vector space
Cpn

, where p is a prime number. In the rest we show how to generate these bases
from the canonical one using and one single particular operator and an elementary
commutative group of order pn (i.e. ∼= Zn

p ), consisting of unitary diagonal matrices.
First, recall a result by Wootters and Fields in [5] (mentioned also in [6]) that

supports the existence of a system (∗).

Remark 6.7 (see [5]). There are symmetric matrices B1, . . . , Bn ∈ Mn(Zp) such
that for every 0 6= (α1, . . . , αn)T ∈ Zn

p the matrix
∑n

`=1 α`B` is regular. In partic-
ular, let γ1, . . . , γn be a basis of the finite field Fpn as a vector space over the field
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Zp. Then any element γiγj ∈ Fpn can be written uniquely as

γiγj =
n∑

`=1

b`
ijγ`

where b`
ij ∈ Zp. Now (B`)ij = b`

ij are the required matrices.

Let D denote the additive subgroup of Mn(Zp) generated by B1, . . . , Bn from
6.7. Clearly, K ∼= Zn

p and it is easy to see that

H :=
{(

In B
0 In

)∣∣∣ B ∈ D
}

is a (multiplicative) commutative subgroup of Sp2n(Zp) that has a natural action
(via matrix multiplication) on the set{(

C
In

)∣∣ C ∈ D
}
.

We consider now the system (∗) naturally as
{(

In
0

)}
∪

{(
C
In

)∣∣ C ∈ D
}

with the
mappings

(
In
0

) J′

−→
(

0
In

) (
In A
0 In

)
−→

(
A
In

) (
In B−A
0 In

)
−→

(
B
In

)
.

Remark 6.8. The subspace of all symmetric matrices in Mn(Zp) has a basis con-
sisting of

• matrices Eij , where 1 ≤ i < j ≤ n, which have the entry 1 at the positions
(i, j) and (j, i) and zeros otherwise and

• matrices Ei, with 1 ≤ i ≤ n, where the only non-zero entry 1 is on the
position (i, i).

Now, put Fi := Ipi−1 ⊗Di⊗ Ipn−i for i = 1, . . . , n. Using 5.6 and 5.7 we get that

χ(AdR−1
ij

) =
(

In Eij

0 In

)
and χ(AdFi

) =
(

In Ei

0 In

)
.

Thus χ(AdK`
) =

(
In B`

0 In

)
where

K` :=
( n∏

i=1

F
b`

ii
i

)( ∏
1≤i<j≤n

R
−b`

ij

ij

)
∈ Upn(C)

is a diagonal matrix.

Denote nowK the (multiplicative) subgroup of GLpn(C) generated by K1, . . . ,Kn.
We have an isomorphism K → H, K 7→ χ(AdK). Hence K ∼= Zn

p . We choose now
our set of pn + 1 mutually unbiased bases as{

E
}
∪

{
KSE

∣∣ K ∈ K
}
.

Indeed, by 6.1, 6.3 we have that E , SE and KSE are (in this order) orthonor-
mal bases of common eigenvectors for C

(
In
0

)
, C

(
0
In

)
and C

(
A
In

)
, where χ(AdK) =(

In A
0 In

)
. Now, by 6.6, these bases are mutually unbiased. The group K acts on the

system as follows

E S−→ SE K−→ KSE .

Remark 6.9. To have a better insight into the matrices S and K1, . . . ,Kn we
will express the numbering of columns and rows as p-adic numbers (i.e. as n-
tuples α1 . . . αn, with αi ∈ {0, . . . , p− 1}, that correspond to α1p

n−1 + · · ·+ αnp0.)
Assuming this notation we get

Sα1...αn,β1...βn = ω
∑

i αiβi
p /

√
pn

14



(Fi)α1...αn,α1...αn = ε−αiω
(αi

2 )
p

(Rij)α1...αn,α1...αn
= ωαiαj

p

and

(K`)α1...αn,α1...αn
= ε−

∑
i b`

iiαi · ω
∑

i b`
ii(αi

2 )−∑
i<j b`

ijαiαj

p

where i, j, ` = 1, . . . , n, i < j and ε =
√
−1 for p = 2 and ε = 1 otherwise.

7. Conclusions

In this paper we have described the symmetry groups of finite Heisenberg groups
of arbitrary quantum systems consisting of a finite number k of subsystems with
Hilbert spaces of finite dimensions n1, . . . , nk, thus extending our results obtained
for bipartite systems [3]. For such a finitely composed quantum system the finite
Heisenberg group is embedded in GLN (C), N = n1 . . . nk. It induces — via in-
ner automorphisms AdM — an Abelian subgroup P(n1,...,nk) in Int(GLN (C)). We
have studied the normalizer of this Abelian subgroup in Int(GL(N, C)) and have
thoroughly described it. The sought symmetry group is the quotient group of the
normalizer (theorem 5.9) and its further characterization is given in section 4.

The symmetry groups uncover deeper structure of FDQM. For instance, the
cases when n1 = · · · = nk = n, n ∈ Z, corresponding to dimension N = nk, are
of particular interest. Then the symmetry group for a multipartite system with
this special composition is Sp2k(Zn), which extends the bipartite case Sp4(Zn)
considered in [3] and [13]. Thus our class of symmetry groups can be viewed as a
very specific generalization of symplectic groups over modular rings.

We have exploited the cases when n1 = · · · = nk = p, p prime, corresponding to
prime power dimension N = pk, in section 6, where the symmetry group Sp2k(Zp)
is applied for an alternative derivation of the maximal set of mutually unbiased
bases in Hilbert spaces of prime power dimensions. Our group theoretic derivation
uses the idea of [7], where a constructive existence proof for k = 1, N = p prime,
was based on consistent use of the symmetry group Sp2(Zp) ∼= SL2(Zp).

Let us note that the number of mutually unbiased bases in a Hilbert space of
dimension N must not exceed N + 1 [5]. It is also well known that the maxi-
mal number N + 1 is attained for N being prime or power of a prime. However,
the determination of the maximal number of mutually unbiased bases for other
dimensions N remains an open problem as yet.
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[4] Korbelář M, Tolar J 2012 Symmetries of finite Heisenberg groups for k-partite systems J.

Phys.: Conf. Ser. ? (6 pages); arXiv: 1201.3903 [math-ph]

[5] Wootters W K and Fields B D 1989 Optimal state-determination by mutually unbiased
measurements Ann. Phys. (N.Y.) 191 363–381

[6] Bandyopadhyay S, Boykin P O, Roychowdhury V and Vatan F 2002 A new proof for the

existence of mutually unbiased bases Algorithmica 34 512; arXiv: quant-ph/0103162

15
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