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Abstract

In [H. Krause, O. Solberg, Applications of cotorsion pairs, J. London Math. Soc. 68 (2003) 631–650], the Telescope Conjecture
was formulated for the module category Mod R of an artin algebra R as follows: “If C = (A,B) is a complete hereditary cotorsion
pair in Mod R withA and B closed under direct limits, thenA = lim

−→
(A∩mod R)”. We extend this conjecture to arbitrary rings R,

and show that it holds true if and only if the cotorsion pair C is of finite type. Then we prove the conjecture in the case when R is
right noetherian and B has bounded injective dimension (thus, in particular, when C is any cotilting cotorsion pair). We also focus
on the assumptions thatA and B are closed under direct limits and on related closure properties, and detect several asymmetries in
the properties of A and B.
c© 2007 Elsevier B.V. All rights reserved.

MSC: 16E30; 16D90; 16G10

In the late 1970s, Bousfield and Ravenel formulated a telescope conjecture for the stable homotopy category. Later
on, Neeman extended it to compactly generated triangulated categories T . In this generality, the conjecture said that
any smashing localizing subcategory L of T is of finite type, cf. [10,22,26]. Keller [19] gave an example disproving
the conjecture in the case when T is the (unbounded) derived category of the module category over a particular
(non-noetherian) commutative ring. However, it appears open whether the conjecture holds true when T is the stable
module category of a self-injective artin algebra R. In that case, the conjecture was shown to be equivalent to a certain
property of cotorsion pairs of R-modules, cf. [22, Section 7]. This led Krause and Solberg to the following version of
the telescope conjecture for module categories of arbitrary artin algebras:

[22, 7.9] “Let R be an artin algebra, and C = (A,B) a complete hereditary cotorsion pair in Mod R with A and B
closed under direct limits. Then A = lim

−→
(A ∩ mod R).”

The latter conjecture is known to hold when C is a tilting cotorsion pair by [9] (see also [18, Section 5]), when C is
a 1-cotilting cotorsion pair by [11], and when A ∩ mod R is a contravariantly finite subcategory of mod R by [22].

In the present paper, we deal with the following general version of the Krause–Solberg conjecture, formulated for
arbitrary rings:
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0.1. Telescope conjecture for module categories

“Let R be ring, and C = (A,B) a complete hereditary cotorsion pair in Mod R with A and B closed under direct
limits. Then A = lim

−→
A<ω.”

HereA<ω
= A∩mod R where mod R denotes the class of all modules possessing a projective resolution consisting

of finitely generated modules.
Recall that a cotorsion pair C = (A,B) is of finite type provided there is a set C ⊆ mod R such that

B = Ker Ext1R(C, −). It is known that 0.1 holds for all cotorsion pairs C of finite type (with A closed under
direct limits). In Corollary 4.7, we prove the converse: any cotorsion pair C for which the conclusion of 0.1 holds
is necessarily of finite type.

Moreover, in Theorem 4.10, we prove that 0.1 holds for any right noetherian ring under the additional assumption
that all modules in B have bounded injective dimensions. This yields 0.1 in the particular case when C is a cotilting
cotorsion pair over a right noetherian ring.

The proofs of these theorems rely on a number of results on deconstruction and completeness of cotorsion pairs
from [31,8,9,28] which were essential for the recent rapid progress in infinite dimensional tilting and cotilting theory.
Unfortunately, most of these preprints have not been published yet, so we supplement the original references below
with quotations of the corresponding results in the recent monograph [18]. The latter was submitted for publication
only in Spring 2006, but thanks to the rapid publication policy of Walter de Gruyter, it is paradoxically available in
printed form much earlier then the papers submitted in 2005.

The assumptions made in 0.1 that A and B are closed under direct limits also lead us to an investigation of closure
properties of cotorsion pairs, with special emphasis on tilting and cotilting cotorsion pairs (Sections 2 and 3). Finally,
the last section is devoted to some asymmetries that can occur in the properties of A and B. In Example 5.2(3) we
exhibit an example of a cotorsion pair C = (A,B) of infinite type with B not being closed under coproducts and
A = lim

−→
A<ω. We also show that in general the validity of 0.1 does not imply B = lim

−→
B<ω, see Example 5.2(1) and

Theorem 5.3.

1. Preliminaries

Notation. Let R be a ring. Denote by Mod R the category of all (right R-) modules, and by mod R the subcategory
of all modules possessing a projective resolution consisting of finitely generated modules. (If R is right coherent then
mod R is just the category of all finitely presented modules.)

Given an infinite cardinal κ and a class of modulesA, the symbolA<κ (A≤κ ) denotes the subclass ofA consisting
of all modules possessing a projective resolution consisting of <κ-generated (≤κ-generated) modules. For example,
mod R = (Mod R)<ω.

We denote by P and I the class of all modules of finite projective and injective dimension, respectively. For n < ω,
Pn (In , Fn) is the class of all modules of projective (injective, flat) dimension ≤n.

Let M be a subcategory of Mod R. We always assume that M is full and that it is closed under direct summands
and isomorphic images.

We denote by Add M (respectively add M) the subcategory of all modules isomorphic to a direct summand of a
(finite) direct sum of modules of M, and by Prod M the subcategory of all modules isomorphic to a direct summand
of a product of modules of M. If M = {M}, we write Add M , add M , Prod M .

Furthermore, lim
−→

M denotes the class of all modules D such that D = lim
−→i∈I

Mi where {Mi | i ∈ I } is a direct

system of modules from M. We will use repeatedly the following characterization of lim
−→

M due to Lenzing.

Lemma 1.1 ([25, 2.1] (see also [18, 1.2.9])). Assume thatM is an additive subcategory of mod R. Then the following
statements are equivalent for a module AR .
(1) A ∈ lim

−→
M.

(2) There is a pure epimorphism
∐

k∈K Xk → A for some modules Xk in M.
(3) Every homomorphism h : F → A where F is finitely presented factors through a module in addM.

Resolving subcategories. A class S ⊆ Mod R (or S ⊆ mod R) is said to be a resolving subcategory of ModR
(respectively, of mod R) if it satisfies the following conditions:
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(R1) S contains all (finitely generated) projective modules,
(R2) S is closed under extensions,
(R3) S is closed under kernels of epimorphisms.

Coresolving subcategories are defined by the dual conditions (CR1), (CR2), (CR3).

Orthogonal classes. For a class C ⊆ Mod R and for i > 0, we define

C⊥i = Ker ExtiR(C, −)
⊥i C = Ker ExtiR(−, C)

C⊥
=

⋂
i>0

C⊥i ⊥C =

⋂
i>0

⊥i C .

Similarly, we define the classes Cᵀi , ᵀi C, Cᵀ, and ᵀC, replacing Ext by Tor.
We collect here some well-known facts often used in the sequel.

Remark 1.2. (1) If S is resolving, then S⊥1 = S⊥ and Sᵀ1 = Sᵀ. Coresolving classes have the dual properties.
(2) For any M ⊆ Mod R, the classes ⊥M, Mᵀ are resolving, and M⊥ is coresolving.
(3) (cf. [17, 10.2.4, and 3.2.26]) If C ⊆ mod R and i > 0, then C⊥i and Cᵀi are closed under direct products and direct

limits.

Approximations. Let M be a subcategory of Mod R, and let A be a right R-module. A morphism f ∈ HomR(A, X)

with X ∈ M is an M-preenvelope (or a left M-approximation) of A provided that the abelian group homomorphism
HomR( f, M) : HomR(X, M) −→ HomR(A, M) is surjective for each M ∈ M.

AnM-preenvelope f ∈ HomR(A, X) of A is said to be special if f is a monomorphism and Ext1R(Coker f, M) =

0 for all M ∈ M.
An M-envelope of A is an M-preenvelope f ∈ HomR(A, X) which is left minimal, that is, h is an automorphism

of X whenever h ∈ EndR(X) satisfies h f = f . Note that M-envelopes may not exist in general, but they are always
unique up to isomorphism.

The notions of an M-cover and a (special) M-precover are defined dually.
A subcategory S of mod R is said to be covariantly (respectively, contravariantly) finite in mod R if every module

in mod R has an S-preenvelope (respectively, an S-precover). A class of modules M is definable if it is closed
under direct products, direct limits, and pure submodules. We will frequently use the following relationship between
covariantly finite subcategories of mod R and definable classes.

Theorem 1.3 ([13, 4.2], [20, 3.11]). Let S be a full additive subcategory of mod R. The following statements are
equivalent.
(1) S is covariantly finite in mod R.
(2) lim

−→
S is closed under products.

(3) lim
−→

S is definable.

Cotorsion pairs. Let A,B ⊆ Mod R (or A,B ⊆ mod R) be classes of modules. Then C = (A,B) is a cotorsion
pair in ModR (respectively, a cotorsion pair in mod R) provided A =

⊥1B and B = A⊥1 (respectively, provided

A = (
⊥1B)<ω and B = (A⊥1)<ω).

A cotorsion pair C = (A,B) in ModR (or in mod R) is complete if every module (respectively, every module in
mod R) has a special A-precover and a special B-preenvelope. Moreover, C is perfect if every module (respectively,
every module in mod R) has an A-cover and a B-envelope. Note that a complete cotorsion pair (A,B) in ModR is
perfect providedA is closed under direct limits [17, 7.2.6]. It is an open problem whether the converse holds true. For
artin algebras, the following result was established by Auslander and Reiten.

Lemma 1.4 ([6]). Let Λ be an artin algebra, and let A,B be subcategories of mod Λ. The following statements are
equivalent.
(1) A is a contravariantly finite subcategory of mod Λ satisfying conditions (R1) and (R2), and B = (A⊥1)<ω.
(2) B is a covariantly finite subcategory of mod Λ satisfying conditions (CR1) and (CR2), and A = (

⊥1B)<ω.
(3) (A,B) is a perfect cotorsion pair in mod Λ.

The existence of approximations cannot be omitted in the result above, as shown by the following example.
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Example 1.5. Let Λ be an artin algebra such that the big (left) finitistic dimension of Λ equals n > 1, but its little
(left) finitistic dimension is <n, see [32]. Consider the class A′ of all nth syzygies of cyclic right Λ-modules, and set
A = (

⊥1(A′⊥1))<ω. Then A is a resolving subcategory of mod Λ, and by Baer’s Lemma A⊥1 = A′⊥1 = In . On the
other hand, B = (A⊥1)<ω

⊆ In−1.
We deduce that A is properly contained in (

⊥1B)<ω. In fact, if we choose M ∈ ΛMod with pdimM = n, and
N ∈ mod Λ such that ExtnR(N , D(M)) 6= 0, then it is easy to see that the module X = Ωn−1(N ) is contained in

(
⊥1B)<ω. On the other hand, X is not contained in A, because D(M) ∈ In = A⊥1 , and Ext1R(X, D(M)) 6= 0.

This shows that (A,B) is not a cotorsion pair in mod Λ. �

We will need further terminology on cotorsion pairs.

Lemma 1.6. Let (A,B) be a cotorsion pair in ModR (or in mod R). Then A is resolving if and only if B is
coresolving, and this is further equivalent to ExtiR(A, B) = 0 for all A ∈ A, B ∈ B, i ≥ 2. In this case (A,B)

is called hereditary.

Let C be a class of modules. A module M is called C-filtered provided there exist an ordinal σ and an increasing
chain, (Mα | α < σ), consisting of submodules of M such that M0 = 0, Mα =

⋃
β<α Mβ for each limit ordinal

α < σ , M =
⋃

α<σ Mα , and Mα+1/Mα is isomorphic to an element of C for each α + 1 < σ .

Theorem 1.7 ([14]). Let C be a class of modules and let B = C⊥1 and A =
⊥1(C⊥1). Then (A,B) is a cotorsion

pair, called the cotorsion pair cogenerated by C. If the isomorphism classes of C form a set, then (A,B) is complete.
Moreover, in this case A =

⊥1(C⊥1) consists of all direct summands of C ∪ {R}-filtered modules.

Theorem 1.8 ([15]). Let C be a class of modules and let A =
⊥1 C and B = (

⊥1C)⊥1 . Then (A,B) is a cotorsion
pair, called the cotorsion pair generated by C. If C consists of pure-injective modules, then (A,B) is perfect.

The theorems above together with Remark 1.2 apply to the following situations.

Cotorsion pairs of (co)finite type. A cotorsion pair C = (A,B) in ModR is of finite type provided it is cogenerated
by a class S ⊆ mod R. Then C is complete and B is definable.

Dually, a cotorsion pair C = (A,B) in RMod is of cofinite type provided there is a class S ⊆ mod R such that
A = Sᵀ1 . Then C is perfect. Moreover, A is definable provided C is hereditary. In fact, by the well-known Ext-Tor
relation [17, 3.2.1], (A,B) is of cofinite type iff it is generated by the class S∗

= {S∗
| S ∈ S} where S∗ denotes the

dual module, e. g. S∗
= HomZ(S, Q/Z), or over artin algebras S∗

= D(S) for the usual duality D.
If C is hereditary, then in both cases, we can assume w.l.o.g. that S is resolving.

(Co)smashing cotorsion pairs. Let C = (A,B) be a cotorsion pair in Mod R. Observe that the class A is always
closed under coproducts, and B is always closed under products. We will say that C is smashing if B is also closed
under coproducts, and cosmashing if A is also closed under products.

For further properties of the notions defined above we refer to [18] (note however, that the terminology in [18]
occasionally differs from the one used here).

2. Closure under direct limits

We start by recalling a result from [4]:

Theorem 2.1 ([4, 2.3 and 2.4]). Let S be a subcategory of mod R with properties (R1) and (R2), and let (A,B) be
the cotorsion pair cogenerated by S. Then the following hold true:

(1) A ⊆ lim
−→

S =
ᵀ
(Sᵀ), and S = A<ω

= (lim
−→

S)<ω.

(2) There is a perfect cotorsion pair (lim
−→

S,Y) which is generated by the class of all pure-injective modules from B.

Theorem 2.1 has a number of consequences concerning conjecture 0.1.

Corollary 2.2. (1) The (perfect) hereditary cotorsion pairs (X ,Y) in ModR satisfying X = lim
−→

X<ω correspond

bijectively to the resolving subcategories of mod R.
The correspondence is given by the mutually inverse assignments
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α : (X ,Y) 7→ X<ω

β : S 7→ (lim
−→

S,Y).

(2) The hereditary cotorsion pairs of finite type in ModR correspond bijectively to the resolving subcategories of
mod R.

The correspondence is given by the mutually inverse assignments

α : (A,B) 7→ A<ω

β ′
: S 7→ (⊥(S⊥),S⊥).

Proof. This follows by Lemma 1.6 and Theorem 2.1. �

Corollary 2.3. Let C = (A,B) be a hereditary cotorsion pair of finite type in ModR. Moreover, let B′ be the class of
all pure-injective modules from B. Then the following statements are equivalent.

(1) A is closed under direct limits.

(2) A = lim
−→

A<ω.

(3) The cotorsion pair (lim
−→

A<ω,Y) is of finite type.

(4) The class Y = (
⊥1B′)⊥1 is definable.

(5) Every pure embedding into a module M ∈ A ∩ B splits.

Proof. First, notice that any cotorsion pair of finite type is complete by Theorem 1.7.
The equivalence of (1)–(3) follows from Theorem 2.1. Of course, (3) implies (4).
(4) ⇒ (3): Since B′

⊆ Y ⊆ B, the two definable classes B and Y contain the same pure-injective modules, and so
they coincide.

To prove the equivalence of (2) and (5), we generalize an argument from [4, 4.2]:
First, if A = lim

−→
A<ω then A is closed under pure-epimorphic images by Lemma 1.1. Since C is of finite type, B

is closed under pure submodules. So, if 0 −→ N −→ M −→ P −→ 0 is a pure-exact sequence with M ∈ A ∩ B,
then P ∈ A and N ∈ B, and the sequence splits.

For the converse, note first that C being of finite type implies A ⊆ lim
−→

A<ω by Theorem 2.1. Next, we claim

A ∩ B = lim
−→

A<ω
∩ B. Let N ∈ lim

−→
A<ω

∩ B. Since C is complete, there is a special A-precover E : 0 −→ B −→

A −→ N −→ 0 with A ∈ A and B ∈ B. Then A ∈ A ∩ B. Moreover, since N ∈ lim
−→

A<ω is a pure-epimorphic

image of an element of A, E is pure exact. So by (5), E splits, proving our claim.
Let us now take an arbitrary module N ∈ lim

−→
A<ω and a special B-preenvelope 0 −→ N −→ B ′

−→ A′
−→ 0

with A′
∈ A and B ′

∈ B. Then A′ and therefore also B ′ belong to lim
−→

A<ω. So, by the claim above, B ′
∈ A ∩ B,

which yields N ∈ A as A is resolving. This shows that A = lim
−→

A<ω, so (2) holds. �

In particular, we infer that all cotorsion pairs of finite type with A closed under direct limits satisfy conjecture 0.1.
In Section 4, we will prove that also the converse is true in the sense that any cotorsion pair satisfying 0.1 is necessarily
of finite type.

Corollary 2.4. Let (A,B) be a hereditary cotorsion pair of finite type in Mod R. Then the following statements are
equivalent.

(1) A is definable.

(2) A is closed under direct limits, and A<ω is covariantly finite in mod R.

Proof. By Theorem 1.3 and Corollary 2.3. �
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3. Closure properties of tilting and cotilting cotorsion pairs

Before we continue our discussion of conjecture 0.1, let us apply the considerations above to tilting theory, which
will be a source of interesting examples in Section 5.

Let n < ω. A module T is n-tilting provided
(T1) T ∈ Pn ,
(T2) ExtiR(T, T (I )) = 0 for each i ≥ 1 and all sets I , and
(T3) there exist r ≥ 0 and a long exact sequence 0 −→ R −→ T0 −→ · · · −→ Tr −→ 0 such that Ti ∈ Add T for

each 0 ≤ i ≤ r .

Every n-tilting module T induces a complete hereditary smashing cotorsion pair (A,B) with B = T ⊥ andA ⊆ Pn ,
see [1]. Such cotorsion pairs are called n-tilting cotorsion pairs. By [9] (see also [18, Section 5]), tilting cotorsion
pairs are always of finite type.

Dually, a module C is n-cotilting provided that
(C1) C ∈ In ,
(C2) ExtiR(C I , C) = 0 for each i ≥ 1 and all sets I , and
(C3) there exist r ≥ 0 and an exact sequence 0 −→ Cr −→ · · · −→ C0 −→ W −→ 0 where W is an injective

cogenerator for ModR and Ci ∈ Prod C for each 0 ≤ i ≤ r .

Every n-cotilting module C is pure-injective by [30], and so it induces a perfect hereditary cosmashing cotorsion
pair (A,B) with A =

⊥C and B ⊆ In , see [1]. Such cotorsion pairs are called n-cotilting cotorsion pairs. Cotilting
cotorsion pairs are not always of cofinite type [7], however, the class A is always definable.

Finally, we recall from [21] that a module M with Add M being closed under products is said to be product-
complete. Note that M is product-complete iff Add M = Prod M . Moreover, every product-complete module is
Σ -pure-injective.

Proposition 3.1. Let T be a tilting module with corresponding tilting cotorsion pair (A,B). Then the following
statements are equivalent.
(1) A is definable.
(2) (A,B) is cosmashing.
(3) T is product-complete.
If R has finite global dimension, then (1)–(3) are further equivalent to
(4) T is a cotilting module such that A =

⊥T .

Proof. For the equivalence of (1)–(3), we generalize an argument from [4, 4.3], which we include for the reader’s
convenience. Clearly, (1) ⇒ (2). Moreover, we know from [1, 2.4] that Add T = A ∩ B, and that A consists of the
modules A having a long exact sequence 0 → A → T0 → · · · → Tn → 0 with T0, . . . , Tn ∈ Add T . We then deduce
that A is closed under direct products iff so is Add T , which means that (2) and (3) are equivalent. Moreover, under
the assumption (3), the module T is Σ -pure-injective. Then every pure submodule of a module M ∈ A∩B is a direct
summand of M , and thus A = lim

−→
A<ω by Corollary 2.3. So (3) ⇒ (1) holds by Theorem 1.3.

Assume now (4). Then we have from [1, 2.4] that Add T = A ∩ B = Prod T , so (3) holds true.
Conversely, if (3) holds true and gldim R < ∞, then T satisfies conditions (C1) and (C2) in the definition of a

cotilting module. Moreover, if W is an injective cogenerator for ModR, then W ∈ B, and since W has finite projective
dimension, we deduce from [1, 2.4] that there is a long exact sequence 0 → Tm → · · · → T0 → W → 0 with
T0, . . . , Tm ∈ Add T = Prod T . So, also (C3) is satisfied, and T is a cotilting module. Furthermore, T ∈ B implies
that A ⊆

⊥T .
It remains to prove that every module X ∈

⊥T belongs to A. To this end, we consider a special B-preenvelope
0 −→ X −→ B −→ A −→ 0. Then since A ∈ A belongs to ⊥T , we have B ∈ B ∩

⊥T . As above, we consider

a long exact sequence 0 → Tm
f

−→ Tm−1 → · · · → T0 → B → 0 with T0, . . . , Tm ∈ Add T = Prod T , and we
choose it to be of minimal length m. Assume m > 0. Since B, T0, . . . , Tm all belong to the resolving subcategory
⊥T , it follows that Coker f also belongs to ⊥T . But then Ext1R(Coker f, Tm) = 0, so Coker f even belongs to
Add T , contradicting the minimality of m. We conclude that m = 0, that is, that B belongs to Add T ⊆ A. Since A
is resolving, this completes the proof. �

Dually, one obtains the following result for cotilting cotorsion pairs, see also [12, 3.4].
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Proposition 3.2. Let C be a cotilting module with corresponding cotilting cotorsion pair (A,B). Then the following
statements are equivalent.

(1) (A,B) is smashing.
(2) C is Σ -pure-injective.
(3) There is a product-complete cotilting module C ′ such that A =

⊥C ′.

If R has finite global dimension, then (1)–(3) are further equivalent to

(4) There is a tilting (and cotilting) module C ′ such that B = C ′⊥.

Proof. With arguments dual to those used in 3.1, we see that B is closed under direct sums iff so is Prod C . Since
C is pure-injective, the latter implies that the module C is Σ -pure-injective. So, we have (1) ⇒ (2) and (3) ⇒ (1).
Moreover, (4) ⇒ (1) because tilting cotorsion pairs are smashing, and if gldim R < ∞, then the module C ′ in (3)
satisfies (4) dually to Proposition 3.1.

It remains to prove (2) ⇒ (3): Assume that C is Σ -pure-injective. By [24, 8.1], there is a cardinal κ such that every
product of copies of C is a direct sum of modules of cardinality at most κ . Of course, the isomorphism classes of all
κ-generated modules lying in Prod C form a set K. Let C ′ be the direct sum of all modules in K, and P the direct
product of all modules in K. We then have Prod C ⊆ Add C ′. Moreover, P ∈ Prod C is Σ -pure-injective. Hence the
pure submodule C ′ of P is a direct summand of P . This proves Prod C ′

⊆ Prod C , and further, by Σ -pure-injectivity,
Add C ′

⊆ Prod C ′. We then conclude that Add C ′
= Prod C ′

= Prod C , so C ′ is a product-complete cotilting module
such that A =

⊥C ′. �

Corollary 3.3. Let R be right noetherian and hereditary, and let (A,B) be a cotorsion pair. The following statements
are equivalent.

(1) A and B are definable.
(2) A and B are closed under direct limits.
(3) (A,B) is smashing and cosmashing.
(4) There is a product-complete tilting module M such that B = Gen M.

(4′) There is a product-complete cotilting module M such that A = Cogen M.
(5) There is a tilting and cotilting module M such that A = Cogen M and B = Gen M.

Proof. Clearly, (1) implies (2). Moreover, by [1, 4.1 and 4.2] we know that (A,B) is (co)smashing iff it is a (co)tilting
cotorsion pair. So, (2) implies that (A,B) is smashing, and therefore tilting, thus a hereditary cotorsion pair of finite
type. Further, A<ω is a resolving subcategory of P<ω

1 . As R is right noetherian, it follows from [2, 2.5] that A<ω is
covariantly finite in mod R. Since A is closed under direct limits, we then conclude from 2.4 that A is definable. In
particular, (A,B) is cosmashing, so we have shown (2) ⇒ (3). The implication (5)⇒(1) follows from the fact that
(co)tilting classes are always definable. The remaining implications hold by Propositions 3.1 and 3.2. �

Example 3.4. Let Λ be a tame hereditary artin algebra (w.l.o.g. basic indecomposable). Reiten and Ringel have
shown in [27] that there is a cotorsion pair (C,D) in ModΛ which is generated by the class q of all indecomposable
preinjective modules and is cogenerated by the class t of all indecomposable regular modules. In other words, (C,D)

is a hereditary cotorsion pair of finite and cofinite type. In particular, C and D are definable. Now let Sλ, λ ∈ P, be
a complete irredundant set of quasi-simple modules and let Sλ[∞], λ ∈ P, be the corresponding Prüfer modules. Let
further G be the generic module. Then W =

⊕
λ∈P Sλ[∞]⊕G is a tilting and cotilting module such that C = Cogen W

and D = Gen W ; for details see [27].

Remark 3.5. The additional hypothesis in Propositions 3.1 and 3.2 is necessary. In fact, if there is an n-

tilting–cotilting cotorsion pair (A,B), then every module M has a long exact sequence 0 → Am
f

−→ · · · → A0 →

M → 0 where A0, . . . , Am ∈ A and m ≤ n, and moreover, A ⊆ Pn , see [1]. But then gldim R ≤ 2n.

4. The telescope conjecture for module categories

In this section, we deal in detail with conjecture 0.1. We have seen in Corollary 2.3 that 0.1 holds for any cotorsion
pair C = (A,B) of finite type such that A is closed under direct limits. Our first main result shows that the converse
is also true, that is, the cotorsion pairs satisfying 0.1 must be of finite type. We start with some preliminary results.
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Proposition 4.1. Let R be a ring, and C = (A,B) be a cotorsion pair cogenerated by a class C of countably presented
modules. Assume that B(ω)

∈ B whenever B ∈ B. Then

(1) C is smashing, and B is closed under pure submodules.
(2) If C is hereditary then B is definable.
(3) If C ⊆ lim

−→
A<ω then C is of finite type.

Proof. (1) First, our assumption on the class B implies that B is closed under pure submodules by [8, Theorem 2.5]
(see also [18, 5.2.16]). Since B is closed under arbitrary direct products, and direct sums are pure submodules in direct
products, we infer that C is smashing.

(2) Since B is coresolving, (1) also implies that B is closed under pure-epimorphic images, thus in particular under
direct limits. This shows that B is definable.

(3) It suffices to verify that B = (A<ω)⊥1 . Clearly B ⊆ (A<ω)⊥1 . For the reverse inclusion, we first show that
the classes B and (A<ω)⊥1 contain the same pure-injective modules. Indeed, for any pure-injective module I , the
functor Ext1R (−, I ) takes direct limits into inverse limits by [5]. So, the assumption C ⊆ lim

−→
A<ω implies that any

pure-injective module I ∈ (A<ω)⊥1 belongs to B. Now, let M ∈ (A<ω)⊥1 , and let P be the pure-injective envelope
of M . Since the class (A<ω)⊥1 is definable, P ∈ (A<ω)⊥1 . But then P ∈ B, and thus M ∈ B since M is a pure
submodule of P . This proves that B = (A<ω)⊥1 . �

Remark 4.2. Let R be a right ℵ0-noetherian ring. Then for each n < ω, the cotorsion pair (Pn,P⊥
n ) is cogenerated

by a class of countably presented modules (see e.g. [17, Section 7.4]).
Denote by (A,B) the cotorsion pair (of finite type) cogenerated by P<ω. Let fdim(R) and Fdim(R) denote the

little and the big finitistic dimensions of R, respectively.
Clearly, CF = (P,P⊥) is a cotorsion pair iff Fdim(R) < ∞. Like in [3], we infer from Proposition 4.1 and [9,

Theorem 4.2] (see also [18, 5.2.20]) that A = P iff CF is a tilting cotorsion pair iff CF is a cotorsion pair of finite
type iff Fdim(R) < ∞ and B(ω)

∈ P⊥ whenever B ∈ P⊥.
By Theorem 1.7, the condition A = P is also equivalent to (i) Fdim(R) < ∞ and (ii) each module of finite

projective dimension is a direct summand in a P<ω-filtered module, see [3, 3.2].
Of course, (ii) implies fdim(R) = Fdim(R) (but the converse fails, even when fdim(R) = Fdim(R) = 1, for the

IST-algebra R from [23], see [4]).
Note that this is the way the equality fdim(R) = Fdim(R) was proved for artin algebras with P<ω contravariantly

finite in [3], and for all Iwanaga–Gorenstein rings in [2].

In view of Proposition 4.1, our strategy will consist in proving that every cotorsion pair (A,B) satisfying 0.1 is
cogenerated by the class of countably presented modules from A. To this end, we need results which enable us to
filter modules from A by “smaller” modules which still belong to A. The following two lemmas are the first step in
this direction.

Lemma 4.3. Let C be an injective cogenerator in Mod R. Define F(X) = CHomR(X,C) and F(ϕ)( f ) = f (− ◦ ϕ),
for all X, Y ∈ Mod R, every ϕ ∈ HomR(X, Y ) and f ∈ F(X). Then F is an endofunctor of Mod R preserving
monomorphisms. Moreover, the family ι = (ιX | X ∈ Mod R) consisting of canonical embeddings ιX : X → F(X) is
a natural transformation from the identity functor to F.

Proof. It is straightforward to check that F is a functor and ι is a natural transformation. ιX is an embedding since C
is a cogenerator, and the injectivity of C implies that F preserves monomorphisms. �

Lemma 4.4. Let R be an arbitrary ring, and (A,B) be a cotorsion pair such that B is closed under direct limits. Let λ

be a regular uncountable cardinal, κ ≥ λ, A ∈ A a κ-presented module, and X a subset of A with card X < λ. Then
there exists a <λ-presented module X̄ such that X ⊆ X̄ ⊆ A. Moreover, X̄ can be taken to be of the form π(R(I ))

where π : R(κ)
→ A is an epimorphism and I is a subset of κ of cardinality <λ.

Proof. By assumption, A has a presentation

0 −→ K
⊆

−→ R(κ) π
−→ A −→ 0
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with gen(K ) ≤ κ , and there is I0 ⊆ κ of cardinality <λ such that X ⊆ π(R(I0)). Let L be the set consisting of all
<λ-generated submodules of K . We claim that K ∩ R(I0) ⊆ L0 for some L0 ∈ L.

Let D = {〈L ′, L〉 ∈ L × L | L 6⊆ L ′
}. Using the notation from Lemma 4.3, for each 〈L ′, L〉 ∈ D, we define

τ〈L ′,L〉 : L → F((L + L ′)/L ′) as the composition of the canonical projection L → (L + L ′)/L ′ with the embedding
ι(L+L ′)/L ′ . For L ∈ L, put LL = {L ′

∈ L | 〈L ′, L〉 ∈ D}. Note that for every L , L̃ ∈ L, L ⊆ L̃ implies LL ⊆ LL̃ .
Now for each L ∈ L, we put

G(L) =

∏
L ′∈LL

F((L + L ′)/L ′),

notice that G(L) ∈ I0, and for every ε : L ⊆ L̃ (∈L), we define

G(ε) =

∏
L ′∈LL

F (εL ′)

where εL ′ is the inclusion (L + L ′)/L ′
⊆ (L̃ + L ′)/L ′. Then G is a functor from the small category L, morphisms of

which are just inclusions, to Mod R. Moreover, G preserves monomorphisms (since F does), and there is the natural
transformation τ = (τL | L ∈ L) from the canonical embedding L ↪→ Mod R to G where τL is a fibred product of
(τ〈L ′,L〉 | L ′

∈ LL): it is routine to check that the square

L̃
τL̃

−−−−→ G(L̃)

ε

x G(ε)

x
L

τL
−−−−→ G(L)

commutes for each L , L̃ ∈ L and ε : L ⊆ L̃ (one needs the fact that ι is a natural transformation).
Let E be a direct limit of the directed system G(L). For every L ∈ L, denote by νL the colimit injection

G(L) ↪→ E . Since K is a directed union of its <λ-generated submodules, it follows from the preceding paragraph
that there exists the unique homomorphism f : K → E such that f � L = νLτL for all L ∈ L. Note that L is
λ-directed since λ is a regular cardinal, so G(L) has the same property.

Using the assumption put on B, we have E ∈ B, which allows us to extend f to some g : R(κ)
→ E .

Since card I0 < λ and G(L) is λ-directed, there exists L0 ∈ L such that g � R(I0) factorizes through νL0 . We
deduce then that K ∩ R(I0) ⊆ L0; if not, there exist x ∈ K ∩ R(I0) and L ∈ L such that x ∈ L \ L0, whence
τ〈L0,L+L0〉(x) 6= 0 6= τL+L0(x) contradicting f � (K ∩ R(I0)) being factorized through νL0 . Our claim is proved.

Since L0 is a <λ-generated module, L0 ⊆ R(I1) for some I0 ⊆ I1 ⊆ κ with card I1 < λ. Iterating this construction,
we obtain a set I =

⋃
n<ω In such that K ∩ R(I )

= L for some L ∈ L, and X̄ = π(R(I )) ∼= R(I )/L has the desired
properties. �

Lemma 4.5. Let (A,B) be a cotorsion pair such that A = lim
−→

A<ω. Let λ be a regular uncountable cardinal, κ ≥ λ,

A ∈ A a κ-presented module, and X be a subset of A of cardinality <λ. Assume that either (i) R is a right ℵ0-
noetherian ring, or (ii) B is closed under direct limits. Then there is a <λ-presented module A′

∈ A such that
X ⊆ A′

⊆ A.

Proof. Step 1: For any <λ-presented submodule B of A, we construct a <λ-generated submodule B ′ of A containing

B with the property that any homomorphism of the form D
h

→ B ⊆ B ′ with D finitely presented factors through a
module in A<ω.

To this end, we fix a pure-exact sequence 0 −→ Ker π −→
⊕

i∈I Di
π

−→ B −→ 0 with Di finitely presented
for all i ∈ I . Since B is <λ-presented, we will w.l.o.g. assume that I has cardinality <λ. For F a non-empty finite
subset of I , let DF =

⊕
i∈F Di , and πF = π � DF . By induction on card(F), we define finitely generated modules

AF ∈ A<ω and CF ⊆ A such that there is a commutative diagram

DF
πF

−−−−→ B

fF

y ⊆

y
AF

gF
−−−−→ A
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and π(DF ) ⊆ CF = Im gF . Hereby we proceed as follows:
If card(F) = 1, then the existence of AF and CF follows immediately from Lemma 1.1 since A ∈ lim

−→
A<ω.

If card(F) > 1, we take M = DF ⊕
⊕

∅6=G(F AG and let g = πF ⊕
⊕

∅6=G(F gG . By Lemma 1.1, there exist
AF ∈ A<ω, hF : M → AF and gF : AF → A such that g = gF hF , and we put CF = Im gF and fF = hF � DF .
Note that CF contains CG for each ∅ 6= G ( F .

Now let B ′ be the union of all CF where F runs through all non-empty finite subsets of I . This is a directed union
of <λ-many finitely generated submodules of A, so B ′ is a <λ-generated submodule of A containing B. Moreover,
if h : D → B is a homomorphism with D finitely presented, then there is a factorization f of h through the pure

epimorphism π . But then Im f ⊆ DF for a non-empty finite subset F ⊆ I , and D
h

→ B ⊆ B ′, which equals gF fF f ,
factors through AF ∈ A<ω as required.

Step 2: Consider now the presentation of A from Lemma 4.4. We will define A′ as the union of an increasing
chain (Bn | n < ω) of <λ-presented submodules in A of the form π(R(Jn)) for some Jn of cardinality <λ (where
J0 ⊆ J1 ⊆ · · · ). The chain will be defined by induction on n:

Take B0 = π(R(J0)) < λ-presented and such that X ⊆ B0 (this is clearly possible in case (i), and it is possible
by Lemma 4.4 in case (ii)). If Bn is defined, there is a <λ-generated submodule B ′

n of A containing Bn constructed
as in Step 1. Let Bn+1 = π(R(Jn+1)) be a <λ-presented submodule of A containing B ′

n (again, obtained using the
ℵ0-noetherian property of R in case (i), and Lemma 4.4 in case (ii)).

It remains to prove that A′
∈ A. By Lemma 1.1, it suffices to show that every R-homomorphism h : D → A′

with D finitely presented has a factorization through a module in A<ω. However, Im h ⊆ Bn for some n < ω, and the
claim then follows by construction of B ′

n in Step 1. �

Theorem 4.6. Let R be a ring, and C = (A,B) be a smashing cotorsion pair such that A = lim
−→

A<ω. Assume that

either (i) R is a right ℵ0-noetherian ring, or (ii) B is closed under direct limits. Then C is of finite type.

Proof. We denote byA0 the class of all countably presented modules inA. Let A ∈ A, and let κ ≥ ℵ0 be such that A
is a κ-presented module. By induction on κ , we will prove that A is A0-filtered. There is nothing to prove for κ = ℵ0.

If κ is a regular uncountable cardinal then Lemma 4.5 yields a κ-filtration, F = (Aα | α < κ), of A such that
Aα ∈ A is <κ-presented for each α < κ . By [31, Theorem 8] (see also [18, 4.3.2]), there is a subfiltration, G, of F
such that all successive factors in G are <κ-presented modules from A, so they are A0-filtered by inductive premise.
Hence A is A0-filtered.

If κ is singular, we use Shelah’s Singular Compactness Theorem [16, IV.3.7] as follows: first, call a module M
“free” if M is A0-filtered. For each regular uncountable cardinal λ < κ , we let Sλ denote the set of all <λ-presented
submodules A′

⊆ A with A′
∈ A. Clearly, 0 ∈ Sλ, and Sλ is closed under unions of well-ordered chains of length <λ

since A is closed under arbitrary direct limits. By Lemma 4.5, each subset of A of cardinality <λ is contained in an
element of Sλ. By inductive premise, Sλ consists of “free” modules for all regular ω < λ < κ , so A is “free” by [16,
IV.3.7]. This proves that each A ∈ A is A0-filtered.

So, we infer from the Eklof Lemma [16, XII.1.5] (see also [18, 3.1.2]) that B = (A0)
⊥1 . Finally, Proposition 4.1

shows that C is of finite type. �

Corollary 4.7. Let R be an arbitrary ring, and C = (A,B) be a complete hereditary cotorsion pair such that A and
B are closed under direct limits. Then A = lim

−→
A<ω if and only if C is of finite type.

Now, we are going to prove a particular case of conjecture 0.1 for arbitrary right noetherian rings. This will imply
the validity of 0.1 in the particular case that C is a cotilting cotorsion pair over a right noetherian ring.

By Theorem 4.6, the proof of conjecture 0.1 amounts to showing that C is of finite type. First, we need a lemma
which is implicit already in [7], and the dual version of which appears in [28]:

Lemma 4.8. Let R be a ring, and C = (A,B) be a smashing cotorsion pair cogenerated by a class C such that C⊥

contains all direct sums of injective modules. Then C⊥n is closed under arbitrary direct sums for each n ≥ 1.

Proof. By induction on n. The case of n = 1 is clear since C is smashing. Let (Mα | α < κ) be a family of modules
in C⊥n+1 . Consider short exact sequences

0 −→ Mα −→ Iα −→ Cα −→ 0



L. Angeleri Hügel et al./ Journal of Pure and Applied Algebra 212 (2008) 297–310 307

with Iα injective for each α < κ . Since 0 = Extn+1
R (A, Mα) ∼= ExtnR (A, Cα) for all A ∈ C, the inductive premise

gives
⊕

α<κ Cα ∈ C⊥n , so our assumption on C⊥ yields
⊕

α<κ Mα ∈ C⊥n+1 . �

Proposition 4.9. Let R be a right coherent ring. Let C = (A,B) be a smashing hereditary cotorsion pair cogenerated
by a class C ⊆ (Mod R)≤ω and such that B ⊆ In for some n ≥ 0. Then C is of finite type.

Proof. We will construct cotorsion pairs Ci = (Ai ,Bi ), 1 ≤ i ≤ n + 1, such that

B = B1 ⊆ B2 ⊆ · · · ⊆ Bn ⊆ Bn+1

and by reverse induction on i , we will show that Ci is of finite type for each 1 ≤ i ≤ n + 1.
Let us start with the cotorsion pair Cn+1 = (An+1,Bn+1) cogenerated by the class Sn+1 of all modules that

are kth syzygies of modules from mod R for some k ≥ n. Then Bn+1 =
⋂

k≥n+1(mod R)⊥k , and we claim that
Bn+1 ⊆

⋂
k≥n+1A⊥k . In fact, (mod R)⊥1 coincides with the class of all pure submodules of injective modules since

R is right coherent. Moreover, mod R is resolving, so (mod R)⊥1 = (mod R)⊥ by Remark 1.2. Since B is definable
by Proposition 4.1(2), we deduce that (mod R)⊥ ⊆ B, and our claim follows by dimension shifting.

We now set Bi = Bn+1 ∩
⋂

k≥i A⊥k for 1 ≤ i ≤ n. Then, as B ⊆ In ⊆ Bn+1, we have B = B1. Moreover, all Bi
are obviously coresolving. Further, applying Lemma 4.8 to C (which is possible because C is cogenerated by A and
A⊥

= B contains all direct sums of injective modules), we infer that all Bi are closed under direct sums.
For each 1 ≤ i ≤ n, we thus obtain a hereditary smashing cotorsion pair Ci = (Ai ,Bi ) which is cogenerated by a

class of countably presented modules, namely by Si = Sn+1 ∪ Ci , where Ci denotes the class of all modules that are
kth syzygies of modules from C for some k ≥ i − 1.

Of course, Cn+1 is of finite type. Let 1 ≤ i ≤ n, and let M ∈ Si . We have a short exact sequence

0 −→ K −→ R(ω)
−→ M −→ 0.

We claim that K ∈ Ai+1. Indeed, if N ∈ Bi+1 = Bn+1 ∩
⋂

k≥i+1A⊥k then its first cosyzygy C belongs to Bi , so
Ext2R (Ai , N ) = 0, and in particular, Ext2R (M, N ) = 0, hence Ext1R (K , N ) = 0. This proves the claim.

By inductive premise, Ci+1 is of finite type, hence cogenerated by A<ω
i+1. By Theorem 1.7, it follows that K is a

direct summand in a A<ω
i+1-filtered module. Using [9, Lemma 3.3] (see also [18, 5.2.20, p. 215]), we obtain the exact

sequence

0 −→ H −→ G −→ M −→ 0

with H and G countably generated A<ω
i+1-filtered modules. W.l.o.g. we can assume that H is a submodule of G. As in

the proof of [9, Lemma 3.6], we show that M ∈ lim
−→

A<ω
i . We state here the argument for the reader’s convenience.

By [9, Corollary 3.2] (see also [18, 4.2.6]), we can write H =
⋃

k<ω Hk and G =
⋃

k<ω Gk where, for every
k < ω, Hk and Gk are finitely presented A<ω

i+1-filtered modules, and H/Hk , G/Gk are A<ω
i+1-filtered. Given k < ω,

there is jk such that Hk ⊆ G jk . Moreover, we can choose the sequence ( jk | k < ω) to be strictly increasing.
We claim that G jk /Hk ∈ A<ω

i . Clearly, G jk /Hk being finitely presented over R right coherent implies G jk /Hk ∈

mod R, thus we have to show that Ext1R (G jk /Hk, B) = 0 for each B ∈ Bi . Since G jk ∈ Ai+1 ⊆ Ai , we
need only to check that every f ∈ HomR(Hk, B) can be extended to a homomorphism from G jk to B. We have
Ext1R (H/Hk, B) = 0 because H/Hk ∈ Ai+1, thus we may extend f to a homomorphism f ′ from H to B, and then,
since G/H ∼= M ∈ Ai , to a homomorphism g from G to B. The restriction of g to G jk obviously induces an extension
of f to G jk . Our claim is proved.

Set Ck = G jk /Hk . Since ( jk | k < ω) is increasing and unbounded in ω, the inclusions G jk ⊆ G jk+1 induce maps
fk : Ck → Ck+1, and M is a direct limit of the direct system ((Ck, fk) | k < ω).

But then, since M ∈ Si was arbitrary, it follows that Si ⊆ lim
−→

A<ω
i , and so Ci is of finite type by

Proposition 4.1(3). �

Theorem 4.10. Let R be a right noetherian ring and C = (A,B) be a hereditary smashing cotorsion pair. If either

(i) A consists of modules of bounded projective dimension, or
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(ii) B consists of modules of bounded injective dimension,
then C is of finite type.1

Proof. By [31], (i) implies that C is a tilting cotorsion pair, hence C is of finite type by [9] (Indeed, this holds for an
arbitrary ring R, cf. [18, 5.1.16 and 5.2.20].)

Assume (ii). Then it follows from [28, Corollary 1.10] that C is cogenerated by a class of countably presented
modules, so it is of finite type by Proposition 4.9. �

Corollary 4.11. Let R be a right noetherian ring, and (A,B) an n-cotilting cotorsion pair. Then the following
statements are equivalent.

(1) (A,B) is of finite type.
(2) B is definable.
(3) There is a Σ -pure-injective cotilting module C such that A =

⊥C.

Proof. By Proposition 3.2, condition (3) means that (A,B) is smashing. So, we have (1) ⇒ (2) ⇒ (3). (3) ⇒ (1) is
an immediate consequence of Theorem 4.10. �

5. Extensions of small cotorsion pairs

We close the paper by pointing out some asymmetries that can occur in the behaviour of the classes involved in a
cotorsion pair. Throughout this section Λ denotes an artin algebra.

Definition ([29]). Let (S, T ) be a cotorsion pair in mod Λ. A cotorsion pair (X ,Y) in ModΛ is said to be an extension
of (S, T ) if X<ω

= S and Y<ω
= T .

We have seen above three different ways of extending (S, T ).

Proposition 5.1. Let (S, T ) be a cotorsion pair in mod Λ. The following cotorsion pairs are extensions of (S, T ):

(1) the complete cotorsion pair (A,B) cogenerated by S,
(2) the perfect cotorsion pair (lim

−→
S,Y),

(3) the perfect cotorsion pair (C,D) generated by T .

They are related by the inclusions A ⊆ lim
−→

S ⊆ C and D ⊆ Y ⊆ B.

Proof. We already know that the first cotorsion pair is complete, and the third is perfect since it is of cofinite type.
Observe further that S has properties (R1) and (R2). By Theorem 2.1 we then have that the second cotorsion pair
is perfect, generated by the pure-injective modules from B, and moreover, S = A<ω

= (lim
−→

S)<ω. Furthermore,

B<ω
= (S⊥1)<ω

= T since (S, T ) is a cotorsion pair in mod Λ, and similarly C<ω
= (

⊥1T )<ω
= S. In particular, T

consists of pure-injective modules from B. We then infer that A ⊆ lim
−→

S ⊆ C, and thus T ⊆ D ⊆ Y ⊆ B. But this

implies that D<ω
= Y<ω

= B<ω
= T , and the proof is complete. �

Let us look at some examples.

Example 5.2. (1) Let Λ be a tame hereditary artin algebra (w.l.o.g. basic indecomposable), and let the notation be as
in Example 3.4. We set S = add (p ∪ t) where p denotes the class of all indecomposable preprojective modules,
and T = add (q). Then (S, T ) is a cotorsion pair in mod Λ, and the three extensions in Proposition 5.1 coincide.
Note however that (S, T ) is not complete in mod Λ, and that the generic module G belongs to D \ lim

−→
T , so

D 6= lim
−→

D<ω. In particular, we see that the validity of conjecture 0.1 for (A,B) does not imply B = lim
−→

B<ω.

(2) If (S, T ) is a cotorsion pair in mod Λ with S ⊆ (P1)
<ω, then the second and the third cotorsion pair in

Proposition 5.1 coincide. In fact, in this case B is closed under epimorphic images. Moreover, since every module

1 Added in proof. The bounds on the homological dimension can be removed in the sense that if R is any ring and C satisfies the assumptions of
0.1, then C is of countable type,A is closed under pure-epimorphic images, and B is definable. This has been proved in a recent manuscript by the
second author and J. Šťovı́ček, entitled “The countable telescope conjecture for module categories”.
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over an artin algebra is a pure submodule of a direct product of its finitely generated factor modules, it follows
that the modules from B are pure submodules of a product of modules from T . Now remember that (lim

−→
S,Y) is

generated by the class B′ of all pure-injective modules from B. But B′ consists of direct summands of products of
modules from T , and so lim

−→
S = C.

(3) The following example shows that the assumption “smashing” in Theorem 4.6 is essential. Let Λ be the algebra
from [23]. We set S = (P1)

<ω, and T = (S⊥1)<ω. As above we have ⊥1T = lim
−→

S = P1, so (
⊥1T )<ω

= S,

and (S, T ) is a cotorsion pair in mod Λ. Here again, (S, T ) is not complete. Moreover, although C = lim
−→

C<ω,

the cotorsion pair (C,D) = (lim
−→

S,Y) is not of finite type. This follows from 2.3, since we know from [4] that the

first two cotorsion pairs in Proposition 5.1 do not coincide. In particular, (C,D) is not smashing (because it cannot
be a tilting cotorsion pair, see [1,8], see also [18, Section 5.2]). However, it is of cofinite type, hence cosmashing.

As a consequence of a result of Krause and Solberg in [22], we can now describe when a cotorsion pair has the
shape (lim

−→
S, lim

−→
T ) for some cotorsion pair (S, T ) in mod Λ.

Theorem 5.3. The following statements are equivalent for a cotorsion pair (X ,Y) in ModΛ.

(1) (X ,Y) = (lim
−→

X<ω, lim
−→

Y<ω).

(2) (X ,Y) is the unique extension of some complete cotorsion pair (S, T ) in mod Λ.
(3) (X ,Y) is of finite type and X<ω is contravariantly finite in mod Λ.

If (X ,Y) is hereditary and X ⊆ P , then (1)–(3) are further equivalent to

(4) Y = T ⊥ for a tilting module T ∈ mod Λ.

Proof. (1) ⇒ (2): Set T = Y<ω. First of all, since Y = lim
−→

T is closed under products, it follows from 1.3 and

1.4 that there is a complete cotorsion pair (S, T ) in mod Λ. We then know from [22, 2.4] that the three extensions
of (S, T ) in Proposition 5.1 coincide with (X ,Y). Suppose now that (E,F) is a further extension of (S, T ). Then
S ⊆ E , thus F ⊆ Y = lim

−→
T , hence lim

−→
S ⊆ E . Further T ⊆ F , thus E ⊆ X = lim

−→
S. This shows (E,F) = (X ,Y),

so there is a unique extension.
(2) ⇒ (3): Consider the complete cotorsion pair (A,B) cogenerated by S. Then B<ω

= (S⊥1)<ω
= T , and by

Theorem 2.1(1) we have A<ω
= S. So (A,B) is an extension of (S, T ) and therefore coincides with (X ,Y).

(3) ⇒ (1): (X ,Y) is cogenerated by S = X<ω, and there is a complete cotorsion pair (S, T ) in mod Λ. By [22,
2.4] it follows that (X ,Y) = (lim

−→
S, lim

−→
T ) and T = Y<ω.

The equivalence with (4) follows from a well-known result of Auslander and Reiten [6], see [3, 4.1]. �
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