CLASSES OF CATEGORIES ASSOCIATED TO SIMPLICIAL
FUNCTORS

ALEXANDRU E. STANCULESCU

ABSTRACT. Given a simplicial model category M and a simplicial valued sim-
plicial functor F' defined on M, we associate to the pair (M, F) a class of small
categories and we study its properties. Homotopy sifted categories provide an
example of such class. We introduce and study homotopy sifted-flat functors.

Homotopy sifted categories were introduced in [11] as a homotopy theoretical
analogue of sifted categories. In this note a class of small categories is associated
to every simplicial valued simplicial functor defined on a simplicial model category.
For suitable simplicial functors we make a formal study of this class of categories.
Homotopy sifted categories is the motivating, and one of the simplest, example
of such a class. We recover and complement the results from [11] related to this
subject.

As a possible analogue of the notion of sifted flat functors of J. Adamek and J.
Rosicky [1], we define and study homotopy sifted-flat functors.

Notations and conventions. We denote by Cat the category of small cate-
gories and by S the category of simplicial sets. We denote by N the nerve functor.

Let M be an arbitrary category. We denote by (Cat | M) the category with
objects pairs (I,X : I — M), where I € Cat, and arrows (F,«a) : (I,X : I —
M) — (J,Y : J — M) those pairs consisting of a functor F': I — J and a natural
transformation o : X = YF.

Let M be a simplicial model category. If I is a small category and X : [ — M
is a functor, hocolimX stands for the homotopy colimit of X, as defined in ([8],
18.1.2). Ome has that hocolim is a functor (Cat | M) — M. This follows from the
fact that for any functor F' : I — J, the natural map hocolim;XF — hocolim ;X
is natural in X : J — M.

Let M be a cofibrantly generated model category. Given a small category I,
the functor category M shall always be regarded as having the projective model
structure, in which the fibrations and the weak equivalences are defined level-wise.

Let I be a small category and let F': I — Set be a functor. The category EIF
of elements of F is defined in the following way. The objects of EIF are pairs (i, a),
where i € ObI and a € F;. An arrow of ElF from (i,a) to (j,b) is an arrow f : ¢ — j
of I such that Fy(a) = b. The association F — EIF is a functor Set! — Cat.

Let I be a small category. Let y* : A°? x I — S be the contravariant Yoneda
functor. For every object X of S, we denote by [I,X] the composite FIX —

AP x T Y8l
1. CLASSES OF CATEGORIES ASSOCIATED TO SIMPLICIAL FUNCTORS

Let M be a simplicial model category and F': M — S a simplicial functor.

Definition 1.1. We let < M, F > be the full subcategory of Cat consisting of
those objects I such that for all X : I — M taking cofibrant values, the canonical
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map
hocolim FX — FhocolimX

is a weak homotopy equivalence.

It readily follows from the definition that

(a) < M, F' > has finite products; in particular < M, F' > contains the terminal
category 1,

(b) a retract in Cat of an object of < M, F > is in < M, F >, and

(¢)ifa: F=G:M — S is a simplicial natural transformation which is a level-
wise weak homotopy equivalence on cofibrant objects, then < M, F >=< M, G >.

Part (¢) implies that < M, F >=< M, Ez*F > and < S, Ex*> >= Cat, where
Ez* is Kan’s completion functor (see, for instance, ([7], III, 4)).

We define < M, F >; to be the full subcategory of Cat consisting of those
objects I such that for all X : I — M taking cofibrant-fibrant values, the canonical
map

hocolimiFX — FhocolimiX

is a weak homotopy equivalence. One has < M, F >C< M, F' >¢. The converse
holds if F' preserves weak equivalences between cofibrant objects. We recall that F,
as a simplicial functor, preserves simplicial homotopy equivalences, therefore it al-
ways preserves weak equivalences between cofibrant-fibrant objects ([8], 9.5.24(2)).

If M is moreover cofibrantly generated, we define < M, F >.; to be the full
subcategory of Cat consisting of those objects I such that for all cofibrant-fibrant
objects X of M/, the canonical map

hocolimiFX — FhocolimX

is a weak homotopy equivalence. Then one has < M, F' >=< M, F >.; if I pre-
serves weak equivalences between cofibrant objects.

We remind the reader ([8], 19.6.1) that a functor F' : I — .J between small
categories is homotopy final if for every j € ObJ, N(j | F) is weakly contractible.
The composite of two homotopy final functors is homotopy final.

Proposition 1.2. Let I — J be a homotopy final functor. Suppose that F' preserves
weak equivalences between cofibrant objects. Then I €< M, F > implies J €<
M, F >. If every X : I — M taking cofibrant values is weakly equivalent to the
restriction to I of some Y : J — M taking cofibrant values, then J €< M, F >
implies I e< M, F >.

Proof. The first part follows from ([8], 19.6.7(1)). The second part is straightfor-
ward. g

Corollary 1.3. Assume that F' preserves weak equivalences between cofibrant ob-
jects. Then

(a) every small category with terminal object is in < M, F >, and

(b) < M, F > is invariant under Morita equivalences of categories.

Proof. For (a) one uses ([8], 19.6.8(1)). For (b) one uses the fact that if f : I — J
is a Morita equivalence between small categories, then f; : M/ = M’ : f* is an
adjoint equivalence. O

Lemma 1.4. Suppose that < M, F' > contains all small categories with terminal
object and that F preserves all small filtered colimits. Then every small filtered
category is in < M, F' >.
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Proof. Let I be a small filtered category and let X : I — M take cofibrant values.
For each i € ObI, let X/i : (I | i) — M be X/i(k,k — i) = Xj. Then i —
hocolimy,:X/i is a functor I — M and one has ([2], XII, 3.5)

hocolimX = colim(hocolimj X /1)
The map hocolim;FX — Fhocolim;X is then isomorphic to the composite map
colimy(hocolim ;) FX /i) — colim(Fhocolim ;X /i) = F(colimy(hocolim ;X /1))

The maps hocolim ;) FX/i — Fhocolim ;X /i are weak homotopy equivalences
by assumption, and since weak homotopy equivalences are stable under filtered
colimits, we are done. O

The following result is a variation on lemma 1.4.

Lemma 1.5. Suppose that F preserves filtered colimits and let I be a small filtered
category. Then for every x : I =< M, F > one has colimyx €< M, F >.

Proof. Let C = colimyy and let 7; : x; — C be the canonical map (i € ObI). For
every ¢ € ObC one has

colimyN(c| ;)" =2 N(cl] C)? (%)

Let X : C — M take cofibrant values. Using ([8], 19.6.6(1)), iterated coends and
formula (*) we obtain

hocolimeX = colimy (hocolim,, X /1)

where X /i is the composite x; — C X M. The rest is similar to the proof of lemma
1.4. O

Let a: F = G : M — S be a simplicial natural transformation between simpli-
cial functors. Let MJa] be the full subcategory of M consisting of those cofibrant
objects A for which a4 is a weak homotopy equivalence.

Lemma 1.6. In the above notation, if I e< M, F > N < M,G > then for every
X : I — Mla], hocolimX € MJa].

Proposition 1.7. Suppose that M is cofibrantly generated and that F preserves
weak equivalences between cofibrant objects. Let p : E — B be a split opfibration
between small categories. If B €< M, F > and all the fibre categories Ey, (b € ObB)
belong to < M, F' >, then E belongs to < M, F >.

Proof. Let X : E — M take cofibrant values. We have a commutative diagram
hocolimghocolimg, FX, ——————— hocolimgF' (hocolimg, X3)

|

F(hocolimg(hocolimg, Xy))

l

hocolimg FX FhocolimgX

The top horizontal arrow is a weak homotopy equivalence since all the fibre cate-
gories E;, (b € ObB) belong to < M, F' >. The left and bottom right vertical arrows
are weak homotopy equivalences by theorem 3.1 and the hypothesis of F', and the
top right vertical arrow is a weak homotopy equivalence since B e< M, F >. [
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Corollary 1.8. Suppose that M is cofibrantly generated and that F preserves weak
equivalences between cofibrant objects. Let J €< M, F >, T a small category
with all finite products and X : T — Set’ a product-preserving functor. Then the
category ElX of elements of X is in < M, F >.

Proof. Recall that EIX = [ DX (see section 3). The composite map EIX —
TxJ
T x J — J is a split opfibration. The fibre category (EiX); over j € ObJ has

all finite products since X is product-preserving. In particular, it has a terminal
object, so (EIX); €< M, F > by corollary 1.3(a). O

The next result is a sort of estimation on the size of < M, F >.

Lemma 1.9. Suppose that M is cofibrantly generated and that F preserves weak
equivalences between cofibrant objects. Then < M, F >= Cat if and only if <
M, F > contains A°P and the class of discrete categories.

Proof. To begin with, let I be a small category. Let y : A — S be the Yoneda
functor. There is a functor f : (y | NI)°? — I, ([n],i9 — ... = iy) +> o which is

homotopy final ([3], 30.4). One has (y | NI)°? = [ DNI (see section 3). To ease
Aop
notation we let E= [ DNI.
Aop
Suppose now that < M, F' > contains A°P and the class of discrete categories.

Let I be a small category and X : I — M take cofibrant values. We have a
commutative diagram

hocolimg FX f —— hocolim;FX

| |

FhocolimgX f — FhocolimX

in which the horizontal arrows are weak homotopy equivalences. For each [n] €
ObA, the fibre category E,, over [n] is discrete, hence by proposition 1.7 E €<
M, F >, which implies that the left vertical arrow in the preceding diagram is a
weak homotopy equivalence. O

Definition 1.10. Let A be an object of M. We put < M, A >=< M, Map(A4, —) >.

Lemma 1.11. Let A and A’ be two objects of M. If there is a simplicial homotopy
equivalence between them, then < M, A >=< M, A’ >.

Proof. Let A — A’ be a simplicial homotopy equivalence and let X : I — M take
cofibrant values. Form the commutative diagram

hocolimyMap(A’, X) —— Map(A’, hocolimX)

! |

hocolimyMap(A,X) — Map(A, hocolimX)

The vertical arrows are weak homotopy equivalences by ([8], 9.6.8) and the lemma
follows. .

To illustrate the lemma, if I is a small category having either initial or terminal
object, then < S, () >= Cat and < M, A >=< M, NI ® A >.

Example 1.12. Let I be a small category, i € Obl and [n] € ObA. Let R;,, € ST be
j = U Aln]. Since Map(R;.n, ) = ¢(i)2" for all ¢ € ST, one has < S, R; ,, >=
i—j

Cat.
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2. HOMOTOPY SIFTED CATEGORIES AND HOMOTOPY SIFTED-FLAT FUNCTORS

For a set A, we denote by DA the discrete category on A. We let Fiinset denote
the category of finite sets and Finset' the category of finite nonempty sets.

Definition 2.1. A small category is said to be homotopy sifted if it belongs to
N <SP4lim >.
AcFinset
Observe that I €< SP? lim > if and only if I is weakly contractible if and only
if I — 1 is homotopy final, see ([8], 18.1.6). Hence a homotopy sifted category is
weakly contractible, in particular it is nonempty. Observe also that

(N <8P lim >=< 8P lim >
A€Finset+
The category A°P is homotopy sifted: it is clearly weakly contractible, and then
use ([8], 18.7.5) plus the fact that the geometric realization is isomorphic to the
diagonal.

Proposition 2.2. A category I is homotopy sifted if and only if for every finite
set A, the diagonal functor d : I — IP4 is homotopy final.

The previous observations imply that it suffices to prove the statement: I €<
SPL2} Iim > if and only if the diagonal d : I — I x I is homotopy final. This is
([11], Theorem 4.4).

Proof. “=" We have to show that for every pair i, j of objects of I, N((i,7) | d) is
weakly contractible. We will show that N((¢,5) | d)°P is weakly contractible. Let
cst : Set — S be the constant simplicial set functor and let y; : I°? — Set! be the
Yoneda functor. By ([8], 19.6.11 and 19.6.6(1)) we have

N((i,7) 4 )P = est™ Tyr1((i,§)) @rx1 N(? § d)°P = hocolimyest’ Ty, 1((4,5))d

But

t1> Ly 1((3,7))d = hocolimp(cst yr (i) x est!y;(5))

and by hypothesis the map

hocolimcs

hocolimp(cst'y; (i) x est!y;(§)) — hocolimrest y; (i) x hocolimyest!yr(5)

is a weak homotopy equivalence. Since hocolimycst!yr(i) = N(i | I)°P ([8], 19.6.10)
and N (i ] I)°P is weakly contractible, we are done.

“e” Let —O—: ST x 8T — SI*1 be XOY 5,5y = X; x Y. Then the composite
map

hocolim(XOY)d — hocolimpx 1 XOY 22 hocolim;X x hocolimrY
is a weak homotopy equivalence by assumption, and one has X xY = (XOY)d. O

Observe that for every A € Finset, < SPA, lim >=< SP4 holim >, where
holim stands for the homotopy limit functor ([8], Chapter 18). Every small category
with finite coproducts is homotopy sifted, cf. [11]: for, the constant functor cst :
I — 1P11:2} s now a right adjoint, hence homotopy final, but cst is isomorphic to
the diagonal I — I x I. Every small category with terminal object is homotopy
sifted by corollary 1.3(a).

As observed in [11], if A is the 1-truncation of A, then AJ” is not homotopy

i 19
sifted, although it is weakly contractible. Indeed, write A" as {B — A = B}
where fi = gi = 1p. If A7? were homotopy sifted then by proposition 2.2 ((4, A) |
d) would be in particular connected; here d is the diagonal functor. However, one
can see that the objects (A,A = A = A) and (4,4 ENY; A A) of ((A4,A) ] d)
cannot be connected by a zig-zag of arrows.
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Corollary 2.3. A category is homotopy sifted if and only if it is homotopy final in
its free completion under finite coproducts.

Proof. For a small category I, we denote by Faml its free completion under finite
coproducts and by ¢ : I — Faml the inclusion functor.
“=” Let I be homotopy sifted and let (A, (iq)qca) € ObFamlI. One has
((Av (ia)aeA) \l/ L) = ((ia)aGA i d)
where d : I — IP4 is the diagonal.

“<” First note that (0 ] ¢) = I, where () is the initial object of FamlI. Then use
the fact that Faml is homotopy sifted and proposition 1.2 applied to «¢. (]

Lemmas 1.4 and 1.5 yield

Corollary 2.4. FEvery small filtered category is homotopy sifted. The class of
homotopy sifted categories is closed under filtered colimits.

The first part of the previous corollary was noticed in [11]. Corollary 1.8 yields

Corollary 2.5. Let T be a small category with all finite products and X : T — S a
product-preserving functor. Then the category of elements of X is homotopy sifted.

Proposition 2.6. A category I is homotopy sifted if and only if the composite

op
functor ST H Cat (i> Cat &% 8 preserves finite products up to homotopy. By this

we mean that N(Elcstl)°P — 1 is a weak homotopy equivalence and for every pair
of objects X, Y of ST, the canonical map

N(EI(X xY))? - N(EIX)? x N(EIY)°?
is a weak homotopy equivalence.

Proof. One has N(Elcst1)? =2 NA x NI°, therefore I is weakly contractible if
and only if N(Elcst1)°? — 1 is a weak homotopy equivalence. Let now X, Y € S’.
By corollary 3.8 we have a weak homotopy equivalence

hocolimyy pnor NP DX — N(EIX)°P

But hocolimyxaor NP DX = NA X hocolim X since, in general, if X is a simplicial
set then hocolimaor NDX = NA x X. We have then a commutative diagram

NA X hocolimp(X xY) N(EI(X xY))°P

| |

NA x hocolimX x NA x hocolim;Y —— N(EIX)°P x N(EI'Y )P

in which the horizontal arrows are weak homotopy equivalences. The proposition
follows. 0

We also record the straightforward

Lemma 2.7. Let M be a simplicial model category and F,G : M — S be simplicial
functors. Let F x G : M — 8 be (F x G)A = FAx GA. If I e< SP{12} 1im >
then I e< M, F >N<M,G > implies | e< M, F x G >.

Let now I be a small category and ¢ € S’ a cofibrant object. Then we have an
adjoint pair
¢ @ —: 81" =8 ()?
where (X?); = X?0). The functor ¢ ®ro» — preserves weak equivalences ([8],
18.4.4(1)). The next definition was inspired by the notion of sifted-flat functor of

[1].



CLASSES OF CATEGORIES ASSOCIATED TO SIMPLICIAL FUNCTORS 7

Definition 2.8. ¢ is homotopy sifted-flat if the functor ¢®o.» — preserves finite
products up to homotopy. By this mean that
(a) the map (colimrp 2)¢ Qrop cstl — 1 is a weak homotopy equivalence, and
(b) for every pair of objects X,Y of SI"", the canonical map

¢®[op (X X Y) — ((b Rop X) X (¢ R op Y)
is a weak homotopy equivalence.

Thus, given a small category I, I°P is homotopy sifted if and only if N(I |?) is
homotopy sifted-flat.

For the proof of some of the next results we recall the following formulas.
(1) For every small category .J and every Z : J — S’ we have
hocolim ¢ @ror Z = ¢ Qror hocolim yZ
(2) Let J; and Jo be small categories. Let —O— : (SI™)7t x (817)2 —
(ST7")1xJ2 be ZOT((j1, j2)) = Z(j1) x T(j2). Then
hocolim j, x 7, ZOT = hocolim j, Z x hocolim j, T

(3) If one fixes X € S’ and considers the functor — ®o» X : 8 — S, then the
obvious analogue of (1) holds.

Lemma 2.9. (a) Let I be a small category. The class of homotopy sifted-flat
functors belonging to ST is closed under homotopy sifted homotopy colimits.

(b) If I — J is a Morita equivalence between small categories, then the isomor-
phism class of homotopy sifted-flat functors belonging to S! is in bijection with the
isomorphism class of homotopy sifted-flat functors belonging to S”.

Proof. (a) Let J be homotopy sifted and Z : J — S take homotopy sifted-flat
values. One has, by (3) and ([8], 18.1.6),
hocolim jZQ o cstl =2 hocolim j(Z® orcstl) =2 hocolim jcolimpZ — hocolim jcstl = N JP

in which the only non-isomorphism is a weak equivalence by hypothesis. Therefore
hocolim jZ satisfies definition 2.8(a). The rest is a direct consequence of formulas
(2),(3) above with the help of proposition 2.2. Another proof can be given using
lemma 1.6. Part () is clear. O

Proposition 2.10. The followings are equivalent for a cofibrant object ¢ of S':
(1) ¢ is homotopy sifted-flat,
(2) the map ¢ jop cstl — 1 is a weak homotopy equivalence, and for every pair
of representable functors Ry, Ry € SI°", the canonical map

¢ Q7op (Rl X R2) — (¢ & op Rl) X (¢ &R gop RQ)
is a weak homotopy equivalence.

Proof. (2)=(1). Let X, Y € 8. By ([5], Proposition 2.9) the map hocolim gx [I°P, X] —
X is a weak equivalence, so that the map

hocolim gix [I°P, X] x hocolimgy[IP, Y] - X xY

is a weak equivalence. To ease notation let A = hocolimpgx[I°?,X] and B =
hocolim gy [I°P,Y]. We have a commutative diagram

¢®Iop (A X B) _— (¢®Iop A) X (Q/) R fop B)

| |

¢ Rop (X X Y) R (qﬁ R fop X) X (¢®Iop Y)
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in which the vertical arrows are weak homotopy equivalences. The top horizontal
arrow is isomorphic to the composite

¢®10Ph0801imElxxElY[Iop,X}D[IOP,Y] = hOCOlimElXXElYQi)@Iop([IOp,X}D[IOP,Y]) —
hocolimgix x pry (¢ Qror [I°P, X]0¢ Qropr [I°P,Y]) = hocolimpx ¢ Qjor [1°P, X] x
hocolimpgry ¢ ®ror [I°P,Y]. To finish the proof it suffices to show that the map
¢ Qror ([I°P, X]O[I7,Y]) = ¢ Q@por [I°7,X]|0¢ @por [I°P,Y]
is a weak equivalence in SFIXXEY  Evaluating this map at an object (z,y) €
ElX x ElY gives the canonical map
¢ @rer ([I77, X](@) x [I7,Y](y)) = (¢ @ror [I7, X](2)) X (¢ ®1ev [, Y](y))

which is a weak homotopy equivalence since [I°P, X](z) and [I°P,Y](y) are repre-
sentable functors. O

Lemma 2.11. Let ¢ € ST be cofibrant. If the category of elements of ¢ is homotopy
sifted then ¢ is homotopy sifted-flat.

Proof. By ([5], Proposition 2.9) the map hocolimgy[I, $] — ¢ is a weak equiva-
lence, therefore for every X € S'” the map

hocolimgis([1, ¢] @ror X) =2 (hocolimpig[I, ¢]) @ror X — ¢ @ror X

is a weak homotopy equivalence. In particular, the map hocolimgig[I, ¢|®rorcstl —
¢ ®7op cstl is a weak homotopy equivalence. The functor [I, ¢] ®jop cstl : Elp — S
is given by ([n], i,z € ¢(i)n) — Rin Qror cstl = Aln], where R;,, was defined
in example 1.12. There is a weak equivalence [I, @] ®@jor cstl — cstl, hence we
have a weak homotopy equivalence hocolim El¢[I , @] ®rop cstl — hocolim Eipcstl =
N(El@)°P. Tt follows that definition 2.8(a) is satisfied.

Let now X,Y € S, We have a commutative diagram

hocolimgis([1, ¢] Qror (X X Y)) hocolimgi([1, ] @rov X X [I,¢] @ror Y)

|

(hocolimgis[I, ¢]) @ror X x (hocolimpig[I, @) @ror Y

l

¢ @rer (X XY) (¢ @ror X) X (¢ @por Y)

The left and bottom right vertical arrows are weak homotopy equivalences, the top
right vertical arrow is a weak homotopy equivalence by hypothesis.
Consider the map

[17(;5] Qrop (XXY) - [Ia¢] ®I°PX>< [I7¢] ®IDPY

is SFI¢. Evaluating it at an object ([n],i,2 € ¢(i),) of El¢ gives a map isomorphic
to An] x X; xY,; = A[n] x X; X A[n] x Y;, which is a weak homotopy equivalence.
Therefore the top horizontal map in the previous diagram is a weak homotopy
equivalence. O

We don’t know whether the converse holds in the preceding lemma.

Proposition 2.12. Let I be a small category with finite products. A cofibrant
object ¢ of ST is homotopy sifted-flat if and only if ¢(1) is weakly contractible and
for all objects i,j of I, the natural map ¢(i x j) = (i) x ¢(j) is a weak homotopy
equivalence.
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Proof. “=" Letr: I — S’ ber(i)(j) = LI AJ0]. Then r preserves finite products
J—1

and ¢ ®jop (1) = ¢(4). The claim follows.
“<” For every object X of S we denote by [I°?,X]’ : EIX — S’ the
functor (([n],i,z € X(i),) — (j — U A[0]). There is a natural transforma-
Jj—i

tion [I°?, X] = [I°P, X]’, hence an induced weak equivalence hocolimpgis[I°7, @] —
hocolimgis[I°7, ¢’

Let X, Y € S!”. To ease notation we put A = hocolimgx[I°?,X], B =
hocolimgy [I°P, Y], A’ = hocolimpg;x[1°P,X]" and B’ = hocolimg;y [I°P,Y]. We
have a commutative diagram

¢ @pon (A’ X B') —————> (¢ ®1op A') x (¢ @o» B')

T T

@ Rror (AX B) ——————— (¢ ®pop A) X (¢ Qjor B)

|

¢®Iop (X X Y) _— ((ZS@IOP X) X (Q/) R fop Y)

in which the vertical arrows are weak homotopy equivalences. It suffices to prove
that the top horizontal arrow is a weak homotopy equivalence. The proof is similar
to (2)=(1) of proposition 2.10, so we shall only sketch it. The map

¢ @rop ([P, X)'O[IP,Y]) = ¢ @jop [[°7, X]'0¢p @1op [I°P, Y]

is a weak equivalence in SE/X*FIY gince when evaluated at an object (([m], i,z €
X(@)m), ([n], 4,y € Y(§)n)) € EIX x EIY is (isomorphic to) the map ¢(i x j) —
8() X 6) O

3. APPENDIX: THE GROTHENDIECK CONSTRUCTION AND A RESULT OF
CHACHOLSKI AND SCHERER

In this section we recall the Grothendieck construction and a result of W. Cha-
cholski and J. Scherer [3].

Let I be a small category and let F : I — Cat be a functor. The Grothendieck
construction on F is the category [F defined as follows. An object of [F is a
I I

pair (i,a) consisting of i € Obl and a € ObF;. An arrow from (i,a) to (4,b) is a
pair (f,u) consisting of an arrow f:¢ — j in I and an arrow u : Fy(a) — b in Fj.
Composition is defined by the formula

(gav)(fau) = (gfvvfg(u))

where (f,u) : (i,a) — (j,b) and (g,v) : (j,b) — (k, ¢) are two arrows of [F.
T

Let °PF be the composite functor I 7, Cat (Jj Cat. Then fOp]-" has the same
I
objects as [F and an arrow (i,a) — (j,b) is a pair (f,u), where f : i — j and

I
u:b— Frla).

There is a functor pr : [F — I, (i,a) — 4, and this is a Grothendieck opfibra-
I

tion. For each 7 € ObI there are functors F; — f F and this identifies the fibre of
T
prF above i with F;.
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As an example, let F' : I — Set be a functor. The category EIF of elements
of F, as defined at the beginning of this article, is precisely the category [DF,
I

where D : Set — Cat is the discrete category functor. One has [Destl = I. If
I
y : I — Set! is the Yoneda functor, then (y | F) = ([DF)°P.
I

Let now p : E — B a split opfibration between small categories. We denote by
E, the fibre category over b € ObB and by ¢ : E;, — E the natural functor. Let M
be an arbitrary simplicial model category and X : E — M a functor. We obtain a
functor

B — (Cat | M), b (Ep, Xy := Xup)
Therefore there is a natural map
hocolimphocolimg, Xy — hocolimpX

The next theorem is ([3], Theorem 26.8) translated into the language of model
categories.

Theorem 3.1. Let M be a cofibrantly generated simplicial model category, p : E —
B a split opfibration between small categories and X : E — M a functor taking
cofibrant values. Then the natural map

hocolimghocolimg, X, — hocolimgX
is a weak equivalence.
We shall prove this theorem in a succession of lemmas.

Lemma 3.2. It suffices to prove theorem 3.1 in the case when X is cofibrant in
ME.
Proof. Let X — X be a cofibrant approximation to X in ME. Then for every

b € ObB we have a map X, — X, which is natural in . Therefore we have a
commutative diagram

hocolimBhocolimEbf(b —_— hocolimEf(

| |

hocolimghocolimg, Xy, — hocolimpX

in which the top horizontal map is a weak equivalence by assumption and the
vertical maps are weak equivalences by ([8], 18.5.3(1)). O

Lemma 3.3. ([9], Corollary 1.4.4(b)) Let F; : M =2 N : G;, i € {1,2}, be a Quillen
pair between model categories. To give a natural transformation Fy = Fy which is
a weak equivalence on cofibrant objects is to give a natural transformation Gy = G4
which is a weak equivalence on fibrant objects.

The next result is standard.

Lemma 3.4. (a) Let M be a cofibrantly generated simplicial model category and I
an arbitrary small category. Then for every cofibrant object X € M!, the natural
map

hocolim X — colim;X
is a weak equivalence.

(b) Let M be a cofibrantly generated simplicial model category, F' : C — D an
arbitrary functor between small categories and X € MC a cofibrant object. Then
the natural map

hocolimeX — hocolimpIh X
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Proof. (a) The functor hocolimy has a right adjoint R given by (RA); = ANGD™,
(hocolimy, R) is a Quillen pair by ([8], 18.5.1(1) and 11.6.3). There is a natu-
ral transformation cst = R, where cst is the constant functor, which is a weak
equivalence on fibrant objects by ([8], 9.5.18(2) and 9.5.16). Then apply lemma
3.3.

(b) We have a diagram of Quillen pairs

Fi

MC¢ —— = M7P

I
Ry ,H/ hocolime Ro Tl hocolimp

M=—T=M

There is a natural transformation F*Ro = R; constructed as follows: one has
(F*RyA), = ANFADP)™ and there is a natural map N(? | C)°P — N(p? | D)°P.
Therefore, by lemma 3.3 one has an induced natural transformation hocolime =
hocolimp Fy. Now apply part (a). O

Lemma 3.5. ([4], Proposition 3.1.13) Let M be a cofibrantly generated model cat-
egory. Let F': C — D be a functor between small categories and let d € ObD. Let
q:(F | d) = C be the projection. Then the functor ¢* : M¢ — M4 X s Xgq,
is a left Quillen functor.

The next result is a weaker form of ([6], 9.8).

Lemma 3.6. Let M be a cofibrantly generated simplicial model category. Let F :
C — D be a functor between small categories and let d € ObD. Let q: (F | d) — C
be the projection. Then for every cofibrant object X € MC, the natural map

hocolimphocolimr 4 Xq — hocolimeX
is a weak equivalence.
Proof. Let (F/'X)q = hocolimr4Xq, so that (F"X) € MP. By lemmas 3.5 and
3.4(a) the natural map (F'X)s — (F1X)4 = colimr qyXq is a weak equivalence

(between cofibrant objects), therefore the map hocolimp(F"X) — hocolimp(F1X)
is a weak equivalence. This, combined with lemma 3.4(d), proves the result. (]

Lemma 3.7. Let M be a cofibrantly generated simplicial model category, p: E — B
a split opfibration between small categories and X € M a cofibrant object. Then
the natural map

hocolimghocolimg, Xy — hocolimpX
is a weak equivalence.
Proof. For every b € ObB there is an adjunction Ly : (p | b) & Ep : Rp. Let

q: (plb) — E be the projection. For every b € ObB we have X¢qR;, = X, hence
the map

hocolimg, X, — hocolim, 1) Xq

is a weak equivalence (between cofibrant objects). Therefore the induced map on
homotopy colimits is a weak equivalence, so that by lemma 3.6 the required map is
a weak equivalence. O

Theorem 3.1 follows now from lemmas 3.2 and 3.7. Using ([8], 18.1.6) one obtains
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Corollary 3.8. ([12], Theorem 1.2) Let I be a small category and let F : I — Cat

be

a functor. Then there is a weak homotopy equivalence

hocolimyNPF — N(/]:)Op
I

The sign “op” appears because Hirschhorn’s definition of the nerve functor [8] is
not the same as Thomason’s.
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