Workshop on Neurogeometry and other (related) problems

CONSTRUCTIONS OF METRICS WITH SPECIAL HOLONOMIES VIA GEOMETRICAL FLOWS

Evgeny Malkovich

Humpolec, 3-6 April 2014

Holonomy of Riemannian manifold

Let $\left(M^{n}, g\right)$ be a Riemannian manifold, $p \in M^{n}$.
$\operatorname{Hol}\left(M^{n}\right)=\left\{P_{\gamma} \mid \gamma(t), 0 \leq t \leq 1-\right.$ a loop in $\left.M^{n}, \gamma(0)=\gamma(1)=p\right\}$,
where P_{γ} - parallel transport along the curve γ with respect to the Levi-Civita connection.

$$
\operatorname{HoI}_{p}\left(M^{n}\right) \subset \operatorname{Iso}\left(T_{p} M^{n}\right)=S O(n)
$$

Products and Symmetrical spaces

Theorem (de Rham, 1952)

Let M - be a complete Riemannian manifold and $\mathrm{Hol}(M)=G_{1} \times G_{2}$.
Then $M=M_{1} \times M_{2}$, where $\operatorname{Hol}\left(M_{1}\right)=G_{1}$ and $\operatorname{Hol}\left(M_{2}\right)=G_{2}$.

Theorem (E. Cartan, 1926)

Let $M^{n}=G / H$ be a symmetrical space (G - Lee group generated by all symmetrical reflections that turn over the geodesics pass through point $p \in M, H$ is a stabilizer of p). Then $H=\operatorname{Hol}(M)$.

Classification

Theorem (Berger, 1955)

Let M^{n} be a simply connected irreducible non-symmetrical Riemannian manifold. Then one of the following cases holds:

1. $\mathrm{Hol}(g)=S O(n)$,
2. $\mathrm{Hol}(g)=U(m), \quad n=2 m \geq 4$,
3. $\mathrm{Hol}(g)=S U(m), \quad n=2 m \geq 4$,
4. $\mathrm{Hol}(g)=S p(m), \quad n=4 m \geq 8$,
5. $\mathrm{Hol}(g)=\operatorname{Sp}(m) \operatorname{Sp}(1), \quad n=4 m \geq 8$,
$6 . \mathrm{Hol}(g)=G_{2}, \quad n=7$,
$7 . \operatorname{Hol}(g)=\operatorname{Spin}(7), \quad n=8$.

Cones and 3-Sasakian manifolds

The Riemannian cone over Riemannian manifold $\left(M, d s^{2}\right)$ is

$$
C(M)=\mathbb{R}_{+} \times M
$$

with metric

$$
d t^{2}+t^{2} d s^{2}
$$

M is 3 -Sasakian if there are 3 unit Killing vector fields $\xi_{i}, i=1,2,3$ on M such that $\left[\xi_{i}, \xi_{j}\right]=2 \epsilon_{i j k} \xi_{k}$ and that (1,1)-tensor field $\Phi_{i}=\nabla \xi_{i}$ satisfies
$\left(\nabla_{X} \Phi_{i}\right)(Y)=g\left(Y, \xi_{i}\right) X-g(X, Y) \xi_{i}$.

Theorem (Boyer-Galicki)

Let M^{n} be a complete 3-Sasakian manifold. Then $C(M)$ is hyperkahler, i.e. $\operatorname{Hol}(C(M))=S p\left(\frac{n+1}{4}\right)$.

Connections with other geometries

There is a diagram, which called a 'diamond diagram', that connect different geometries:

Deformations of the cone

We suppose that M is a 7 -dimensional 3-Sasakian manifold and that quaternionic Kähler orbifold O of M is Kähler. For example, $S U(3) / U(1)$ is a such manifold.
We consider a deformation of the cone metric:

$$
\begin{aligned}
g(t)= & d t^{2}+A_{1}(t)^{2} \eta_{1}^{2}+A_{2}(t)^{2} \eta_{2}^{2}+A_{3}(t)^{2} \eta_{3}^{2} \\
& B(t)^{2}\left(\eta_{4}^{2}+\eta_{5}^{2}\right)+C(t)^{2}\left(\eta_{6}^{2}+\eta_{7}^{2}\right)
\end{aligned}
$$

and want to find metric g such that $\mathrm{Hol}(g)=\operatorname{Spin}(7)$.

$$
S p(2) \subset S U(4) \subset S p i n(7) \subset S O(8)
$$

Condition for $H o l \subseteq \operatorname{Spin}(7)$

$\mathrm{Hol}(g) \subset \operatorname{Spin}(7) \quad \Leftrightarrow \quad \nabla \Psi=0 \quad \Leftrightarrow \quad d \Psi=0 \quad \Leftrightarrow$

$$
\left\{\begin{array}{l}
A_{1}^{\prime}=\frac{\left(A_{2}-A_{3}\right)^{2}-A_{1}^{2}}{A_{2} A_{3}}+\frac{A_{1}^{2}\left(B^{2}+C^{2}\right)}{B^{2} C^{2}}, \\
A_{2}^{\prime}=\frac{A_{1}^{2}-A_{2}^{2}+A_{3}^{2}}{A_{1} A_{3}}-\frac{B^{2}+C^{2}-2 A_{2}^{2}}{B C}, \\
A_{3}^{\prime}=\frac{A_{1}^{2}+A_{2}^{2}-A_{3}^{2}}{A_{1} A_{2}}-\frac{B^{2}+C^{2}-2 A_{3}^{2}}{B C} \\
B^{\prime}=-\frac{C A_{1}+B A_{2}+B A_{3}}{B C}-\frac{\left(C^{2}-B^{2}\right)\left(A_{2}+A_{3}\right)}{2 A_{2} A_{3} C} \\
C^{\prime}=-\frac{B A_{1}+C A_{2}+C A_{3}}{B C}-\frac{\left(B^{2}-C^{2}\right)\left(A_{2}+A_{3}\right)}{2 A_{2} A_{3} B}
\end{array}\right.
$$

Resolutions of the cone singularity

Space \mathcal{M}_{1}^{8} :
(1) $A_{1}(0)=A_{2}(0)=A_{3}(0)=0,\left|A_{1}^{\prime}(0)\right|=\left|A_{2}^{\prime}(0)\right|=\left|A_{3}^{\prime}(0)\right|=1$;
(2) $B(0) \neq 0, B^{\prime}(0)=0$;
(3) $C(0) \neq 0, C^{\prime}(0)=0$;
(4) functions $A_{1}, A_{2}, A_{3}, B, C$ have definite signs on $(0, \infty)$.

Space \mathcal{M}_{2}^{8} :
(1) $A_{1}(0)=0,\left|A_{1}^{\prime}(0)\right|=4$;
(2) $A_{2}(0)=-A_{3}(0) \neq 0, A_{2}^{\prime}(0)=A_{3}^{\prime}(0)$,
(3) $B(0) \neq 0, B^{\prime}(0)=0$;
(4) $C(0) \neq 0, C^{\prime}(0)=0$;
(5) functions $A_{1}, A_{2}, A_{3}, B, C$ have definite signs on $(0, \infty)$.

1-dimensional family for Calabi metrics

Theorem (Bazaikin-M.)

For $0 \leq \alpha<1$ every metric from the family

$$
\begin{gathered}
g_{\alpha}=\frac{r^{4}\left(r^{2}-\alpha^{2}\right)\left(r^{2}+\alpha^{2}\right)}{r^{8}-2 \alpha^{4}\left(r^{4}-1\right)-1} d r^{2}+\frac{r^{8}-2 \alpha^{4}\left(r^{4}-1\right)-1}{r^{2}\left(r^{2}-\alpha^{2}\right)\left(r^{2}+\alpha^{2}\right)} \eta_{1}^{2}+r^{2}\left(\eta_{2}^{2}+\eta_{3}^{2}\right) \\
\quad+\left(r^{2}+\alpha^{2}\right)\left(\eta_{4}^{2}+\eta_{5}^{2}\right)+\left(r^{2}-\alpha^{2}\right)\left(\eta_{6}^{2}+\eta_{7}^{2}\right),
\end{gathered}
$$

is complete smooth Riemannian $S U(4)$-holonomy metric on the square of the canonical complex line bundle over the space of flags in \mathbb{C}^{3}. Metric g_{0} is isometric to the Calabi metric with holonomy $S U(4)$; and metric g_{1} is isometric to the Calabi metric with holonomy $S p(2) \subset S U(4)$ on the $T^{*} \mathbb{C} P^{2}$.

Different point of view

Let us now consider the deformation of the cone $C(M)$ as an evolution of the M under some specific geometric flow.

We want to find some reasonable geometric flow on arbitrary 3-Sasakian 7-dimensional manifold $(M, \bar{g}(t))$ such that cone $C(M)$ with metric $d t^{2}+\bar{g}(t)$ has special holonomy group.

$$
\frac{\partial}{\partial t} \bar{g}(t)=R H S(\bar{g})
$$

Dirac flow

Theorem

Let S^{3} be a 3-dimensional sphere with conformally round metric

$$
\bar{g}(t)=f^{2}(t)\left(\eta_{1}^{2}+\eta_{2}^{2}+\eta_{3}^{2}\right)
$$

which satisfies the following flow

$$
\frac{\partial}{\partial t} \bar{g}(t)=\sqrt{R i c-4 K}
$$

Then the cone $C\left(S^{3}\right)$ with metric $d t^{2}+\bar{g}(t)$ is isometric to the space with constant curvature K for $K \in\{-1,0,+1\}$.

Note that for $K=+1$ at $t=2 \pi$ sphere S^{3} is collapsed and the cone $C\left(S^{3}\right)$ with such metric turns out to be a sphere S^{4}.

Ricci flow for the metric with two parameters

If we consider a metric

$$
\bar{g}(t)=A_{1}^{2}(t) \eta_{1}^{2}+A_{2}^{2}(t)\left(\eta_{2}^{2}+\eta_{3}^{2}\right)
$$

Then a Ricci flow

$$
\bar{g}(t)=-2 \operatorname{Ric}(\bar{g}(t))
$$

for this metric will be equivalent to the system

$$
\left\{\begin{array}{l}
\frac{A_{1}^{\prime}}{A_{1}} \cdot \frac{d t}{d \tau}=-4 \frac{A_{1}^{2}}{A_{2}^{4}}, \\
\frac{A_{2}^{\prime}}{A_{2}} \cdot \frac{d t}{d \tau}=-\frac{4}{A_{2}^{2}}\left(2-\frac{A_{1}^{2}}{A_{2}^{2}}\right)
\end{array}\right.
$$

This system can be integrable:

$$
-\frac{1}{16} \beta-\frac{\sqrt{2}}{128} c_{1} \arctan \left(\frac{4 \sqrt{2} \beta}{\sqrt{c_{1}^{2}-32 \beta^{2}}}\right)=t+c_{2}
$$

where $\alpha=A_{1}^{2}=\frac{1}{8} \beta\left(\beta^{\prime}+16\right)$ and $\beta=A_{2}^{2}$.

Horrible flow

Theorem

Let S^{3} / \mathbb{Z}_{2} be a 3-dimensional projective space with metric

$$
\bar{g}(t)=A_{1}^{2}(t) \eta_{1}^{2}+A_{2}^{2}(t)\left(\eta_{2}^{2}+\eta_{3}^{2}\right)
$$

satisfying

$$
\frac{\partial}{\partial t} \bar{g}(t)=\sqrt{\operatorname{det}(\overline{\operatorname{Ric})}} \overline{R i c}^{-1}
$$

with $A_{1}(0)=0, A_{1}^{\prime}(0)=2$ and $A_{2}(0) \neq 0$. Then the metric $d t^{2}+\bar{g}(t)$ is isometric to the Eguchi-Hanson metric.

Thanks for your attention.

