Approximations and Locally Free Modules

AMeGA & ECI Workshop

Třešť, October 19, 2012

Jan Trlifaj (MFF UK Praha)

通 ト イヨ ト イヨト

3

イロン イ理 とくほと くほとう

• Part I: Decomposable classes, or the classic jewels

Some classic examples.

< 回 > < 回 > < 回 >

Part I: Decomposable classes, or the classic jewels Some classic examples.

• Part II: Deconstructible classes, or the ubiquitous mainstream

- Filtrations and transfinite extensions.
- 2 Deconstructibility and approximations.

• • = • • = •

- Part I: Decomposable classes, or the classic jewels
 Some classic examples.
- Part II: Deconstructible classes, or the ubiquitous mainstream
 - Filtrations and transfinite extensions.
 - 2 Deconstructibility and approximations.
- Part III: Non-deconstructibility, or reaching the limits
 - The basic example: Mittag-Leffler modules.
 - Trees and locally free modules.
 - Son-deconstructibility via infinite dimensional tilting theory.

通 ト イヨ ト イヨト

Part I: Decomposable classes

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Part I: Decomposable classes

(cutting modules into small blocks)

< 回 > < 回 > < 回 >

A class of modules C is decomposable, provided there is a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

< 回 > < 回 > < 回 >

A class of modules C is decomposable, provided there is a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Some classic examples

A class of modules C is decomposable, provided there is a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Some classic examples

[Gruson-Jensen'73], [Huisgen-Zimmermann'79] **Mod**-*R* is decomposable, iff *R* is right pure-semisimple. Uniformly: $\kappa = \aleph_0$ sufficient for all such *R*; uniqueness by Krull-Schmidt-Azumaya.

A class of modules C is decomposable, provided there is a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Some classic examples

[Gruson-Jensen'73], [Huisgen-Zimmermann'79] **Mod**-*R* is decomposable, iff *R* is right pure-semisimple. Uniformly: $\kappa = \aleph_0$ sufficient for all such *R*; uniqueness by Krull-Schmidt-Azumaya.

[Kaplansky'58] **The class** \mathcal{P}_0 is decomposable. Uniformly: $\kappa = \aleph_1$ sufficient for all R, but no uniqueness in general. E.g., $I \oplus I^{-1} \cong R^{(2)}$ for each non-principal ideal I of a Dedekind domain R.

A class of modules C is decomposable, provided there is a cardinal κ such that each module in C is a direct sum of $< \kappa$ -generated modules from C.

Some classic examples

[Gruson-Jensen'73], [Huisgen-Zimmermann'79] **Mod**-R is decomposable, iff R is right pure-semisimple. Uniformly: $\kappa = \aleph_0$ sufficient for all such R; uniqueness by Krull-Schmidt-Azumaya.

[Kaplansky'58] The class \mathcal{P}_0 is decomposable. Uniformly: $\kappa = \aleph_1$ sufficient for all R, but no uniqueness in general. E.g., $I \oplus I^{-1} \cong R^{(2)}$ for each non-principal ideal I of a Dedekind domain R.

[Faith-Walker'67] The class \mathcal{I}_0 of all injective modules is decomposable, iff R is right noetherian.

Here, κ depends R; uniqueness by Krull-Schmidt-Azumaya.

(AMeGA & ECI Workshop 2012)

Part II: Deconstructible classes

3

ヘロト 人間 とくほ とくほ とう

Part II: Deconstructible classes

(blocks put on top of other blocks)

伺い イヨト イヨト

Let $C \subseteq \text{Mod-}R$. A module M is C-filtered (or a transfinite extension of the modules in C), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{lpha} = igcup_{eta < lpha} M_{eta}$ for each limit ordinal $lpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C.

▲圖▶ ▲屋▶ ▲屋▶

Let $C \subseteq \text{Mod-}R$. A module M is C-filtered (or a transfinite extension of the modules in C), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C.

Notation: $M \in Filt(\mathcal{C})$. A class \mathcal{A} is closed under transfinite extensions, if $Filt(\mathcal{A}) \subseteq \mathcal{A}$.

- 本間下 소문下 소문下 - 문

Let $C \subseteq \text{Mod-}R$. A module M is C-filtered (or a transfinite extension of the modules in C), provided that there exists an increasing sequence $(M_{\alpha} \mid \alpha \leq \sigma)$ consisting of submodules of M such that $M_0 = 0$, $M_{\sigma} = M$,

- $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for each limit ordinal $\alpha \leq \sigma$, and
- for each $\alpha < \sigma$, $M_{\alpha+1}/M_{\alpha}$ is isomorphic to an element of C.

Notation: $M \in Filt(\mathcal{C})$. A class \mathcal{A} is closed under transfinite extensions, if $Filt(\mathcal{A}) \subseteq \mathcal{A}$.

Eklof Lemma

The class ${}^{\perp}\mathcal{C} := \operatorname{KerExt}^{1}_{R}(-,\mathcal{C})$ is closed under transfinite extensions for each class of modules \mathcal{C} .

In particular, so are the classes \mathcal{P}_n and \mathcal{F}_n of all modules of projective and flat dimension $\leq n$, for each $n < \omega$.

通 ト イヨ ト イヨト

Definition (Eklof'06)

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} \subseteq \operatorname{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

Definition (Eklof'06)

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} \subseteq \operatorname{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

All decomposable classes are deconstructible (but not vice versa).

Definition (Eklof'06)

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} \subseteq \operatorname{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

All decomposable classes are deconstructible (but not vice versa).

[Enochs et al.'01]

For each $n < \omega$, the classes \mathcal{P}_n and \mathcal{F}_n are deconstructible.

Definition (Eklof'06)

A class of modules \mathcal{A} is deconstructible, provided there is a cardinal κ such that $\mathcal{A} \subseteq \operatorname{Filt}(\mathcal{A}^{<\kappa})$, where $\mathcal{A}^{<\kappa}$ denotes the class of all $< \kappa$ -presented modules from \mathcal{A} .

All decomposable classes are deconstructible (but not vice versa).

[Enochs et al.'01]

For each $n < \omega$, the classes \mathcal{P}_n and \mathcal{F}_n are deconstructible.

[Eklof-T.'01], [Šťovíček-T.'09]

For each set of modules S, the class $^{\perp}(S^{\perp})$ is deconstructible. Here, $S^{\perp} := \text{KerExt}^{1}_{R}(S, -)$.

Approximations of modules

(AMeGA & ECI Workshop 2012) Approximations and locally free modules

э

ヘロト 人間 ト 人 ヨト 人 ヨトー

Approximations of modules

A class of modules \mathcal{A} is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in \mathcal{A}$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in \mathcal{A}$ has a factorization through f:

The map f is called an \mathcal{A} -precover of M.

Approximations of modules

A class of modules \mathcal{A} is precovering if for each module M there is $f \in \operatorname{Hom}_R(A, M)$ with $A \in \mathcal{A}$ such that each $f' \in \operatorname{Hom}_R(A', M)$ with $A' \in \mathcal{A}$ has a factorization through f:

The map f is called an \mathcal{A} -precover of M.

[Saorín-Šťovíček'11], [Enochs'12]

All deconstructible classes closed under transfinite extensions are precovering.

In particular, so are the classes $^{\perp}(S^{\perp})$ for all sets of modules S.

Some questions

э

<ロ> (日) (日) (日) (日) (日)

Some questions

1. Is each class of modules closed under transfinite extensions deconstructible/precovering?

· · · · · · · · ·

Some questions

1. Is each class of modules closed under transfinite extensions deconstructible/precovering?

2. What about the classes of the form ${}^{\perp}C$?

通 ト イヨ ト イヨト

Part III: Non-deconstructible classes

э

ヘロト 人間 ト 人 ヨト 人 ヨトー

Part III: Non-deconstructible classes

(no block pattern at all)

< 回 > < 回 > < 回 >

(AMeGA & ECI Workshop 2012) Approximations and locally free module

3

イロン イヨン イヨン イヨン

[Eklof-Shelah'03]

It is independent of ZFC whether the class of all Whitehead groups (= $^{\perp}\{\mathbb{Z}\}$) is precovering (or deconstructible).

[Eklof-Shelah'03]

It is independent of ZFC whether the class of all Whitehead groups (= $^{\perp}\{\mathbb{Z}\}$) is precovering (or deconstructible).

A result in ZFC

(AMeGA & ECI Workshop 2012)

<ロ> (日) (日) (日) (日) (日)

[Eklof-Shelah'03]

It is independent of ZFC whether the class of all Whitehead groups (= $^{\perp}\{\mathbb{Z}\}$) is precovering (or deconstructible).

A result in ZFC

A module M is flat Mittag-Leffler provided the functor $M \otimes_R -$ is exact, and for each system of left R-modules $(N_i | i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

イロト イポト イヨト イヨト

[Eklof-Shelah'03]

It is independent of ZFC whether the class of all Whitehead groups (= $^{\perp}\{\mathbb{Z}\}$) is precovering (or deconstructible).

A result in ZFC

A module M is flat Mittag-Leffler provided the functor $M \otimes_R -$ is exact, and for each system of left R-modules $(N_i | i \in I)$, the canonical map $M \otimes_R \prod_{i \in I} N_i \to \prod_{i \in I} M \otimes_R N_i$ is monic.

Assume that R is not right perfect.

- [Herbera-T.'12] The class \mathcal{FM} of all flat Mittag-Leffler modules is closed under transfinite extensions, but it is not deconstructible.
- [Šaroch-T.'12], [Bazzoni-Šťovíček'12] If R is countable, then *FM* is not precovering.

<ロ> (日) (日) (日) (日) (日)

Further questions

(AMeGA & ECI Workshop 2012) Approximations and locally free modules

3

<ロ> (日) (日) (日) (日) (日)
Further questions

3. Is non-deconstructibility a more general phenomenon?

Further questions

3. Is non-deconstructibility a more general phenomenon?

Still open

4. Is there a ring R such that the class $^{\perp}C$ is not deconstructible/precovering in ZFC?

(AMeGA & ECI Workshop 2012) Approximations and locally free modules

3

<ロ> (日) (日) (日) (日) (日)

Let R be a ring, and \mathcal{F} a class of countably presented modules.

・ 同下 ・ ヨト ・ ヨト

Let R be a ring, and \mathcal{F} a class of countably presented modules.

Definition

A module M is locally \mathcal{F} -free, if M possesses a subset \mathcal{S} consisting of countably \mathcal{F} -filtered modules, such that

- each countable subset of M is contained in an element of S,
- $\bullet~0\in \mathcal{S},$ and \mathcal{S} is closed under unions of countable chains.

Let R be a ring, and \mathcal{F} a class of countably presented modules.

Definition

A module *M* is locally \mathcal{F} -free, if *M* possesses a subset \mathcal{S} consisting of countably \mathcal{F} -filtered modules, such that

- each countable subset of M is contained in an element of S,
- $\bullet~0\in \mathcal{S},$ and \mathcal{S} is closed under unions of countable chains.

Let \mathcal{L} denote the class of all locally \mathcal{F} -free modules.

Let R be a ring, and \mathcal{F} a class of countably presented modules.

Definition

A module M is locally \mathcal{F} -free, if M possesses a subset \mathcal{S} consisting of countably \mathcal{F} -filtered modules, such that

- each countable subset of M is contained in an element of S,
- $\bullet~0\in \mathcal{S},$ and \mathcal{S} is closed under unions of countable chains.

Let \mathcal{L} denote the class of all locally \mathcal{F} -free modules.

Note: If M is countably generated, then M is locally \mathcal{F} -free, iff M is countably \mathcal{F} -filtered.

< 回 > < 回 > < 回 >

Flat Mittag-Leffler modules are locally \mathcal{F} -free

(人間) トイヨト イヨト

Flat Mittag-Leffler modules are locally $\mathcal{F}\text{-}\mathsf{free}$

Theorem (Herbera-T.'12)

Let $\mathcal{F} =$ be the class of all countably presented projective modules. Then the notions of a locally \mathcal{F} -free module and a flat Mittag-Leffler module coincide for any ring R.

Flat Mittag-Leffler modules are locally $\mathcal{F}\text{-}\mathsf{free}$

Theorem (Herbera-T.'12)

Let $\mathcal{F} =$ be the class of all countably presented projective modules. Then the notions of a locally \mathcal{F} -free module and a flat Mittag-Leffler module coincide for any ring R.

For instance, if $R = \mathbb{Z}$, then an abelian group A is flat Mittag-Leffler, iff all countable subgroups of A are free.

In particular, the Baer-Specker group \mathbb{Z}^κ is flat Mittag-Leffler for each $\kappa,$ but not free.

- 4 週 ト - 4 三 ト - 4 三 ト

3

- 4 同 6 4 日 6 4 日 6

Let κ be an infinite cardinal, and T_{κ} be the set of all finite sequences of ordinals $< \kappa$, so

$$T_{\kappa} = \{ \tau : \mathbf{n} \to \kappa \mid \mathbf{n} < \omega \}.$$

Let κ be an infinite cardinal, and T_{κ} be the set of all finite sequences of ordinals $< \kappa$, so

$$T_{\kappa} = \{\tau : \mathbf{n} \to \kappa \mid \mathbf{n} < \omega\}.$$

Partially ordered by inclusion, T_{κ} is a tree, called the tree on κ .

Let κ be an infinite cardinal, and T_{κ} be the set of all finite sequences of ordinals $< \kappa$, so

$$T_{\kappa} = \{\tau : \mathbf{n} \to \kappa \mid \mathbf{n} < \omega\}.$$

Partially ordered by inclusion, T_{κ} is a tree, called the tree on κ .

Let $Br(T_{\kappa})$ denote the set of all branches of T_{κ} . Each $\nu \in Br(T_{\kappa})$ can be identified with an ω -sequence of ordinals $< \kappa$:

$$\mathsf{Br}(T_{\kappa}) = \{\nu : \omega \to \kappa\}.$$

Let κ be an infinite cardinal, and T_{κ} be the set of all finite sequences of ordinals $< \kappa$, so

$$T_{\kappa} = \{\tau : \mathbf{n} \to \kappa \mid \mathbf{n} < \omega\}.$$

Partially ordered by inclusion, T_{κ} is a tree, called the tree on κ .

Let $Br(T_{\kappa})$ denote the set of all branches of T_{κ} . Each $\nu \in Br(T_{\kappa})$ can be identified with an ω -sequence of ordinals $< \kappa$:

$$\mathsf{Br}(T_{\kappa}) = \{\nu : \omega \to \kappa\}.$$

card $T_{\kappa} = \kappa$ and card $Br(T_{\kappa}) = \kappa^{\omega}$.

Notation: $\ell(\tau)$ denotes the length of τ for each $\tau \in T_{\kappa}$.

(人間) トイヨト イヨト

(AMeGA & ECI Workshop 2012) Approximations and locally free modules

3

<ロ> (日) (日) (日) (日) (日)

Let R be a ring, and \mathcal{F} be a class of countably presented modules.

Let R be a ring, and \mathcal{F} be a class of countably presented modules.

 $\underbrace{\lim}_{\omega} \mathcal{F} \text{ denotes the class of all Bass modules, i.e., the modules } N \text{ that are countable direct limits of the modules from } \mathcal{F}. W.I.o.g., N \text{ is the direct limit of a chain}$

$$F_0 \stackrel{g_0}{\rightarrow} F_1 \stackrel{g_1}{\rightarrow} \dots \stackrel{g_{i-1}}{\rightarrow} F_i \stackrel{g_i}{\rightarrow} F_{i+1} \stackrel{g_{i+1}}{\rightarrow} \dots$$

with $F_i \in \mathcal{F}$ and $g_i \in \operatorname{Hom}_R(F_i, F_{i+1})$ for all $i < \omega$.

Let R be a ring, and \mathcal{F} be a class of countably presented modules.

 $\underbrace{\lim}_{\omega} \mathcal{F} \text{ denotes the class of all Bass modules, i.e., the modules } N \text{ that are countable direct limits of the modules from } \mathcal{F}. W.I.o.g., N \text{ is the direct limit of a chain}$

$$F_0 \stackrel{g_0}{\rightarrow} F_1 \stackrel{g_1}{\rightarrow} \dots \stackrel{g_{i-1}}{\rightarrow} F_i \stackrel{g_i}{\rightarrow} F_{i+1} \stackrel{g_{i+1}}{\rightarrow} \dots$$

with $F_i \in \mathcal{F}$ and $g_i \in \operatorname{Hom}_R(F_i, F_{i+1})$ for all $i < \omega$.

Example

Let ${\mathcal F}$ be the class of all countably generated projective modules. Then the Bass modules coincide with the countably presented flat modules.

(本語)と (本語)と (本語)と

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $D := \bigoplus_{\tau \in T_{\kappa}} F_{\ell(\tau)}$, and $P := \prod_{\tau \in T_{\kappa}} F_{\ell(\tau)}$.

(1日) (1日) (1日)

Let
$$D := \bigoplus_{\tau \in T_{\kappa}} F_{\ell(\tau)}$$
, and $P := \prod_{\tau \in T_{\kappa}} F_{\ell(\tau)}$.

For $\nu \in Br(T_{\kappa})$, $i < \omega$, and $x \in F_i$, we define $x_{\nu i} \in P$ by

$$\pi_{\nu\restriction i}(x_{\nu i})=x,$$

$$\pi_{
u \mid j}(x_{
u i}) = g_{j-1} \dots g_i(x)$$
 for each $i < j < \omega$,
 $\pi_{\tau}(x_{
u i}) = 0$ otherwise,

where $\pi_{\tau} \in \operatorname{Hom}_{R}(P, F_{\ell(\tau)})$ denotes the τ th projection for each $\tau \in T_{\kappa}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let
$$D := \bigoplus_{\tau \in T_{\kappa}} F_{\ell(\tau)}$$
, and $P := \prod_{\tau \in T_{\kappa}} F_{\ell(\tau)}$.

For $\nu \in Br(T_{\kappa})$, $i < \omega$, and $x \in F_i$, we define $x_{\nu i} \in P$ by

$$\pi_{\nu\restriction i}(x_{\nu i})=x,$$

$$\pi_{
u \mid j}(x_{
u i}) = g_{j-1} \dots g_i(x)$$
 for each $i < j < \omega$,
 $\pi_{\tau}(x_{
u i}) = 0$ otherwise,

where $\pi_{\tau} \in \operatorname{Hom}_{R}(P, F_{\ell(\tau)})$ denotes the τ th projection for each $\tau \in T_{\kappa}$.

Let $X_{\nu i} := \{x_{\nu i} \mid x \in F_i\}$. Then $X_{\nu i}$ is a submodule of P isomorphic to F_i .

ヘロン 人間 とくほど 人間 とうほ

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let
$$X_{\nu} := \sum_{i < \omega} X_{\nu i}$$
, and $L := \sum_{\nu \in Br(T_{\kappa})} X_{\nu}$.

イロト イポト イヨト イヨト

Let
$$X_{\nu} := \sum_{i < \omega} X_{\nu i}$$
, and $L := \sum_{\nu \in \mathsf{Br}(\mathcal{T}_{\kappa})} X_{\nu}$.

Lemma

- $D \subseteq L \subseteq P$.
- $L/D \cong N^{(Br(\tau_{\kappa}))}$.
- L is locally *F*-free.

< 回 > < 回 > < 回 >

Let
$$X_{\nu} := \sum_{i < \omega} X_{\nu i}$$
, and $L := \sum_{\nu \in \mathsf{Br}(\mathcal{T}_{\kappa})} X_{\nu}$.

Lemma

- $D \subseteq L \subseteq P$.
- $L/D \cong N^{(Br(T_{\kappa}))}$.
- L is locally *F*-free.

Lemma (Slávik-T.)

• *L* is closed under transfinite extensions.

• $\mathcal{L}^{\perp} \subseteq (\varinjlim_{\omega} \mathcal{F})^{\perp}.$

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

Non-deconstructibility of locally \mathcal{F} -free modules

・日本 ・日本 ・日本

Non-deconstructibility of locally \mathcal{F} -free modules

- \mathcal{F} a class of countably presented modules,
- \mathcal{L} the class of all locally \mathcal{F} -free modules,
- \mathcal{D} the class of all direct summands of the modules M that fit into an exact sequence

$$0 \to F' \to M \to C' \to 0,$$

where F' is a free module, and C' is countably \mathcal{F} -filtered.

Non-deconstructibility of locally \mathcal{F} -free modules

- $\mathcal F$ a class of countably presented modules,
- \mathcal{L} the class of all locally \mathcal{F} -free modules,
- \mathcal{D} the class of all direct summands of the modules M that fit into an exact sequence

$$0 \to F' \to M \to C' \to 0,$$

where F' is a free module, and C' is countably \mathcal{F} -filtered.

Theorem (Slávik-T.)

Assume there exists a Bass module $N \notin D$. Then the class \mathcal{L} is not deconstructible.

< 回 > < 回 > < 回 >

Corollary

 \mathcal{FM} is not deconstructible for each non-right perfect ring R.

• • = • • = •

Corollary

 \mathcal{FM} is not deconstructible for each non-right perfect ring R.

Sketch of an alternative proof: If R a non-right perfect ring, then there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \dots a_0 \supseteq Ra_{n+1}a_n \dots a_o \supseteq \dots$$

Corollary

 \mathcal{FM} is not deconstructible for each non-right perfect ring R.

Sketch of an alternative proof: If R a non-right perfect ring, then there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \dots a_0 \supseteq Ra_{n+1}a_n \dots a_o \supseteq \dots$$

Let \mathcal{F} be the class of all countably presented projective modules. Consider the Bass module N which is a direct limit of the chain

$$R \xrightarrow{a_{0}} R \xrightarrow{a_{1}} \dots \xrightarrow{a_{i-1}} R \xrightarrow{a_{i}} R \xrightarrow{a_{i+1}} \dots$$

Corollary

 \mathcal{FM} is not deconstructible for each non-right perfect ring R.

Sketch of an alternative proof: If R a non-right perfect ring, then there is a strictly decreasing chain of principal left ideals

$$Ra_0 \supseteq \cdots \supseteq Ra_n \dots a_0 \supseteq Ra_{n+1}a_n \dots a_o \supseteq \dots$$

Let \mathcal{F} be the class of all countably presented projective modules. Consider the Bass module N which is a direct limit of the chain

$$R \xrightarrow{a_{0}} R \xrightarrow{a_{1}} \dots \xrightarrow{a_{i-1}} R \xrightarrow{a_{i}} R \xrightarrow{a_{i+1}} \dots$$

Then there is a non-split pure-exact sequence

$$0 \to R^{(\omega)} \xrightarrow{f} R^{(\omega)} \to N \to 0,$$

where $f(1_i) = 1_i - a_i \cdot 1_{i+1}$ for all $i < \omega$. Then $N \notin \mathcal{D} = \mathcal{P}_{0}$, i.e.,

Infinite dimensional tilting modules

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Infinite dimensional tilting modules

Definition

- T is a tilting module provided that
 - T has finite projective dimension,
 - $\operatorname{Ext}_{R}^{i}(T, T^{(\kappa)}) = 0$ for each cardinal κ , and
 - there exists an exact sequence $0 \rightarrow R \rightarrow T_0 \rightarrow \cdots \rightarrow T_r \rightarrow 0$ such that $r < \omega$, and for each i < r, $T_i \in Add(T)$, i.e., T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

< 回 > < 回 > < 回 >

Infinite dimensional tilting modules

Definition

T is a tilting module provided that

- T has finite projective dimension,
- $\operatorname{Ext}_{R}^{i}(T, T^{(\kappa)}) = 0$ for each cardinal κ , and
- there exists an exact sequence 0 → R → T₀ → · · · → T_r → 0 such that r < ω, and for each i < r, T_i ∈ Add(T), i.e., T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

$$\mathcal{B}_T := \{T\}^{\perp_{\infty}} = \bigcap_{1 < i} \operatorname{KerExt}_R^i(T, -)$$
 the right tilting class of T .

▲圖▶ ▲ 国▶ ▲ 国▶

Infinite dimensional tilting modules

Definition

T is a tilting module provided that

- T has finite projective dimension,
- $\operatorname{Ext}_{R}^{i}(T, T^{(\kappa)}) = 0$ for each cardinal κ , and
- there exists an exact sequence 0 → R → T₀ → · · · → T_r → 0 such that r < ω, and for each i < r, T_i ∈ Add(T), i.e., T_i is a direct summand of a (possibly infinite) direct sum of copies of T.

$$\mathcal{B}_T := \{T\}^{\perp_{\infty}} = \bigcap_{1 < i} \operatorname{KerExt}_R^i(T, -)$$
 the right tilting class of T .

$\mathcal{A}_{\mathcal{T}} := {}^{\perp}\mathcal{B}_{\mathcal{T}}$ the left tilting class of \mathcal{T} .

日本《圖》《圖》《圖》

- 4 同 6 4 日 6 4 日 6

Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^{\perp} , where S is a set of strongly finitely presented modules of bounded projective dimension.

Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^{\perp} , where S is a set of strongly finitely presented modules of bounded projective dimension.

Let $S_T := A_T \cap \text{mod-}R$ and $\overline{A}_T := \varinjlim S$. Then A_T is the class of all direct summands of S_T -filtered modules, and $A_T \subseteq \overline{A}_T$.

Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^{\perp} , where S is a set of strongly finitely presented modules of bounded projective dimension.

Let $S_T := A_T \cap \text{mod-}R$ and $\overline{A}_T := \varinjlim S$. Then A_T is the class of all direct summands of S_T -filtered modules, and $A_T \subseteq \overline{A}_T$.

Definition

The tilting module T is \sum -pure split provided that $\overline{A}_T = A_T$, that is, the left tilting class of T is closed under direct limits. Equivalently: Each pure embedding $T_0 \hookrightarrow T_1$ such that $T_0, T_1 \in \text{Add}(T)$ splits.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Theorem (A model-theoretic characterization of right tilting classes)

Tilting classes are exactly the classes of finite type, i.e., the classes of the form S^{\perp} , where S is a set of strongly finitely presented modules of bounded projective dimension.

Let $S_T := A_T \cap \text{mod-}R$ and $\overline{A}_T := \varinjlim S$. Then A_T is the class of all direct summands of S_T -filtered modules, and $A_T \subseteq \overline{A}_T$.

Definition

The tilting module T is \sum -pure split provided that $\overline{A}_T = A_T$, that is, the left tilting class of T is closed under direct limits. Equivalently: Each pure embedding $T_0 \hookrightarrow T_1$ such that $T_0, T_1 \in \text{Add}(T)$ splits.

Example

Let T = R. Then T is a tilting module of projective dimension 0, and T is \sum -pure split, iff R is a right perfect ring.

(AMeGA & ECI Workshop 2012) Approximations and locally free module

・ 同 ト ・ ヨ ト ・ ヨ ト

The setting

Let R be a countable ring, and T be a non- Σ -pure-split tilting module. Let \mathcal{F}_T be the class of all countably presented modules from \mathcal{A}_T , and \mathcal{L}_T the class of all locally \mathcal{F}_T -free modules.

The setting

Let *R* be a countable ring, and *T* be a non- \sum -pure-split tilting module. Let \mathcal{F}_T be the class of all countably presented modules from \mathcal{A}_T , and \mathcal{L}_T the class of all locally \mathcal{F}_T -free modules.

Theorem (Slávik-T.)

Assume that $\mathcal{L}_T \subseteq \mathcal{P}_1$, \mathcal{L}_T is closed under direct summands, and $M \in \mathcal{L}_T$ whenever $M \subseteq L \in \mathcal{L}_T$ and $L/M \in \overline{\mathcal{A}}_T$. Then the class \mathcal{L}_T is not precovering.

・ 同 ト ・ ヨ ト ・ ヨ ト

The setting

Let R be a countable ring, and T be a non- Σ -pure-split tilting module. Let \mathcal{F}_T be the class of all countably presented modules from \mathcal{A}_T , and \mathcal{L}_T the class of all locally \mathcal{F}_T -free modules.

Theorem (Slávik-T.)

Assume that $\mathcal{L}_T \subseteq \mathcal{P}_1$, \mathcal{L}_T is closed under direct summands, and $M \in \mathcal{L}_T$ whenever $M \subseteq L \in \mathcal{L}_T$ and $L/M \in \overline{\mathcal{A}}_T$. Then the class \mathcal{L}_T is not precovering.

Corollary

If R is countable and non-right perfect, then \mathcal{FM} is not precovering.

イロト 人間ト イヨト イヨト

・ 回 ト ・ ヨ ト ・ ヨ ト

The setting

Let R be an indecomposable hereditary artin algebra of infinite representation type, with the Auslander-Reiten translation $\tau := D\text{Ext}_{R}^{1}(-, R)$. Then there is a partition of ind-R into three sets:

q ... the indecomposable preinjective modules (= indecomposable injectives and their τ -shifts),

p ... the indecomposable preprojective modules

(= indecomposable projectives and their $\tau^-\text{-shifts})\text{,}$

 $t \dots$ the regular modules (the rest).

一日、

The setting

Let R be an indecomposable hereditary artin algebra of infinite representation type, with the Auslander-Reiten translation $\tau := D\text{Ext}_{R}^{1}(-, R)$. Then there is a partition of ind-R into three sets:

q ... the indecomposable preinjective modules (= indecomposable injectives and their τ -shifts),

p ... the indecomposable preprojective modules (= indecomposable projectives and their τ^- -shifts),

 $t \dots$ the regular modules (the rest).

Then p^{\perp} is a right tilting class (and $M \in p^{\perp}$, iff M has no non-zero direct summands from p).

・ 同 ト ・ ヨ ト ・ ヨ ト

The setting

Let R be an indecomposable hereditary artin algebra of infinite representation type, with the Auslander-Reiten translation $\tau := D\text{Ext}_{R}^{1}(-, R)$. Then there is a partition of ind-R into three sets:

q ... the indecomposable preinjective modules (= indecomposable injectives and their τ -shifts),

p ... the indecomposable preprojective modules (= indecomposable projectives and their τ^- -shifts),

 $t \dots$ the regular modules (the rest).

Then p^{\perp} is a right tilting class (and $M \in p^{\perp}$, iff M has no non-zero direct summands from p).

The tilting module *L* inducing p^{\perp} is called the Lukas tilting module. The left tilting class of *L* is the class of all Baer modules.

(AMeGA & ECI Workshop 2012) Approximations and locally free module

< 回 > < 回 > < 回 >

[Angeleri-Kerner-T.'10]

The class of all Baer modules coincides with Filt(p). The Lukas tilting module L is countably generated, but has no finite dimensional direct summands, and it is not Σ -pure split.

[Angeleri-Kerner-T.'10]

The class of all Baer modules coincides with Filt(p). The Lukas tilting module L is countably generated, but has no finite dimensional direct summands, and it is not Σ -pure split.

Let \mathcal{F}_L be the class of all countably presented Baer modules. The elements of \mathcal{L}_L are called the locally Baer modules.

[Angeleri-Kerner-T.'10]

The class of all Baer modules coincides with Filt(p). The Lukas tilting module L is countably generated, but has no finite dimensional direct summands, and it is not Σ -pure split.

Let \mathcal{F}_L be the class of all countably presented Baer modules. The elements of \mathcal{L}_L are called the locally Baer modules.

Theorem (Slávik-T.)

If R is a countable indecomposable hereditary artin algebra of infinite representation type, then the class \mathcal{L}_L of all locally Baer modules is not precovering (and hence not deconstructible).

- 4 同 6 4 日 6 4 日 6