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* Let us begin with an image of the structure of
V1 of the tree-shrew or tupaya (W. Bosking).

* The method (Bonhoffer & Grinvald, ~ 1990) of in
vivo optical imaging based on activity-
dependent intrinsic signals allows to acquire
images of the activity of the superficial cortical
layers.

At a certain resolution and with a
population coding, a "point" corresponds
to a small assembly of neurons with
approximatively the same receptive field
and the same preferred orientation.

It codes a contact element (a, p).




» The following picture shows

* (a) the sub-population (stripe) of V1
neurons activated by a long line stimulus
located at a precise (vertical) position
(scale bar = 1mm).

(b) the embedding of the stripe in the
population of V1 neurons responding to
the same vertical orientation but at
different positions.

In the following picture the orientations are
coded by colors and iso-orientation lines
are therefore coded by monocolor lines.

The cortical layer is reticulated by a
network of singular points which are the
centers of the pinwheels.

Locally, around these singular points all
the orientations are represented by the
rays of a "wheel" and the local wheels are
glued together in a global structure.




» There are 3 classes of points : » Overlapping of receptive fields (Yu et al.)

— regular points where the orientation field is
locally trivial;

— singular points at the center of the pinwheels;
— saddle-points localized near the centers of the
cells of the network.

» Two adjacent singular points are of
opposed chirality (CW and CCW).

* Itis like a field in W generated by
topological charges with « field lines »
connecting charges of opposite sign.

* In the following picture due to Shmuel
(cat’'s area 17), the orientations are coded
by colors but are also represented by
white segments.
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* We observe very well the two types of
generic singularities of 1D foliations in the
plane.

* They arise from the fact that, in general,
the direction 6in V1 of a ray of a pinwheel
is not the orientation p, associated to it in
the visual field.

When the ray spins around the singular
point with an angle ¢, the associated
orientation rotates with an angle ¢ /2. Two
diametrally opposed rays correspond to
orthogonal orientations.

e There are two cases.




+ If the orientation p, associated with the
ray of angle @is p,= a+ 62 (withp,= a),
the two orientations will be the same for

po=0+62=6
that is for 6= 2¢.

* As «is defined modulo =, there is only one
solution : end point.

« If the orientation p, associated with the
ray of angle 0 is p, = o — 62, the two
orientations will be the same for

po=0—62=6
that is for 8= 20/3.

* As o is defined modulo &, there are three
solutions : triple point.




» Receptive profiles of simple V1 neurons
have a characteristic shape (wavelets).

* Fred Wolf and Theo Geisel modeled the
pinwheel network using a complex field

z(a) (a = pe?, z = re'®)

where the spatial phase ¢ (a) codes the
preferred orientation and the module r (a)
codes the orientation selectivity.

 Singularities are zeroes of this field.

Along a vertical penetration inside the
cortical layer the phase changes.

Along the rays of the pinwheels the spatial
frequency changes.

Direction of orientation.
Ocular dominance.

Gluing the two parts of V1 (the two visual
hemifields) through the corpus callosum.

Feed back from other areas onto V1, etc.

But even the basic structure is non ftrivial.

They study the evolution of pinwheels
under learning dynamics.

Starting with m one applies
Hebb's law according to which stimuli
strengthen the connections they activate.

Hence a PDE of evolution (& = noise)

O20) _ F (3 (a,t)) +¢




» Evolution of pinwheels. * Let us suppose that the maximal selectivity
= 1. The functional architecture is a
section of the fibration

* Let us take e.g.

* Above a small circle Cp around a=0 we
have the torus

Co X Xy —C,

¢ The lift of Cp is the curve Fp

(%psin ©),p (1 — e (9)) cos (6) ,p (1 — 5 cos (9)) sin (9))

¢ As orientation selectivity vanishes at 0,
when we have also

e The projection is locally a diffeomorphism.




* P. E. Maldonado et al. have analyzed the
fine-grained structure of orientation maps
at the singularities. They found that

« orientation columns contain sharply tuned
neurons of different orientation preference
lying in close proximity ».

* But many experiments show that
orientation selectivity doesn't vanish at
singular points.

* James Schummers has shown that

— « neurons near pinwheel centers have
subthreshold responses to all stimulus
orientations but spike responses to only a
narrow range of orientations ».




» Far from a pinwheel, cells « show a strong
membrane depolarization response only
for a limited range of stimulus orientation,
and this selectivity is reflected in their
spike responses ».

At a pinwheel center, on the contrary, only
the spike response is selective. There is a
strong depolarization of the membrane for
all orientations.

The spatial (50u) and depth resolutions of
optical imaging is not sufficient.

Two-photon calcium imaging in vivo
(confocal biphotonic microscopy) provides
functional maps at single-cell resolution.

— Kenichi Ohki, et al.
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» A simple model would be r = cst = 1.

e The lift of Cp would then be the curve Fp

Losin(@), (1= 2pcos(0)) cos (8), (1= Lpcos (8) ) sin (6)
(2 ( 2 2

* When we have
I', — (0, cos () ,sin (6))

e The projection is no longer a local
diffeomorphism. Exceptional fiber.

 All orientations must be present with a
good selectivity at the singularities.

* In fact it is a 3D abstract space

which is implemented into 2D neural
layers.

¢ How ?

* An idea could be to use the concept of
blowing-up.

* The blowing-up of a point O = (0, 0) in the
plane associates to every point

a = (x,y) #(0,0)

the line Oa.
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* One gets the map

* As the inverse image of O by ris

the blowing-up is in some sense of
intermediary dimension between 2D and
3D. Itis an unfolding of a 2D orientation
wheel along a third dimension.

» The graph of ¢ is a helicoidal ruled surface

Hin

which is isomorphic to JIREE {0}

through the projection 7 .

Its closure is a helicoid with an exceptional
fiber

T (0)=A~P

In a second step, one can localize the
blowing-up model of a pinwheel and
restrict it to a neighborhood U of O.

One can then take the germ, that is the
limit w.r.t the filter of neighborhoods.

In the germ, is in the kernel of

the 1-form
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* On can then "compactify" the fiber (a la
Kaluza-Klein) and pull it down in the base
space.

One gets that way a model for a single
pinwheel.

In a third step, one can blow-up in parallel
several points a; and glue the local

pinwheels ( a;, A;) using a field endowing
the a; with topological charges (chirality).

One gets that way a model of a network of
pinwheels.

* In this perspective a pinwheel is like a "fat

point".

In a letter (1986) concerning singularities
of analytic functions, P. Deligne introduced
the idea of substituting to a point a =0, a
small disk D with boundary D = A and
consider the space

with the topology of the real blowing-up on

A hypothesis could be to consider that the
pinwheel structure with its field of preferred
orientations is a solution of a differential
equation with singularities.

But for developing such an idea, one
would have to look at the micro dendritic
structures at singular points.
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» Connectivity implementing the sharp
orientation tuning near the centre.

Dendritic trees near the centre C (few tens
) in an iso-orientation domain D (yellow
dots = excitatory synapses).

— (a) d.t. biased towards D.

— (b) d.t. symmetric, but excitatory inputs biased
towards D.

— (c) d.t. sym., excit. inputs sym. but local and
therefore inside D (good segregation near C).

— (d) d.t. sym., excit.inputs sym. and integrated
uniformly over a large dendritic area.

In a fourth step, one can go in a different
direction and consider networks of singular
points a; with a mesh — 0.

The idea is that one could recover the

fibration

and its contact structure by blowing-up in
parallel all the points of the plane.

e Itis possible to use non standard analysis
(Robinson-Luxemburg).

* In his last paper (edited on 1992 by
Jean-Pierre Ramis) Jean Martinet
proposed to interpret "fat points" using
non standard analysis : take for D an
infinitesimal disk with only one standard
point (the center).
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One restricts the infinitesimal model to the
monads

* The “local” "vertical" retino-geniculo-
wla) ={(x + de,y + dy)} cortical connections inside the pinwheels

(hypercolumns) are not sufficient for
of the standard points a of the plane. perception.

When one blows-up a in the monad, one * A functional architecture is necessary.
gets an exceptional fiber A* whose
standard points correspond to standard
orientations.

* FA : activation = to do geometry.

We work now in the fibration RV R2 X Pl

To implement a global coherence of * This is a process of parallel transport
contours, the visual system must be able implemented by the lateral ("horizontal”)
to compare two retinotopically neighboring cortico-cortical connections.

hyper-columns P, et P, over two Cortico-cortical ~ connections  connect

neighboring points a and b. neurons coding contact elements (a, p)
and (b, p) such that p is approximately the
orientation of the line ab .




The next slide shows how a marker
(biocytin) injected locally in a zone of
specific orientation (green-blue) diffuses
via horizontal cortico-cortical connections.

The key fact is that the long range
diffusion is highly anisotropic and
restricted to zones of the same orientation
(the same color) as the initial one.

W. Bosking :

—« The system of long-range horizontal
connections can be summarized as
preferentially linking neurons with co-oriented,
co-axially aligned receptive fields ».

So, the well known Gestalt law of “good
continuation” is neurally implemented.

In fact, a certain amount of curvature is
allowed in alignements.

Neural origin of geometry.

» These experimental results mean
essentially that the contact structure of the
fiber bundle

mn.:V=RXP—>R

is neurally implemented with
« dimensional collapse,
» discretization,

¢ population coding.
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The simplest model of the functional
architecture of V1 is the space of 1-jets of
curves Cin R.

If C is curve in R (a contour), it can be lifted
to V. The lifting " is the map (1-jet)

j:C—> V=RXP

wich associates to every point a of C the pair
(a, p,) Where p_is the tangent of C at a.

Legendrian lift.

The condition is that at every point of I" the
tangent vector ¢ is in the kernel of the
differential 1-form

o =dy— pdx

This kernel is the contact plane of V at
(a, p).

The underlying neural functional micro
connectivity is expressed geometrically by
a differential form.

Conversely, if T' = (a, p) = (x, y(x), p(x)) is a
curve in V, the projection a = (x, y(x)) of T is a
curve C in R. But T is the lifting of C iff
p(x) = y'(x).

This is an integrability condition. It says that
to be a coherent curve in V, I must be an
integral curve of the contact structure of the
fibration .

Legendrian curves generalize lifts of graphs.

The vertical component p * of the tangent
vector is the curvature :

p=y = p’

16



e The 2D contact distribution is not
integrable. It has no integral surfaces but
only integral curves.

e Indeed, o A dw = volume form while
Frobenius integrability condition is
ondo=0.

V1 is like a Lie-Cartan neural machine :
2D neural implementation of (at least) a
contact structure.

Understanding the geometrical content of
functional architecture for understanding
the neural origin of "external" geometry.

Translate visual problems into problems
of contact geometry.

Even if the mathematical tools are rather
elementary, the fact that they are neurally
implemented is highly non trivial.

* For instance developement and learning
can be translated into a problem of
deformation of an initial functional
architecture into a contact structure.

» We will focus on the problem of illusory
contours (David Mumford).
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¢ (0,0, 0) is the neutral element.
e Ifv=(x,y,p), v! (or —vin additive

* The contact structure on V' is a left- notation) is (—x, —y + px, —p).

invariant distribution of planes for a group
structure which is the polarized
Heisenberg group :

(z,y,p).(" . ) = (@+2  y+y +pa’,p+0)

» If r = (&, n, m) are the tangent vectors of
U =T,V, the Lie algebra of V has the Lie
bracket

1.6) = [(€.0.7), (€.of 7)) = (0,67 — &n'.0)




* The Lie algebra U =T,V is spanned by
X,=0,+po,=(,p,0),
X,=2,=(0,0, 1),
and
[X,, X, 1= -X;=-0,=(0,-1,0)
(other brackets = 0). »

» The contact plane are spanned by X, and .X,,
and the contact distribution is therefore
bracket generating (Hérmander condition).

 In matrix terms, v=(x, y, p) and t = (§, n, @)
can be written

1 p oy 0
0 1 = 0
0 0 1 0

» So the inner automorphisms are :

A, v — v vl

(', p") — (v +px' —p'z,p)

» A consequence is Chow theorem : two
points of V can always be joined by an
integral curve.

e The tangentmap of A, at O is :

Ad,(t) = (§,p€ + 1 — zm,m)

 This yields the adjoint representation of the
Lie group V on its Lie algebra U = T,V.
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e For the coadjoint representation, take the e Orbits :
basis {dx, dy, dp} for the 1-forms of T* : « If 1#0, planes A = cst.

v = pdx + Ady + vdp € 0* « If 2 =0, every point of the (u, 0, v) plane is a

degenerate orbit.
SIS (Ad: (7). t) = (v, Ad_o(2))

Ad} () = pldz + Ndy +v'dp

W=p—Ap
A=A
vV=v+ Az

* The unirreps of V are either trivial ones of
dimension 1 multiplying z € C by
» The unitary irreducible representations i(uztvp)
(unirreps) of this group are given by the Tuw (T, y,p) = 5P
Stone - von Neumann theorem.

or infinite dimensional ones operating in
the Hilbert space NG

(2,9, p) u(s) = e*0Fu(s + p), with A #0




« Kirillov : they correspond to the orbits of the
coadjoint representation of V.

Planes A= cst for A # 0 correspond to

T (z,y,p) u (s) = e F)y (s + p), with A # 0

 Points of the (u, 0, v) plane for A =0
correspond to

UYTRY, (-'175 yap) = ez'(u;v—f—up)

A typical example of the problems of
neuro-geometry is given by well known
Gestalt phenomena such as Kanizsa
illusory contours.

The visual system (V1 with some
feedback from V2) constructs very long
range and crisp virtual contours.

They are in fact boundaries of virtual
surfaces but we will restrict to the 1D
problem.

In this neuro-geometrical framework, we
can easily interpret the variational
process giving rise to illusory contours.

The idea is to use a geodesic model in
the sub-Riemannian geometry
associated to the contact structure.

This generalizes the “elastica” model
proposed by David Mumford.
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* We need also metrics and geodesics for
analyzing diffusion and computing the heat
kernel for this specific functional
architecture.

* In a Kanizsa figure, two pacmen of
respective centers a and b with a specific
aperture angle define two elements (a, p)
and (b, gq) of V.

* An illusory contour interpolating between
(a, p) and (b, q) is
— 1. acurve C from a to b in R with tangent p at a
and tangent g at b ;

— 2. a curve minimizing an “energy” (variational
problem), that is a geodesic for some sub-
Riemannian metric.

* If I_is the contact structure on V and if
one considers only curves I" in V which are
integral curves of K, then metrics gx_

defined only on the planes of the
distribution K_are called sub-Riemannian

metrics.

* |t is natural to take on the contact planes
the metric making orthonormal their
generators :

X;=0,tpo,, X,=0,.

* Itis the Euclidean metric for X, whose
Euclidean normis 1, but not for X, whose
Euclidean norm is (1 + p?)"/> and not 1.
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» We compute the sub-Riemannian sphere
S and the wave front 7 (geodesics of SR

length 1) (it is a variant of Beals, Gaveau,
Greiner computations).

Sphere S(v,r)={w:dv,w)=r
(geodesics of length r that are global
minimizers)}.

Wave front W(v, r) = { w : 3 a geodesic
v:v — w of length r (not necessarily a
global minimizer)}.

Cut locus of v ={ w : w end point of a
geodesic v :v — w which is no longer
globally minimizing }.

Conjugate locus of v = caustic = X =
{ singular locus of the exponential #, }.

23



+ Geodesics are projections on V = R3 of
Hamiltonian trajectories of an
Hamiltonian A defined on the cotangent
bundle T *R3 .

* Itis a consequence of Pontryagin
maximum principle.

» Hamilton equations are

={+p .
=p(§+pn) =pi(s)ie p= 7%

= -1 (& +pn) = —ni(s)

+ The momenta & and n are constant
since H is independent of x and y.

e H corresponds to the kinetic energy
( &, n, m are the conjugate momenta of x,

»p)-
H(x,y,p; & 1, m) =
12[((&, 1, m)(X)))* + (&, N, M)(X,))*]
with X, = (1, p, 0) and X, = (0, 0, 1)

H(m:y:psgsnsﬁ) - % {('f -|-p77)2 +?T2:|

m

1

¥
lsin(e)
@

sin (6)

© + 2sin? () cos () sin (8) — cos () sin ()

4?2

24



(

T
Y1
01

» With Alessandro Sarti and Giovanna Citti,
we emphasized the fact that it is more
natural to work with the fibration

mw:V=R2xS! > R? endowed with the
contact form

@ =—sin(0)dx + cos(0)dy
which is cos(0)(dy — pdx)

¢ No privileged x-axis.

* V becomes the Euclidean group, which is
the semidirect product G =

E(2) = SO(2) x R?

To x1 + x2cos(01) — yasin(0r)
) . ( Yo ) = ( Y1 + 2 sin (61) + y2 cos (01)

62 91 —+ 92

» This group is not nilpotent and its tangent
cone is the polarized Heisenberg group.

|

» The contact planes are spanned by
= cos (#) O, + sin (0)
with Lie bracket
(X1, Xs2] =sin(0) 0, — cos (0) 0, = — X3

e (Tangent vectors are interpreted as
oriented derivatives.)

¢ This is a non-holonomic basis.

» By left invariance, the basis at 0

left translates into the non-holonomic
basis

{cos (0) 0, +sin (0) 9y = X1, —sin (0) Ou + cos (0) 9y = X3,0p = Xo},

and the covector at 0

left translates into the contact form w .
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* For the non nilpotent Euclidean group,
Andrei Agrachev and his group at the
SISSA (Yuri Sachkov, Ugo Boscain, Igor
Moiseev) solved the problem of SR
geodesics and Sachkov compared it with
Mumford’s elastica model.

» The Hamiltonian on 7*V for geodesics is

1, . . 1 . . .
H(p.q) = 5 (u} +u3) = 5 ((p cos (6) + py sin (6))° + 15

and corresponds to the X, , X, basis .

* For 6 small = p and momenta &, n, &, we
find again the polarized Heisenberg case :

H(m:y:psgsnsﬁ) - % {('f -|-p77)2 +?T2:|

» One works with the fibration V=1R? x S!
where the Legendrian lifts are solutions
of the control system :

& = wuy cos (f)
y = wuysin (0)
60 = uq

e Let
p= Pz, Dy, po) €T,V

be the momenta covectors.

» Hamilton equations are therefore :

=2 ~ = cos? (8) + p, cos (6) sin (6)
I — 1, sin? (8) + p. cos (A) sin (0)

2 €0s (6) + py sin (6)) (—pz sin (0) + py cos (0))
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e The system can be explicitely integrated
via elliptic functions.

¢ The sub-Riemannian geodesics are the
projections of the integral curves on V.

» For the Heisenberg group, R. Beals, B.
Gaveau, P. Greiner, D-Ch Chang,
constructed the heat kernel.

* The problem is rather difficult since there

are singularities (cut points) in every

neighborhood of each point (B. Gaveau,

IHP, 26-10-2005).

* Using this geometrical analysis of the

functional archictecture of V1, it is
interesting to study the diffusion (heat
kernel) and advection-diffusion (Fokker-
Planck) processes on this subriemannian
geometry of E(2).

One can use the non-commutative
Fourier transform defined on the dual of
the group G.

For the polarized Heisenberg group V
(1-jet space), the dual V* of Vs the set
of unitary irreducible representations
(unirreps) of V in the Hilbert space of
functions

{u(s)} = LA(R, ©).
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» We have seen that the unirreps of V are » Recently (2008), Andrei Agrachev, Ugo

infinite dimensional ones (Stone - Von Boscain, Jean-Paul Gauthier and
Neumann). Francesco Rossi have found the heat

kernel for G = SE(2) and other unimodular
mx (z,y,p) u(s) = A2y (s + p), with A # 0 groups.
» The hypo-elliptic Laplacian is the sum of

squares of the bracket generating Lie
subalgebra :

* For A =0 they degenerate into trivial
representations of dimension 1 :

multiplication b
> : Ax = X?+ X3
Ty (z,y,p) = gt (nz+vp)

The subriemannian diffusion on G is » Completion image : Jean-Paul Gauthier.
highly anisotropic since it is restricted to
an angular diffusion of 6 and a spatial
diffusion only along the X, direction.

It is a diffusion constrained by the "good
continuation" constraint.
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* The dual G* of G is the set of unitary
irreducible representations of G in the

Hilbert space {w(0)} = : W(0) o Nesn@esOy (94 o)

If the elements of G are

one associates an automorphism X*(g) of
the Hilbert space H-.

sin(a) cos(a) y

0 0 1

( cos(a) —sin(a) z ) + This means that to every element g of G
g =

then the unirreps are parametrized by a + Such an automorphism associates to
positive real A : each function y (0) in H another function
in .

There exists a measure on G*, the By definition,
Plancherel measure, given by dP(A) = Ad\,
which enables to make integrations.

To compute the Fourier transform of the
sub-Riemannian Laplacian we have to
look at the action of the differential of the

unirreps on the left-invariant vector fields X, = da> (X3)
X. — 1

These X are given by the left translation of )
vectors of the Lie algebra g of G. * Itis easy to apply these formulas.




,d) (9) — Biz\(ﬂ:sin(ﬂ)+ycos(0)),¢ (9+a)

X: = (1,0,0)
e® = (¢,0,0)
X)\ (etXl) 1’11 (9) _ ei)\tsin(ﬁ‘)ﬂi/] (9)
Xwe) = a0 X)E) = 5 X ()9 )
t=0
= 4L oy () — ixsin (0) v (9)
dt|,_,

* The GFT of the sub-Riemannian
Laplacian is therefore the Hilbert sum
(integral on A with the Plancherel measure

dP(\) = %d).) of the

with

which is the Mathieu equation.

W (9) s Béz\(ﬂ:sin(ﬂ}+ycos(6)),¢ (9+CE)

Xy = (07071)
e*2 = (0,0,1)
() 0) = b0+
G0) = d Y0 = 5 X ()0
_ _# )
= @l Yl

e The heat kernel is

P(g,t) = [.. Tr (efﬁ?\nﬂ (g)) dP()), 1> 0
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* For small angles we

find the equation

A* : " (5) — N2s2y (s)

which gives the Mehler kernel.

X1 = cos (0) 9, +sin (0) 4,
X, =0

X5 = —sin () 9; + cos (0) J,
[X1, Xs] = — X3

[XQ-’ X3] = X]_

[Xl, Xg} =0

E(2) with S'= &,

X, (6/(8)) — iAsin (9) 1 (0
X, (4 (0) = ¥ (0

A " (6) — A2sin® (9) 4 (0)
0 (0) + (s — N2 sin? (0) (6) = 0
sin® (0) — ¢

X? :6:5 +pay
X0 —a,

X0 =29,
[X?, X5] = — Xy
[X3, X5] =0
[X%Xél} =0

H(3) with S} =R

X7 (y(s)) = idsy (s)

X3 (y(s)) =19 (s)

AM 1y (s) — M5y (s)

Y () + (=2 sty (s)=0

2 —t

tl—t)y" () +2(1—20)y (¢)+ ' () + 3y () +
+ilp =Xy () =0

3 sing.: 0,1 regular, oo irregular

F ¥y =0
2 sing.: 0 regular, a2 = oo irregular

CONFLUENCE

» We can construct an interpolation
between the E(2) model and the H(3)
model.

* It corresponds to a confluence of
singularities between the two associated
equations.

» See e.g. Dominique Manchon.

X =cos(0)d; + isin (af) By

X§ =0

X§ = —asin (af) d; + cos () 9,

[XT, X§] = —X¢§

(X5, X5] = o® X7

(X7, X§]=0

Xe (¢ (0)) =iratsin(ab) ¢ (6)

X5 (4(6) =¥/ (6)

A* 1y (0) — 25 sin? (af) ¥ (0)

V" (8) + ( — % sin? (aa)) $(8) =0

sinz(zctﬁ') ot

t(l—at)y" (t)+ 3 (1—2a%) ¢/ (¢) +
+i(=X)y(t)=0

3 sing.: 0, o2 regular, cc irregular
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X, = cos(0)9; +sin (6) 2,
Xy =0y

X3 = —sin (#) 0 + cos (4) 8,

[X1, Xo] = - X3
[Xs, Xa] = X3
[X1, Xl =0

E(2) with 8" = ;&

X1 (¢ (6)) = iAsin (6) % (0)
X (¥ (6)) =¥ (6)

Ax g (9) — X2sin® (0) v (6)

sin® (6) — ¢
tl-ty" () +i0 -2y )+
+i- M)y =0

3 sing.: 0,1 regular, oo irregular

W (6) + (u— N)sin® (9) ¥ (0) = 0

Xf = cos (0) 8 + S sin (af) 9,
Xg =08

X§ = —asin(af) d, + cos (8) 9,
[X§, X5] = —Xg
[Xg, Xg] = a?Xe
[Xt,X51=0

E, (2) with 81 = .2

X7 (W (0) = ida"sin (o) ¥ (0)

X5 (@ (©0) =¢'(0)

Ar - (6) — L sin® () 1 (6)

0 (0) + (u— Fsin® (26)) ¥ (6) =0

sin?(ab)
st ot

XP =0, +pd,
X2=0,

X7 =9,

(X}, X3 = -X3

(X3, X5]1=0
[Xf,X5]=0

H(3) with S} =R
XP (y (8)) = idsy (s)
X (=) =v'(s)

Ar sy (s) - N2y (s)
Y (s) + (k= X s’y (s) =0

2 -t

t(l—a)y" () +5(1-22%)y () + ty" () + 30/ () +

3= Ny () =0

3 sing.: 0, a2 regular, oo irregular

+ile =)y () =0

2

2 sing.: 0 regular, @ * = oc irregular
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