# Conformal geodesics and geometry of the 3rd order ODEs systems 

Alexandr Medvedev

Masaryk University

Trest, 2012

## The problem

Characterize the geometry of the 3rd order ODEs system

$$
\begin{equation*}
y_{i}^{\prime \prime \prime}(x)=f_{i}\left(y_{j}^{\prime \prime}(x), y_{k}^{\prime}(x), y_{l}(x), x\right), \quad 1 \leq i, j, k, l \leq m . \tag{1}
\end{equation*}
$$

under point transformations. The number of equations will be at most 2.

## Historical remark

- Single ODE of 3rd order was studied by S. Chern
- System of 2nd order ODE was studied by M.Fels, D.Grossman

| Number | 2 | 3 |
| :---: | :---: | :---: |
| 1 | E.Cartan | S.Chern |
| $\geq 2$ | M.Fels, D.Grossman | ??? |

## ODE as a Surface in Jet Space

Consider $J^{3}(M)$ be a 3 order jet space of the curves on $M$. Let's use the following coordinates on the jet space $J^{3}(M)$ :

$$
x, y_{1}, \ldots, y_{m}, p_{1}=y_{1}^{\prime}, \ldots, p_{m}=y_{m}^{\prime}, q_{1}=y_{1}^{\prime \prime}, q_{m}=y_{m}^{\prime \prime}, y_{1}^{\prime \prime \prime}, \ldots, y_{m}^{\prime \prime \prime}
$$

We can represent equation as surface $\mathcal{E}$ in the $J^{3}(M)$. In coordinates we have the following equations that define $\mathcal{E}$ :

$$
\begin{equation*}
\mathcal{E}=\left\{y_{i}^{\prime \prime \prime}=f_{i}\left(q_{j}, p_{k}, y_{l}, x\right)\right\} . \tag{2}
\end{equation*}
$$

The lifts of the solutions of $\mathcal{E}$ are integral curves of 1-dimensional distribution $E=T \mathcal{E} \cap C\left(J^{3}(M)\right)$

$$
E=\left\langle\frac{\partial}{\partial x}+p_{i} \frac{\partial}{\partial y_{i}}+q_{i} \frac{\partial}{\partial p_{i}}+f^{i} \frac{\partial}{\partial q_{i}}\right\rangle
$$

## Filtered Manifolds

- We call a manifold $M$ a filtered manifold if it is supplied with a filtration $C^{-i}$ of the tangent bundle:

$$
\begin{equation*}
T M=C^{-k} \supset C^{-k+1} \supset \cdots \supset C^{-1} \supset C^{0}=0 \tag{3}
\end{equation*}
$$

where $\left[C^{-i}, C^{-1}\right] \subset C^{-i-1}$.

- With every filtered manifold we associate a filtration gr TM of the following form:

$$
\begin{equation*}
\operatorname{gr} T M=\bigoplus_{i=1}^{m} \mathrm{gr}_{-i} T M \tag{4}
\end{equation*}
$$

where $\mathrm{gr}_{-i} T M=C^{-i} / C^{-i+1}$.

- Space gr TM has a nilpotent Lie algebra structure.
- Let $\mathfrak{m}$ be a nilpotent Lie algebra. Filtered manifold has type $\mathfrak{m}$, if for every point $p$ Lie algebra $\operatorname{gr} T_{p} M$ is eqaual to $\mathfrak{m}$.


## Filtered Manifolds

Distribution $C^{-1}$ for the manifold $\mathcal{E}$ has two components:

- 1-dimensial distribution

$$
E=\left\langle\frac{\partial}{\partial x}+p_{i} \frac{\partial}{\partial y_{i}}+q_{i} \frac{\partial}{\partial p_{i}}+f^{i} \frac{\partial}{\partial q_{i}}\right\rangle ;
$$

- m-dimensional vertical distribution

$$
V=\left\langle\frac{\partial}{\partial q_{i}}\right\rangle
$$

A filtered manifold associated with system (1) is

$$
\begin{gathered}
C^{-1} \subset C^{-2} \subset C^{-3}=T \mathcal{E} \\
C^{-2}=C^{-1} \oplus\left\langle\frac{\partial}{\partial p_{i}}\right\rangle
\end{gathered}
$$

## Universal Prolongation

For every nilpotent Lie algebra $\mathfrak{m}$ there exists unique universal prolongation $\mathfrak{g}(\mathfrak{m})=\oplus_{i} \in \mathbb{Z} \mathfrak{g}_{i}$, that:

1. $\mathfrak{g}_{i}=\mathfrak{m}_{i}$, for all $i<0$
2. From $\left[X, \mathfrak{g}_{-1}\right]=0, X \in \mathfrak{g}_{i}, i \geq 0$ it is follows that $X=0$.

Universal prolongation $\mathfrak{g}(\mathfrak{m})$ for the equation (1) is called a symbol of the differential equation (1).
Fact (Tanaka,Marimoto)
For every filtered manifold we can build a normal Cartan connection of type $(\mathfrak{g}, \mathfrak{h})$, where $\mathfrak{h}=\oplus_{i} \geq 0 \mathfrak{g}_{i}$.

Fact (Tanaka,Marimoto)
All invariants of the filtered manifold arise from the curvature tensor of the normal Cartan connection. Fundamental system of invariants described by positive part of cohomology space $H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$.

## Symbol Lie algebra

Universal prolongation $\mathfrak{g}$ of Lie algebra $\mathfrak{m}$ :

$$
\mathfrak{g}=\left(\mathfrak{s l}_{2}(\mathbb{R}) \times \mathfrak{g l}_{m}(\mathbb{R})\right) \curlywedge\left(V_{2} \otimes \mathbb{R}^{m}\right)
$$

We fix the following basis in the Lie algebra $\mathfrak{s l}_{2}$

$$
x=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

We fix basis $e_{0}, e_{1}, e_{2}$ of module $V_{2}$ with relations $x e_{i}=e_{i-1}$.

$$
\begin{array}{lrl}
\mathfrak{g}_{1}=\langle y\rangle, & \mathfrak{g}_{0} & =\left\langle\mathfrak{g l}_{m}\right\rangle, \\
\mathfrak{g}_{-1}=\langle x\rangle+\left\langle e_{2} \otimes \mathbb{R}^{m}\right\rangle, & \mathfrak{g}_{-2} & =\left\langle e_{1} \otimes \mathbb{R}^{m}\right\rangle,
\end{array} \mathfrak{g}_{-3}=\left\langle e_{0} \otimes \mathbb{R}^{m}\right\rangle .
$$

"Parabolic" subalgebra:

$$
\mathfrak{h}=\mathfrak{g}_{1}+\mathfrak{g}_{0}
$$

## Cartan Connection

We call co-frame $\omega_{x}, \omega_{-1}^{i}, \omega_{-2}^{i}, \omega_{-3}^{i}$ associated with equation (1) if

$$
\begin{aligned}
& C^{-2}=<\omega_{-3}^{i}>^{t} \\
& C^{-1}=<\omega_{-3}^{i}, \omega_{-2}^{i}>^{t} \\
& E=<\omega_{-3}^{i}, \omega_{-2}^{i}, \omega_{-1}^{i}>^{t} \\
& V=<\omega_{-3}^{i}, \omega_{-2}^{i}, \omega_{x}^{i}>^{t}
\end{aligned}
$$

Let $\pi: P \rightarrow \mathcal{E}$ be principle $H$-bundle. We say that Cartan connection $\omega$
$\omega=\omega_{-3}^{i} v_{0} \otimes e_{i}+\omega_{-2}^{i} v_{1} \otimes e_{i}+\omega_{-1}^{i} v_{2} \otimes e_{i}+\omega^{x} x+\omega^{h} h+\omega_{j}^{i} e_{i}^{j}+\omega^{h} h$.
on a principal $H$-bundle is associated to equation (1), if for any local section $s$ of $\pi$ the set $\left\{s^{*} \omega_{x}, s^{*} \omega_{-1}^{i}, s^{*} \omega_{-2}^{i}, s^{*} \omega_{-3}^{i}\right\}$ is an adapted co-frame on $\mathcal{E}$.

## Normal Form

Let the curvature have a form
$\Omega=\Omega_{-3}^{i} v_{0} \otimes e_{i}+\Omega_{-2}^{i} v_{1} \otimes e_{i}+\Omega_{-2}^{i} v_{2} \otimes e_{i}+\Omega^{x} x+\Omega^{h} h+\Omega_{j}^{i} e_{i}^{j}+\Omega^{y} y$
Let's $\Omega_{k}^{j}\left[\omega_{1}, \omega_{2}\right]$ be the coefficients of the structure function of the curvature $\Omega$.

## Theorem

There exist the unique normal Cartan connection associated with equation (1) with the following conditions on curvature:

- all components of degree 0 and 1 is equal to 0 ;
- in degree 2 we have $\Omega_{h}\left[\omega_{x} \wedge \omega_{-1}^{i}\right]=0, \Omega_{j}^{i}\left[\omega_{x} \wedge \omega_{-1}^{i}\right]=0$, $\Omega_{x}\left[\omega_{x} \wedge \omega_{-2}^{i}\right]=0, \Omega_{-1}^{i}\left[\omega_{x} \wedge \omega_{-2}^{i}\right]=0$;
- in degree 3 we have $\Omega_{y}\left[\omega_{x} \wedge \omega_{-1}^{i}\right]=0, \Omega_{h}\left[\omega_{x} \wedge \omega_{-2}^{i}\right]=0$, $\Omega_{j}^{i}\left[\omega_{x} \wedge \omega_{-2}^{i}\right]=0$
- in degree 4 it is $\Omega_{y}\left[\omega_{x} \wedge \omega_{-2}^{i}\right]=0$


## Serre spectral sequence

We use Serre spectral sequence to compute cohomology space.
Theorem
The space of cohomology classes $H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ is direct sum of two spaces $E_{2}^{1,1}$ and $E_{2}^{0,2}$, where $E_{2}^{1,1}$ and $E_{2}^{0,2}$ has the following form

$$
\begin{align*}
& E_{2}^{1,1}=H^{1}\left(\mathbb{R} x, H^{1}(V, \mathfrak{g})\right),  \tag{5}\\
& E_{2}^{0,2}=H^{0}\left(\mathbb{R} x, H^{2}(V, \mathfrak{g})\right) . \tag{6}
\end{align*}
$$

## Description of $E_{2}^{1,1}$ and $E_{2}^{0,2 \text { ، }}$

Let $V_{m}$ be irreducible $\mathfrak{s l}_{2}$-module and $v_{0}$ and $v_{m}$ such, that $x \cdot v_{0}=0$ and $y \cdot v_{m}=0$. Then

$$
\begin{aligned}
& H^{0}\left(\mathbb{R} x, V_{m}\right)=\mathbb{R} v_{0} \\
& H^{1}\left(\mathbb{R} x, V_{m}\right)=\mathbb{R} x^{*} \otimes v_{m} .
\end{aligned}
$$

## Structure of the space $E_{2}^{1,1}$

Theorem
The space $E_{2}^{1,1}$ has the following form

$$
\begin{equation*}
x^{*} \otimes\left(\mathbb{R} y^{2} \otimes \mathfrak{g l}(W)+\mathbb{R} y \otimes \mathfrak{s l}(W)\right) \tag{7}
\end{equation*}
$$

Elements $\varphi \in E_{2}^{1,1}$ which have form $\varphi: \mathbb{R} x \rightarrow \mathbb{R} y \otimes \mathfrak{s l}(W)$ have degree 2 and elements which have form $\varphi: \mathbb{R} x \rightarrow \mathbb{R} y^{2} \otimes \mathfrak{g l}(W)$ have degree 3

- The space $E_{2}^{1,1}$ describes so called Wilczynski invariants.
- The space $E_{2}^{1,1}$ corresponds to torsion.


## Structure of the space $E_{2}^{0,2}$

## Theorem

The space $E_{2}^{0,2}$ has the following parts in direct sum decomposition:

| Space | Degree |
| :---: | :---: |
| $V_{6} \otimes \wedge^{2}\left(W^{*}\right) \otimes W$ | -1 |
| $V_{4} \otimes S_{0}^{2}\left(W^{*}\right) \otimes W$ | 0 |
| $V_{4} \otimes \wedge^{2}\left(W^{*}\right) \otimes W$ | 0 |
| $V_{2} \otimes \wedge_{0}^{2} W^{*} \otimes W$ | 1 |
| $V_{0} \otimes S_{0}^{2}\left(W^{*}\right) \otimes W$ | 2 |
| $V_{0} \otimes S^{2}\left(W^{*}\right)$ | 4 |
| $V_{2}, m=2$ | 3 |

where $V_{m}$ is dimension $m+1 \mathfrak{s l}_{2}$-module and $S_{0}^{2}\left(W^{*}\right) \otimes W$ and $\wedge_{0}^{2}\left(W^{*}\right) \otimes W$ is traceless part of corresponding spaces

## Explicit formula

We have the following correspondence between cohomological classes $H^{2}\left(\wedge^{2} \mathfrak{g}_{-}, \mathfrak{g}\right)$ and fundamental invariants:

| Degree | Space | Invariant |
| :---: | :---: | :---: |
|  |  |  |
| 1 | $v_{2}^{0} \otimes \wedge^{2} W^{*} \otimes W / V_{2} \otimes W^{*}$ | $\equiv 0$ |
| 2 | $x^{*} \otimes \mathbb{R} y \otimes \mathfrak{s l}(W)$ | $W_{2}$ |
| 2 | $v_{0}^{0} \otimes S^{2}\left(W^{*}\right) \otimes W$ | $I_{2}$ |
| 3 | $x^{*} \otimes \mathbb{R} y^{2} \otimes \mathfrak{g l}(W)$ | $W_{3}$ |
| 4 | $v_{0}^{0} \otimes S^{2}\left(W^{*}\right)$ | $I_{4}$ |
| 3 | $v_{2}^{0}$ if $m=2$ | $\equiv 0$ |

## Explicit formula

Theorem
There are 4 fundamental invariants:

$$
\begin{gathered}
\qquad W_{2}=\operatorname{tr}_{0}\left(\frac{\partial f^{i}}{\partial p^{j}}-\frac{\mathrm{d}}{\mathrm{dx}} \frac{\partial f^{i}}{\partial q^{j}}+\frac{1}{3} \frac{\partial f^{i}}{\partial q^{k}} \frac{\partial f^{k}}{\partial q^{j}}\right) \\
I_{2}=\operatorname{tro}\left(\frac{\partial^{2} f^{i}}{\partial q^{j} \partial q^{k}}\right) \\
W_{3}=\frac{\partial f^{i}}{\partial y^{j}}-\frac{1}{3} \frac{\mathrm{~d}^{2}}{\mathrm{dx}} \mathrm{x}^{2} \frac{\partial f^{i}}{\partial q^{j}}-\frac{1}{27}\left(\frac{\partial f^{i}}{\partial q^{k}}\right)^{3}+\frac{2}{9} \frac{\partial f^{i}}{\partial q^{k}} \frac{\mathrm{~d}}{\mathrm{dx}} \frac{\partial f^{k}}{\partial q^{j}}+\frac{1}{9} \frac{\mathrm{~d}}{\mathrm{dx}} \frac{\partial f^{i}}{\partial q^{k}} \frac{\partial f^{k}}{\partial q^{j}} \\
I_{4}=\frac{\partial}{\partial q_{k}} \frac{\mathrm{~d}}{\mathrm{dx}} H_{j}+\frac{\partial}{\partial q^{k}}\left(H_{l} \frac{\partial f^{k}}{\partial q^{\prime}}\right)+\frac{\partial H_{k}}{\partial p_{j}} \\
\text { where } H_{j}=\operatorname{tr}\left(\frac{\partial^{2} f^{i}}{\partial q^{j} \partial q^{k}}\right)
\end{gathered}
$$

## Conformal geodesics

An arbitrary conformal geometry is defined by equivalence class of Riemannian metrics.

Definition
Conformal geodesic on a conformal manifold $M$ is a curve on $M$, which development in the flat space is a circle.

Example

$$
\dddot{y}_{i}=3 \ddot{y}_{i} \frac{\sum_{j=1}^{m} \dot{y}_{j} \ddot{y}_{j}}{1+\sum_{j=1}^{m} \dot{y}_{j}^{2}}, i=1, \ldots, m
$$

Theorem (Yano)
In order that an infinitesimal transformation of the manifold $M$ carry every conformal geodesic into conformal geodesic, it is necessary and sufficient that the transformation be a conformal motion.

## Correspondence Space Construction

## Penrose transform

Consider a semisimple Lie group $G$ with two parabolic subgroups $P_{1}$ and $P_{2}$. Assume, that $P_{1} \cap P_{2}$ is also parabolic.
Then a natural double fibration from $G / P_{1} \cap P_{2}$ to $G / P_{1}$ and $G / P_{2}$ defines a correspondence between $G / P_{1}$ and $G / P_{2}$.

## Correspondence space

let $G$ be a semisimple Lie group with two parabolic subgroups $Q \subset P \subset G$. Consider a parabolic Cartan geometry $(\mathcal{G} \rightarrow N, \omega)$ of type $(G, P)$, where $\mathcal{G}$ is principal $P$-bundle.

## Definition

The correspondence space of a parabolic geometry $(\mathcal{G} \rightarrow N, \omega)$ is the orbit space $\mathcal{C N}=\mathcal{G} / Q$.
Cartan geometry $(\mathcal{G} \rightarrow \mathcal{C} N, \omega)$ of the type $(G, Q)$ is naturally defined on the correspondence space $\mathcal{C N}$.

## Correspondence Space Construction

Consider a flat conformal geometry of the dimension $m+1$. Define a quadratic form $q_{L}(x)$ on Lorenzian space $L=R^{m+3}$ by the formula

$$
\begin{equation*}
q_{L}(x)=-2 x_{0} x_{m+2}+x_{1}^{2}+\ldots x_{m+1}^{2} . \tag{8}
\end{equation*}
$$

The vector $V$ is called light-like if $q_{L}(V)=0$. The space $M$ of light-like points in PL is called Mobius space. This space is homogenious:

$$
\begin{equation*}
M=S O_{m+2,1} / P \tag{9}
\end{equation*}
$$

where $P$ is a stabilizer of a light-like vector in PL. Lie algebras $\mathfrak{s o}_{m+2,1}$ and $\mathfrak{p}$ of groups $S O_{m+2,1}$ and $P$ respectively have the following forms:

$$
\mathfrak{g}=\left(\begin{array}{ccc}
z & q & 0  \tag{10}\\
p & r & q^{t} \\
0 & p^{t} & -z
\end{array}\right) ; \quad \mathfrak{p}=\left(\begin{array}{ccc}
z & q & 0 \\
0 & r & q^{t} \\
0 & 0 & -z
\end{array}\right)
$$

## Correspondence Space Construction

We use the following notations:

$$
\mathfrak{g}=\left(\begin{array}{rrrr}
\tilde{h} & \tilde{y} & q & 0  \tag{11}\\
\tilde{x} & 0 & -s^{t} & \tilde{y} \\
p & s & r & q^{t} \\
0 & \tilde{x} & p^{t} & -\tilde{h}
\end{array}\right) ; \quad \mathfrak{p}=\left(\begin{array}{rrrr}
\tilde{h} & \tilde{y} & q & 0 \\
0 & 0 & -s^{t} & \tilde{y} \\
0 & s & r & q^{t} \\
0 & 0 & 0 & -\tilde{h}
\end{array}\right)
$$

Consider conformal Cartan connection $\omega$ on a principal $P$-bundle $\pi: \mathcal{P} \rightarrow M$.
We define new bundle $\tilde{\pi}: \mathcal{P} \rightarrow \tilde{M}$ with the same total space $\mathcal{P}$ and new base $\tilde{M}=\mathcal{P} \times P_{P_{2}} P_{2}$, where $P_{2}$ is the Lie group with Lie algebra $\mathfrak{p}_{2}$

$$
\mathfrak{p}_{2}=\left(\begin{array}{rrrr}
\tilde{h} & \tilde{y} & 0 & 0 \\
0 & 0 & 0 & \tilde{y} \\
0 & 0 & r & 0 \\
0 & 0 & 0 & -\tilde{h}
\end{array}\right)
$$

## Extension Functor

Let $(\mathfrak{g}, \mathfrak{h})$ be a Cartan geometry type of 3rd order ODEs system. Define a map $\alpha: \mathfrak{s o}_{m+2,1} \rightarrow \mathfrak{g}$ which sends $\mathfrak{p}_{2}$ to the $\mathfrak{h}$ with property:

$$
\alpha\left(\left[g_{1}, p_{1}\right]\right)=\left[\alpha\left(g_{1}\right), \alpha\left(p_{1}\right)\right], \quad g_{1} \in \mathfrak{s o}_{m+2,1}, p_{1} \in \mathfrak{p}_{2}
$$

Explicitly it has the form:

$$
\begin{align*}
\alpha\left(\left(\begin{array}{rrrr}
\tilde{h} & \tilde{y} & q & 0 \\
\tilde{x} & 0 & -s^{t} & \tilde{y} \\
p & s & r & q^{t} \\
0 & \tilde{x} & p^{t} & -\tilde{h}
\end{array}\right)\right)= & \left(\begin{array}{rr}
-\frac{1}{2} \tilde{h} & \tilde{x} \\
\frac{1}{2} \tilde{y} & \frac{1}{2} \tilde{h}
\end{array}\right)+(r)+ \\
& \left(v_{0} \otimes p-v_{1} \otimes s+v_{2} \otimes q\right), \tag{12}
\end{align*}
$$

where $r \in \mathfrak{g l}_{m}$ and $v_{0} \otimes p, v_{1} \otimes s, v_{2} \otimes q$ is elements of $V_{2} \otimes W$.

## Extension Functor

- Starting with the principal $P_{2}$-bundle $\mathcal{P}$ define new principal H-bundle $\tilde{\mathcal{P}}$ by the formula:

$$
\begin{equation*}
\tilde{\mathcal{P}}=\mathcal{P} \times{ }_{P_{2}} H, \tag{13}
\end{equation*}
$$

where inclusion of group $P_{2}$ to $H$ is defined by $\alpha$.

- We define Cartan connection $\tilde{\omega}: \tilde{P} \rightarrow \tilde{\mathfrak{g}}$ as H-eqivariant prolongation of $\tilde{\omega}=\alpha(\omega)$.
- The curvature of the Cartan connection $\tilde{\omega}$ is

$$
\begin{equation*}
\tilde{\Omega}=\Omega+R \tag{14}
\end{equation*}
$$

where $R(x, y)=\alpha([x, y])-[\alpha(x), \alpha(y)]$.

## Conditions on conformal equations

The following commutative diagram describes a geometric picture we have:


Theorem
Map defined above sends conformal geodesics of the manifold $M$ to the solution of the associated equation of the manifold $\tilde{M}$.

Theorem
Map defined above sends normal Cartan conformal connection to the characteristic connection of the 3rd order ODEs system.

## Corollary

Every conformal geometry is locally defined by conformal geodesics.

## Conditions on conformal equations

Theorem
On the inclusion defined above a second order Wilczynski invariant is expresed in terms of the Weil tensor; a third order Wilczynski invariant is expresed in terms of the Cotton-York tensor.

## Proposition

The invariant $I_{2}$ is equal to zero for conformal equations. Invariant $I_{4}$ must be non-degenerate function from $\operatorname{Hom}\left(\tilde{\mathcal{P}}, S^{2}\left(R^{m *}\right)\right)$

## Proposition

The tensor $R_{\alpha}$ goes exactly to the $I_{4}$ invariant. Moreover, tensor $R_{\alpha}$ corresponds to the identity form $E \in S^{2}\left(R^{m *}\right)$.

## The first reduction

- Let $\tilde{\mathcal{P}}_{1}$ be subbundle of the bundle $\tilde{\mathcal{P}}$ on which $I_{4}$ equals to $E$.
- Let $\tilde{\omega}_{1}$ be the induced Cartan connection on $\tilde{\mathcal{P}}_{1}$.
- The connection $\tilde{\omega}_{1}$ must take values in the $\mathfrak{s o}_{m+2,1} \subset \tilde{\mathfrak{g}}$ in order to determine conformal geometry.

Algebra $\mathfrak{g}$ splits as $\mathfrak{h}$-module:

$$
\mathfrak{g l}_{m} \oplus \mathfrak{s l}_{2} \oplus V_{2} \otimes W
$$

This induces the split of the universal derivative

$$
D=D_{\mathfrak{g l}_{m}}+D_{\mathfrak{s l}_{2}}+D_{V_{2} \otimes W}
$$

Theorem
The connection $\tilde{\omega}_{1}$ determines the connection on $T \tilde{\mathcal{P}}_{1}$ with values in $\mathfrak{s o}_{m+2,1}$ iff $D_{\mathfrak{s l}_{2}}\left(I_{4}\right)=0$ and $D_{V_{2} \otimes W}\left(I_{4}\right)=0$.

## The second reduction

- The bundle $\tilde{\mathcal{P}}_{1}$ is the bundle over $\tilde{M}$.
- We want to determine when it can be seen as bundle over $M$

Let $X_{i}$ be the vector fields which represent $\mathfrak{h} / \mathfrak{p}_{2}$.
Connection $\tilde{\omega}_{1}$ is a connection on the bundle $\mathcal{P} \rightarrow M$ iff

$$
i_{X_{i}} \tilde{\Omega}_{1}=0
$$

Theorem
The 3rd order ODEs system determines conformal geodesics of some conformal geometry iff the following conditions are satisfied:

1. Invariant $I_{2}$ equal to zero;
2. Invariant $I_{4}$ has the maximal rank and $D_{\mathfrak{s l}_{2}}\left(I_{4}\right)=0$, $D_{V_{2} \otimes W}\left(I_{4}\right)=0$;
3. $i_{e_{1} \otimes W} \tilde{\Omega}=0$ and $i_{e_{2} \otimes W} \tilde{\Omega}=0$.
