
Nambu sigma models and their algebraic structure

Jan Vysoký
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Nambu sigma model
Notation basics

Joint work with Branislav Jurčo and Peter Schupp.

In whole talk p ≥ 1 is fixed integer.
We wish to cook a classical field theory. We have to create the
environment where all objects live:

1 Let Σ be a (p + 1)-dimensional orientable compact manifold,
possibly with boundary. Σ is called worldvolume, with local
coordinates (σ0, σ1, . . . , σp), where σ0 is observed as time.

2 Let M be a n-dimensional manifold, called target manifold, with
local coordinates (y 1, . . . , yn).

In whole talk small Latin letters denote components w.r.t. y i

coordinates.

Capital Latin letters denote strictly ordered p-indices,
I = (i1, . . . , ip), i1 < · · · < ip.

Let X : Σ→ M be a smooth map of manifolds. We denote
X i = y i (X ) and dX I = dX i1 ∧ . . . ∧ dX ip .

Finally ∂̃X
I

= (dX I )1...p, ”spacelike” components of p-form dX I on
Σ.

Jan Vysoký Nambu sigma models and their algebraic structure



Nambu sigma model Higher brackets Charge algebra Topological model Notation basics Action Hamiltonian formulation

Nambu sigma model
Notation basics

Joint work with Branislav Jurčo and Peter Schupp.
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Jan Vysoký Nambu sigma models and their algebraic structure



Nambu sigma model Higher brackets Charge algebra Topological model Notation basics Action Hamiltonian formulation

Nambu sigma model
Notation basics

Joint work with Branislav Jurčo and Peter Schupp.

In whole talk p ≥ 1 is fixed integer.
We wish to cook a classical field theory. We have to create the
environment where all objects live:

1 Let Σ be a (p + 1)-dimensional orientable compact manifold,
possibly with boundary. Σ is called worldvolume, with local
coordinates (σ0, σ1, . . . , σp), where σ0 is observed as time.

2 Let M be a n-dimensional manifold, called target manifold, with
local coordinates (y 1, . . . , yn).

In whole talk small Latin letters denote components w.r.t. y i

coordinates.

Capital Latin letters denote strictly ordered p-indices,
I = (i1, . . . , ip), i1 < · · · < ip.

Let X : Σ→ M be a smooth map of manifolds. We denote
X i = y i (X ) and dX I = dX i1 ∧ . . . ∧ dX ip .

Finally ∂̃X
I

= (dX I )1...p, ”spacelike” components of p-form dX I on
Σ.
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Nambu sigma model
Action

Moreover, we introduce auxiliary fields ηi and η̃I , both in C∞(Σ),
well transforming according to their index structure.

The action of Nambu sigma model is given as integral:

S [η, η̃,X ] :=

∫
dp+1σ

[
− 1

2
(G−1)ijηiηj +

1

2
(G̃−1)IJ η̃I η̃J + ηi∂0X i

+ η̃I ∂̃X
I
− ΠiJηi η̃J − BiJ∂0X i ∂̃X

J]
, (1)

where

(G−1)ij is the inverse of Riemannian metric G on M,

(G̃−1)IJ is the inverse of fiberwise Riemannian metric G̃ on ΛpTM,
Π is a (p + 1)-vector field on M,
B is a (p + 1)-form on M.

Note that generalized generalized geometry is a natural playground
for NSM, i.e. the geometry of vector bundle TM ⊕ ΛpT ∗M.
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Jan Vysoký Nambu sigma models and their algebraic structure



Nambu sigma model Higher brackets Charge algebra Topological model Notation basics Action Hamiltonian formulation

Nambu sigma model
Hamiltonian formulation

We can try to naively construct a Hamiltonian corresponding to this
Lagrangian.

The canonical momenta has the form:

Pi = ηi − BiJ ∂̃X
J
.

We can thus express ηi using P and B. Define

H[X ,P, η̃] :=

∫
dpσẊmPm − L[X ,P, η̃].

For G , G̃ nonzero, one can express η̃’s using their EQM, to get new
Hamiltonian H = H[X ,P].

For G−1 = G̃−1 we cannot do that ⇒ topological Nambu sigma
model.

We obtain the Hamiltonian of X and P only, not loosing any
dynamics.
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Nambu sigma model
Hamiltonian formulation

Define the following currents:

Ki := ηi = Pi + BiK ∂̃X
K
, K̃ I := ∂̃X

I
− ΠmIKm.

The resulting Hamiltonian is quadratic and has the form

H[X ,P] =
1

2

∫
dpσ[(G−1)ijKiKj + G̃IJ K̃ I K̃ J ].

Expanding the K and K̃ we can express it as quadratic form in P,

and ∂̃X :

H[X ,P] =
1

2

∫
dpσ[HijPiPj + 2Hi

JPi ∂̃X
J

+ HIJ ∂̃X
I
∂̃X

J
].

The matrix H can be written as following product:

H =

(
1 0

BT 1

)(
1 −Π
0 1

)(
G−1 0

0 G̃

)(
1 0
−ΠT 1

)(
1 B
0 1

)
.
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H[X ,P] =
1

2

∫
dpσ[(G−1)ijKiKj + G̃IJ K̃ I K̃ J ].

Expanding the K and K̃ we can express it as quadratic form in P,

and ∂̃X :

H[X ,P] =
1

2

∫
dpσ[HijPiPj + 2Hi

JPi ∂̃X
J

+ HIJ ∂̃X
I
∂̃X

J
].

The matrix H can be written as following product:

H =

(
1 0

BT 1

)(
1 −Π
0 1

)(
G−1 0

0 G̃

)(
1 0
−ΠT 1

)(
1 B
0 1

)
.
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Higher brackets
Higher Dorfman bracket

Vector field commutator on M can be viewed as skew-symmetric
bracket on Γ(TM), satisfying

1 [e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]] (Jacobi identity),
2 [e1, fe2] = (ρ(e1).f )e2 + f [e1, e2] (Leibniz rule), for all

e1, e2, e3 ∈ Γ(TM) and f ∈ C∞(M), where ρ = IdTM

Replace now TM with E = TM ⊕ ΛpT ∗M. Is there a bracket with
similar properties?

Answer = higher Dorfman bracket. Define

[V + ξ,W + η]D = [V ,W ] + LV η − iW dξ,

for all (V + ξ), (W + η) ∈ Γ(E ).

Jacobi = yes,

Leibniz = yes, just replace ρ = IdTM with pr1 : E → TM.

Skew-symmetry = no, but symmetric part can be controlled.
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Higher brackets
Higher Dorfman bracket

This bracket has many interesting properties. For instance, define
〈·, ·〉 : Γ(E )× Γ(E )→ Ωp−1(M) as

〈V + ξ,W + η〉 := iV η + iW ξ,

for all (V + ξ), (W + η) ∈ Γ(E ). This is a non-degenerate pairing,
that is Γ(E )⊥ = {0}.
This pairing is ”invariant” under higher Dorfman bracket, there
holds:

Lρ(e)〈e1, e2〉 = 〈[e, e1]D , e2〉+ 〈e1, [e, e2]D〉,

for all e, e2, e2 ∈ Γ(E ).

Let D = j ◦ d , where j : Ωp(M)→ Γ(E ) is an inclusion. Then we
have

[e, e]D =
1

2
D〈e, e〉,

for all e ∈ Γ(E ).

Jan Vysoký Nambu sigma models and their algebraic structure



Nambu sigma model Higher brackets Charge algebra Topological model Higher Dorfman bracket Twisting the brackets Higher Roytenberg bracket

Higher brackets
Higher Dorfman bracket

This bracket has many interesting properties. For instance, define
〈·, ·〉 : Γ(E )× Γ(E )→ Ωp−1(M) as

〈V + ξ,W + η〉 := iV η + iW ξ,

for all (V + ξ), (W + η) ∈ Γ(E ). This is a non-degenerate pairing,
that is Γ(E )⊥ = {0}.
This pairing is ”invariant” under higher Dorfman bracket, there
holds:

Lρ(e)〈e1, e2〉 = 〈[e, e1]D , e2〉+ 〈e1, [e, e2]D〉,

for all e, e2, e2 ∈ Γ(E ).

Let D = j ◦ d , where j : Ωp(M)→ Γ(E ) is an inclusion. Then we
have

[e, e]D =
1

2
D〈e, e〉,

for all e ∈ Γ(E ).
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Higher brackets
Twisting the brackets

We may ask how to modify the bracket, not spoiling the good
properties.

Let H be a closed (p + 2)-form. Define H-twisted higher Dorfman
bracket:

[V + ξ,W + η]
(H)
D = [V + ξ,W + η]D + iW iV H.

Let Π# : Ωp(M)→ Γ(E ) be a C∞(M)-linear map of sections.
Define new anchor map ρ as

ρ(V + ξ) := V − Π#(ξ),

twisted inclusion j : Ωp(M)→ Γ(E ) as

j(ξ) = ξ + Π#(ξ).
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Higher brackets
Higher Roytenberg bracket

Next, we have to modify the pairing, denote it as 〈·, ·〉R :

〈e1, e2〉R := iρ(e1)pr2(e2) + iρ(e2)pr2(e1),

for all e1, e2 ∈ Γ(E ), where pr2 : Γ(E )→ Ωp(M).

Finally, we have to ”twist” the twisted higher Dorfman bracket:

[e1, e2]R := [ρ(e1), ρ(e2)]+j
(
Lρ(e1)pr2(e2)−iρ(e2)d(pr2(e1))+iρ(e2)iρ(e1)H

)
,

for all e1, e2 ∈ Γ(E ). We call this bracket higher Roytenberg
bracket.

This bracket is isomorphic to [·, ·](H)
D .

[·, ·](H)
D is isomorphic to [·, ·](H′)

D iff [H] = [H ′] in Hp+2
dR (M).
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Jan Vysoký Nambu sigma models and their algebraic structure



Nambu sigma model Higher brackets Charge algebra Topological model Higher Dorfman bracket Twisting the brackets Higher Roytenberg bracket

Higher brackets
Higher Roytenberg bracket

Next, we have to modify the pairing, denote it as 〈·, ·〉R :

〈e1, e2〉R := iρ(e1)pr2(e2) + iρ(e2)pr2(e1),

for all e1, e2 ∈ Γ(E ), where pr2 : Γ(E )→ Ωp(M).

Finally, we have to ”twist” the twisted higher Dorfman bracket:

[e1, e2]R := [ρ(e1), ρ(e2)]+j
(
Lρ(e1)pr2(e2)−iρ(e2)d(pr2(e1))+iρ(e2)iρ(e1)H

)
,

for all e1, e2 ∈ Γ(E ). We call this bracket higher Roytenberg
bracket.

This bracket is isomorphic to [·, ·](H)
D .

[·, ·](H)
D is isomorphic to [·, ·](H′)

D iff [H] = [H ′] in Hp+2
dR (M).
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for all e1, e2 ∈ Γ(E ), where pr2 : Γ(E )→ Ωp(M).

Finally, we have to ”twist” the twisted higher Dorfman bracket:

[e1, e2]R := [ρ(e1), ρ(e2)]+j
(
Lρ(e1)pr2(e2)−iρ(e2)d(pr2(e1))+iρ(e2)iρ(e1)H

)
,

for all e1, e2 ∈ Γ(E ). We call this bracket higher Roytenberg
bracket.

This bracket is isomorphic to [·, ·](H)
D .

[·, ·](H)
D is isomorphic to [·, ·](H′)

D iff [H] = [H ′] in Hp+2
dR (M).
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Charge algebra
Generalized charges

Dynamics of the Nambu sigma model is governed by a canonical
Poisson bracket:

{Xm(σ),Pn(σ′)} = δmn δ
p(σ − σ′),

where σ, σ′ are p-tuples of spacelike coordinates on Σ.
To any two functionals F ,G of [X ,P], we can assign new field
functional:

{F ,G}[X ,P] =

∫
dpσ

n∑
m=1

δF [X ,P]

δXm(σ)

δG [X ,P]

δPm(σ)
− δG [X ,P]

δXm(σ)

δF [X ,P]

δPm(σ)
.

Let f be a test function on Σ. Define generalized charges as:

Qf (V + ξ) =

∫
dpσ[V m(X )Km + ξI (X )K̃ I ](σ)f (σ).

For many computational purposes, we were interested in Poisson
bracket of two such charges {Qf (V + ξ),Qg (W + η)}.
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Charge algebra
Generalized charges

The resulting Poisson bracket of the charges is

{Qf (V + ξ),Qg (W + η)} = −Qfg ([V + ξ,W + η]R)

−
∫

dpσg(σ)(df ∧ X ∗(〈V + ξ,W + η〉R))1...p , (2)

for all (V + ξ), (W + η) ∈ Γ(E ).

Note that restriction of charges onto an isotropic subbundle of E
closes to Poisson algebra.

Also setting f = 1 implies the vanishing of the ”anomalous term”.

The right-hand side is skew-symmetric in both inputs, despite the
fact [·, ·]R is not.
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Jan Vysoký Nambu sigma models and their algebraic structure



Nambu sigma model Higher brackets Charge algebra Topological model Generalized charges Charges conservation

Charge algebra
Generalized charges

The resulting Poisson bracket of the charges is

{Qf (V + ξ),Qg (W + η)} = −Qfg ([V + ξ,W + η]R)

−
∫

dpσg(σ)(df ∧ X ∗(〈V + ξ,W + η〉R))1...p , (2)

for all (V + ξ), (W + η) ∈ Γ(E ).

Note that restriction of charges onto an isotropic subbundle of E
closes to Poisson algebra.

Also setting f = 1 implies the vanishing of the ”anomalous term”.

The right-hand side is skew-symmetric in both inputs, despite the
fact [·, ·]R is not.
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Charge algebra
Charges conservation

One may naturally ask when do the generalized charges Qf (V + ξ)
conserve under time evolution.

For simplicity, we have assumed only Q(V + ξ) = Q1(V + ξ).

Thus we have to find sufficient conditions to solve
{Q(V + ξ),H} = 0.

Using the result above, one arrives to the following set of equations:

LW (G )ij = GinΠnL
(
W mdBmjL − (dξ)jL

)
+ (i ↔ j),

LW (G̃ )IJ = G̃ILΠnL
(
W mdBmnJ − (dξ)nJ

)
+ (I ↔ J),

LW (Π)kI =
(
ΠkJΠnI − (G̃−1)IJ(G−1)kn

)(
W mdBmnJ − (dξ)nJ

)
,

where W = V − Π#(ξ).
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Charge algebra
Charges conservation

There exists a nice geometrical interpretation of these conditions.
Define a fiberwise metric (·, ·) on TM ⊕ ΛpT ∗M as

(V + ξ,W + η) :=

(
V
ξ

)T (
G 0

0 G̃−1

)(
W
η

)
,

for all (V + ξ), (W + η) ∈ Γ(E ).

The conditions on the previous slide are then equivalent to the
”Killing equations” for V + ξ and (·, ·):

ρ(V + ξ).(e1, e2) = ([V + ξ, e1]R , e2) + (e1, [V + ξ, e2]R),

for all e1, e2 ∈ Γ(E ).

Solving dξ = iW (dB), this equations simplify to

LW (G ) = LW (G̃ ) = LW (Π) = 0 .
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Topological model
Action

Starting all over with the action S [X , η, η̃], we may set

G−1 = G̃−1 = 0. We call this a topological Nambu sigma model.

One comes to the new Hamiltonian

H[X , η̃,P] = −
∫

dpση̃I K̃
I . (3)

One of the original EQM is K̃ I = 0, which can be considered as
constraint, with η̃I as a corresponding Lagrange multiplier.

Without G ,G̃ Nambu sigma model becomes a constrained system.
To have consistent system, one has to check if

{H, K̃ I (σ)} ≈ 0,

that is if it is zero whenever K̃ I = 0.
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Jan Vysoký Nambu sigma models and their algebraic structure



Nambu sigma model Higher brackets Charge algebra Topological model Action Consistency of constraints

Topological model
Action

Starting all over with the action S [X , η, η̃], we may set

G−1 = G̃−1 = 0. We call this a topological Nambu sigma model.

One comes to the new Hamiltonian

H[X , η̃,P] = −
∫

dpση̃I K̃
I . (3)

One of the original EQM is K̃ I = 0, which can be considered as
constraint, with η̃I as a corresponding Lagrange multiplier.

Without G ,G̃ Nambu sigma model becomes a constrained system.
To have consistent system, one has to check if

{H, K̃ I (σ)} ≈ 0,

that is if it is zero whenever K̃ I = 0.
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Topological model
Consistency of constraints

Calculation may be carried out using the Poisson bracket of
generalized charges.

The result has the following form:

{K̃ I (σ), K̃ J(σ′)} = −δ(σ − σ′)(R IJkKk + S IJ
K K̃K )(σ′)

−
(
d(δ(σ − ·)) ∧ X ∗(〈dy I , dy J〉R)

)
1...p

(σ′) , (4)

where R IJk are (one of) structure functions of [·, ·]R .

One may demand R IJk to vanish. For p > 1, this is exactly the
differential part of the equation

(LΠ#(ξ)(Π))#(η) = −Π#(iΠ#(η)(dξ)) ,

which says that Π is a Nambu-Poisson structure. For p = 1 this is
exactly Jacobi identity for Poisson bracket induced by Π.
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Topological model
Consistency of constraints

We are half-way to justify the name ”Nambu” sigma model.

The vanishing of anomalous term is a little bit problematic, since
〈dy I , dy J〉R can in general vanish only for Π = 0.

The key is to add a set of secondary constraints:

χIJ
q ≡ (X ∗〈dy I , dy J〉R)1...q̂...p = 0 .

Again, one has to check if they are consistent with a time evolution.

This can be assured by algebraic part of the fundamental identity for
Nambu-Poisson tensor!

Result: To have consistent equations of motion, choose Π to be a
Nambu-Poisson structure.
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Jan Vysoký Nambu sigma models and their algebraic structure



Nambu sigma model Higher brackets Charge algebra Topological model Action Consistency of constraints

Topological model
Consistency of constraints

We are half-way to justify the name ”Nambu” sigma model.

The vanishing of anomalous term is a little bit problematic, since
〈dy I , dy J〉R can in general vanish only for Π = 0.

The key is to add a set of secondary constraints:

χIJ
q ≡ (X ∗〈dy I , dy J〉R)1...q̂...p = 0 .

Again, one has to check if they are consistent with a time evolution.

This can be assured by algebraic part of the fundamental identity for
Nambu-Poisson tensor!

Result: To have consistent equations of motion, choose Π to be a
Nambu-Poisson structure.
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Conclusions

Nambu sigma model seems to be a generalization of Poisson sigma
model.

Higher Roytenberg bracket was rederived using worldsheet algebra of
this model.

Consistency of topological model equations can be assured by
introducing Nambu-Poisson structures.

Future efforts:
1 Understand the generalized generalized geometry, especially the

generalized generalized metric.
2 Understand the higher Courant algebroids, find their axiomatiozation.
3 Find supersymmetric description of Nambu sigma models, BV

formalism et cetera.
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