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Outline

▶ Conformally invariant powers of the Laplace operator

▶ Higher spin representations and operators

▶ Existence of conformally invariant higher spin Dirac
operators

▶ Construction by spectrum generating method and examples



Stereographic projection

[Graham, 2007] showed a nice way how to calculate conformally
invariant powers of the Laplace operator on the sphere using
the stereographic projection:

Φ : Sn ∖ {(1, 0)} → ℝn

y := Φ((x0, x)) =
x

1− x0

Φ∗
(

2

(1 + ∣y∣2)

)
= 1− x0 =: ΩS

Φ∗gE =
1

(1− x0)2
gS

Here gE is the standard Euclidean metric on ℝn and gS the
standard metric on the sphere Sn. Hence Φ is conformal. We
denote by Δ the Laplace operator on ℝn and by ΔS the
Laplace operator on Sn.



Conformally invariant operators

The Yamabe operator Y := ΔS − n(n−2)
4 is conformally

invariant, thus

Y Ω
1−n

2
S Φ∗ = Ω

−1−n
2

S Φ∗Δ

The powers of Δ are conformally invariant too, for any
C : ℝn → ℝn satisfying C∗gE = Ω2gE it holds

ΔkΩk−n
2C∗ = Ω−k−

n
2C∗Δk

Conformal transformations of Sn are conjugations of C by Φ,
hence we only seek a formula of the type

Y (k)Ω
k−n

2
S Φ∗ = Ω

−k−n
2

S Φ∗Δk

and the conformal invariance of Y (k) follows.



Conformally invariant ”powers” of the
Laplacian

The right expression is

Y (k) =

k∏
j=1

(Y + j(j − 1)) =

k∏
j=1

(
ΔS −

(n
2

+ j − 1
)(n

2
− j)

))
and the proof follows by induction from the commutation
relation of Δ and (Φ∗ΩS)w ≡ (2/(1 + ∣y∣2))w, w ∈ ℝ. Note that

Y (k) = (ΔS)k + LOTS. On a general manifold, LOTS depend
on curvature and Y (k)’s are the GJMS operators, constructed
by the ambient space method. Also note the product
structure (only on Sn) of Y (k), which we’ll see in further
examples too.



Higher spin representations

Spinor representation (assume odd n for simplicity) is an
irreducible Spin(n) representation with highest weight(
1
2 , . . . ,

1
2

)
. More complicated half-integral representations occur

in physics (Rarita-Schwinger, Penrose,...), geometry
(Branson, Somberg,...) and Clifford analysis (Delanghe,
Souček, Bureš, Ryan, Sommen, Brackx, Van Lancker, Eelbode,
Van de Voorde, Raeymaekers,...)

The simplest example is

(k)′ :=

(
k +

1

2
,
1

2
, . . . ,

1

2

)



Stein-Weiss gradients

For � a highest weight of an irreducible Spin(n)-module, denote
the associated vector bundle V(�). A Stein-Weiss gradient is
a composition

Gu := G��u : Γ(V(�))
∇−→ Γ(T ∗M ⊗ V(�))

proj−−→ Γ(V(�u))

of the Levi-Civita connection and a projection onto a direct
summand. It is the unique (up to a multiple) Spin(n)-invariant
differential operator from V(�) to V(�u).

Examples:

▶ � = �u =
(
1
2 , . . . ,

1
2

)
Dirac operator

▶ � =
(
1
2 , . . . ,

1
2

)
,�u =

(
3
2 ,

1
2 , . . . ,

1
2

)
twistor operator

▶ � =
(
3
2 ,

1
2 , . . . ,

1
2

)
,�u =

(
1
2 , . . . ,

1
2

)
dual twistor operator

▶ � = �u =
(
3
2 ,

1
2 , . . . ,

1
2

)
Rarita-Schwinger operator



Higher spin first order operators

We are interested in Stein-Weiss gradients

Dk : Γ(V((k)′))→ Γ(V((k)′))

(Higher spin Dirac operator),

Tk:k−1 : Γ(V((k)′))→ Γ(V((k − 1)′))

(Higher spin twistor operator) and

T ∗k:k−1 : Γ(V((k − 1)′))→ Γ(V((k)′)),

the formal adjoint of Tk:k−1.

Every Stein-Weiss gradient (and hence every higher spin first
order operator) is conformally invariant with a suitable
conformal weight (Fegan, 1976).



Conformal invariance in higher order

Compositions of conformally invariant operators are not
conformally invariant because conformal weights do not match.
Classification of conformally invariant operators was done by
[Slovák, 1993] via their identification with homomorphisms of
generalized Verma modules. For the case of higher spin Dirac
operators the following can be deduced:

Theorem ([Š., 2012])

Let n = 2m+ 1 be odd, � = (k1, k2, . . . , km−1, 0) +
(
1
2 , . . . ,

1
2

)
a

dominant weight. Then there is a conformally invariant p-th
order operator D : Γ(V(�))→ Γ(V(�)) if and only if p is
odd.

This covers almost all higher spin representations.



Conformally invariant powers of Dirac

For the Dirac case (� =
(
1
2 , . . . ,

1
2

)
) the operators are ∀N ∈ ℤ+

0

D0

(
(D0)

2 − 1
) (

(D0)
2 − 4

)
. . .
(
(D0)

2 −N2
)
,

where D0 is the Dirac operator on Sn. This was found by Liu
and Ryan (2002) by the stereographic method, by Eelbode and
Souček (2010) by the ambient method and by Branson and
Ørsted (2006) by the spectrum generating method. Note again
the product structure.

Moreover, Holland and Sparling (2001) proved existence of the
curved versions by the ambient space method.



The spectrum generating method

Branson, Ólaffson and Oersted (1996) introduced a method of
calculation of spectra of conformally invariant operators.

The conformal sphere is a parabolic geometry G/P , but as a
Riemannian manifold it is K/M , where K = Spin(n+ 1),
M = Spin(n) are subgroups of G = Spin0(n+ 1, 1), P = MAN ,
A = ℝ+, N = ℝn+1. The space of K-finite sections of Γ(V(�)r)
is interpreted as a (g,K)-module and it decomposes into
irreducible K-modules (K-types) according to a branching
rule. The proper conformal Killing fields in g then map between
different K-types.

An operator D is conformally invariant iff it intertwines the
(g,K)-action. The K-invariance means that it is constant on
each K-type, the g-invariance determines the ratios of
eigenvalues on pairs of K-types, hence the spectrum up to an
overall multiple.



Spectrum generating applied to Dirac
For � =

(
1
2 , . . . ,

1
2

)
, the K-type decomposition is

Γ(V(�)) =
⊕
�=±1

∞⊕
j=0

V�(j),

where V�(j) is an irreducible Spin(n+ 1)-module with highest
weight

(
j + 1

2 ,
1
2 , . . . ,

1
2 ,

�
2

)
A conformally invariant operator of order 1 has to have
eigenvalue �n+2j

n on V�(j) and up to a multiple it has to be the
Dirac operator D0.

Similarly, the spectral method calculates eigenvalues of a
conformally invariant operator of order 2N+1, expresses them
in terms of eigenvalues of Dirac and obtain the formula given
earlier

R0,2N+1 = D0

(
(D0)

2 − 1
) (

(D0)
2 − 4

)
. . .
(
(D0)

2 −N2
)



Conformal invariants on spinor-forms

Hong (2011) found the expression for the conformally invariant
operators for � =

(
3
2 ,

1
2 , . . . ,

1
2

)
. The K-type decomposition is

now

Γ(V(�)) =
⊕
�=±1

∞⊕
j=1

V�(j, 1)⊕ V�(j, 0)

for V�(j, q) =
(
j + 1

2 , q + 1
2 ,

1
2 , . . . ,

1
2 ,

�
2

)
and the operator of

order 2N + 1 has the form

R1,2N+1 = D1

N∏
l=1

(
D2

1 − l2 Id− 16l2

n(n2 − 4l2)
T ∗1:0T1:0

)
The highest order term in each bracket is a linear combination
of D2

1 and T ∗1:0T1:0 that span the space of K-invariants.



Conformal invariants for 5
2 spin: first half

Similar approach leads to expressions for conformally invariant
operators for � =

(
5
2 ,

1
2 , . . . ,

1
2

)
. The eigenvalues for an operator

of order 4N+1 are calculated with respect to the K-type
decomposition

Γ(V(�)) =
⊕
�=±1

∞⊕
j=2

V�(j, 2)⊕ V�(j, 1)⊕ V�(j, 0)

The resulting operator is expected in the form

R2,4N+1 := D2A2,1A2,2 . . . A2,N ,

with the 4th order inhomogeneous operators

A2,l :=
(
(D2)

2 − (2l)2 Id
) (

(D2)
2 − (2l − 1)2 Id

)
+

+ alT
∗
2:1T

∗
1:0T1:0T2:1 + blD

2
2T
∗
2:1T2:1 + clT

∗
2:1T2:1

as building blocks, for some values of al, bl, cl ∈ ℝ.



The ingredients



Actual values of coefficients

This leads to N systems of 6 linear equations for 3 unknowns
al, bl, cl. In accordance with general theory, there is a (unique)
solution for every l ∈ {1, . . . , N}, of the form

al =
256(n− 1)(2l)2(2l − 1)2

(n+ 2)(n+ 4l)(n+ 4l + 2)(n− 4l + 4)(n− 4l + 2)

bl = −16(n2(8l2 − 4l + 1) + n(16l2 − 8l + 2) + 16l2 − 8l)

n(n+ 2)(n+ 4l + 2)(n− 4l + 4)

cl =
32n(2l)2(2l − 1)2

(n+ 2)(n− 4l + 4)(n+ 4l + 2)



Conformal invariants for 5
2 spin: second half

In a similar way an operator

R2,4N+3 := R2,3Ã2,1Ã2,2 . . . Ã2,N ,

can be constructed from the 3rd order operator

R2,3 := D2

(
(D2)

2 − Id− 16

(n+ 2)(n+ 4)
T ∗2:1T2:1

)
and the 4th order operators

Ã2,l :=
(
(D2)

2 − (2l)2 Id
) (

(D2)
2 − (2l + 1)2 Id

)
+

+ ãlT
∗
2:1T

∗
1:0T1:0T2:1 + b̃lD

2
2T
∗
2:1T2:1 + c̃lT

∗
2:1T2:1

for appropriate values of ãl, b̃l, c̃l.



Summary and outlook

▶ The goal was to generalize ”powers” of Laplacian and
Dirac to higher spin representation.

▶ We restricted to the sphere, curved versions seem very
complicated.

▶ Moreover, on the sphere we have the spectrum generating
method, which gives the operators easily.

▶ The operators exist in every odd order and come as
products of low order (not conformally invariant) operators.

▶ Raising spin leads to more K-types and hence unknowns
and conditions, but the general pattern seems to be
preserved. Namely, we can calculate all orders at once with
a system of linear equations with the size depending on the
highest weight of the representation.
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