Nambu sigma models and their algebraic structure

Jan Vysoký
ECI \& AMeGA Workshop in Třešť

October 20, 2012

Outline

(1) Nambu sigma model

- Notation basics
- Action
- Hamiltonian formulation
(2) Higher brackets
- Higher Dorfman bracket
- Twisting the brackets
- Higher Roytenberg bracket
(3) Charge algebra
- Generalized charges
- Charges conservation
(4) Topological model
- Action
- Consistency of constraints

Nambu sigma model

Notation basics

- Joint work with Branislav Jurčo and Peter Schupp.
- In whole talk $p \geq 1$ is fixed integer.
- We wish to cook a classical field theory. We have to create the environment where all objects live:
(1) Let Σ be a $(p+1)$-dimensional orientable compact manifold, possibly with boundary. Σ is called worldvolume, with local coordinates $\left(\sigma^{0}, \sigma^{1}, \ldots, \sigma^{p}\right)$, where σ^{0} is observed as time.
(ㅇ) Let M be a n-dimensional manifold, called target manifold, with local coordinates $\left(y^{1}, \ldots, y^{n}\right)$
- In whole talk small Latin letters denote components w.r.t. y^{i} coordinates.
- Capital Latin letters denote strictly ordered p-indices, $I=\left(i_{1}, \ldots, i_{p}\right), i_{1}<\cdots<i_{p}$.
- Let $X: \Sigma \rightarrow M$ be a smooth map of manifolds. We denote $X^{i}=y^{i}(X)$ and $d X^{\prime}=d X^{i_{1}} \wedge \ldots \wedge d X^{i_{p}}$
 Σ

Nambu sigma model

Notation basics

- Joint work with Branislav Jurčo and Peter Schupp.
- In whole talk $p \geq 1$ is fixed integer.
- We wish to cook a classical field theory. We have to create the environment where all objects live:
(1) Let Σ be a $(p+1)$-dimensional orientable compact manifold possibly with boundary. Σ is called worldvolume, with local coordinates $\left(\sigma^{0}, \sigma^{1}, \ldots, \sigma^{p}\right)$, where σ^{0} is observed as time.
(2) Let M be a n-dimensional manifold, called target manifold, with local coordinates $\left(y^{1}, \ldots, y^{n}\right)$
- In whole talk small Latin letters denote components w.r.t. y^{i} coordinates.
- Capital Latin letters denote strictly ordered p-indices,

- Let $X: \Sigma \rightarrow M$ be a smooth map of manifolds. We denote $X^{i}=y^{i}(X)$ and $d X^{\prime}=d X^{i_{1}} \wedge \ldots \wedge d X^{i_{p}}$
 Σ

Nambu sigma model

Notation basics

- Joint work with Branislav Jurčo and Peter Schupp.
- In whole talk $p \geq 1$ is fixed integer.
- We wish to cook a classical field theory. We have to create the environment where all objects live:

- In whole talk small Latin letters denote components w.r.t. y ${ }^{i}$ coordinates.
- Capital Latin letters denote strictly ordered p-indices,
- Let $X: \Sigma \rightarrow M$ be a smooth map of manifolds. We denote $X^{i}=v^{i}(X)$ and $d X^{\prime}=d X^{i_{1}} \wedge \ldots \wedge d X^{i_{p}}$

Nambu sigma model

Notation basics

- Joint work with Branislav Jurčo and Peter Schupp.
- In whole talk $p \geq 1$ is fixed integer.
- We wish to cook a classical field theory. We have to create the environment where all objects live:
(1) Let Σ be a $(p+1)$-dimensional orientable compact manifold, possibly with boundary. Σ is called worldvolume, with local coordinates $\left(\sigma^{0}, \sigma^{1}, \ldots, \sigma^{p}\right)$, where σ^{0} is observed as time. local coordinates (y^{1}
- In whole talk small Latin letters denote components w.r.t. y^{i} coordinates.
- Capital Latin letters denote strictly ordered p-indices,
- Let $X: \Sigma \rightarrow M$ be a smooth map of manifolds. We denote $X^{i}=y^{i}(X)$ and $d X^{\prime}=d X^{i_{1}} \wedge \ldots \wedge d X^{i_{p}}$

Nambu sigma model

Notation basics

- Joint work with Branislav Jurčo and Peter Schupp.
- In whole talk $p \geq 1$ is fixed integer.
- We wish to cook a classical field theory. We have to create the environment where all objects live:
(1) Let Σ be a $(p+1)$-dimensional orientable compact manifold, possibly with boundary. Σ is called worldvolume, with local coordinates $\left(\sigma^{0}, \sigma^{1}, \ldots, \sigma^{p}\right)$, where σ^{0} is observed as time.
(2) Let M be a n-dimensional manifold, called target manifold, with local coordinates $\left(y^{1}, \ldots, y^{n}\right)$.
- In whole talk small Latin letters denote components w.r.t. y^{i} coordinates.
- Capital Latin letters denote strictly ordered p-indices,
- Let $X: \Sigma \rightarrow M$ be a smooth map of manifolds. We denote

Nambu sigma model

Notation basics

- Joint work with Branislav Jurčo and Peter Schupp.
- In whole talk $p \geq 1$ is fixed integer.
- We wish to cook a classical field theory. We have to create the environment where all objects live:
(1) Let Σ be a $(p+1)$-dimensional orientable compact manifold, possibly with boundary. Σ is called worldvolume, with local coordinates $\left(\sigma^{0}, \sigma^{1}, \ldots, \sigma^{p}\right)$, where σ^{0} is observed as time.
(2) Let M be a n-dimensional manifold, called target manifold, with local coordinates $\left(y^{1}, \ldots, y^{n}\right)$.
- In whole talk small Latin letters denote components w.r.t. y^{i} coordinates.
- Capital Latin letters denote strictly ordered p-indices,
- Let $X: \Sigma \rightarrow M$ be a smooth map of manifolds. We denote

Nambu sigma model

Notation basics

- Joint work with Branislav Jurčo and Peter Schupp.
- In whole talk $p \geq 1$ is fixed integer.
- We wish to cook a classical field theory. We have to create the environment where all objects live:
(1) Let Σ be a $(p+1)$-dimensional orientable compact manifold, possibly with boundary. Σ is called worldvolume, with local coordinates $\left(\sigma^{0}, \sigma^{1}, \ldots, \sigma^{p}\right)$, where σ^{0} is observed as time.
(2) Let M be a n-dimensional manifold, called target manifold, with local coordinates $\left(y^{1}, \ldots, y^{n}\right)$.
- In whole talk small Latin letters denote components w.r.t. y^{i} coordinates.
- Capital Latin letters denote strictly ordered p-indices, $I=\left(i_{1}, \ldots, i_{p}\right), i_{1}<\cdots<i_{p}$.

Nambu sigma model

Notation basics

- Joint work with Branislav Jurčo and Peter Schupp.
- In whole talk $p \geq 1$ is fixed integer.
- We wish to cook a classical field theory. We have to create the environment where all objects live:
(1) Let Σ be a $(p+1)$-dimensional orientable compact manifold, possibly with boundary. Σ is called worldvolume, with local coordinates $\left(\sigma^{0}, \sigma^{1}, \ldots, \sigma^{p}\right)$, where σ^{0} is observed as time.
(2) Let M be a n-dimensional manifold, called target manifold, with local coordinates $\left(y^{1}, \ldots, y^{n}\right)$.
- In whole talk small Latin letters denote components w.r.t. y^{i} coordinates.
- Capital Latin letters denote strictly ordered p-indices, $I=\left(i_{1}, \ldots, i_{p}\right), i_{1}<\cdots<i_{p}$.
- Let $X: \Sigma \rightarrow M$ be a smooth map of manifolds. We denote $X^{i}=y^{i}(X)$ and $d X^{\prime}=d X^{i_{1}} \wedge \ldots \wedge d X^{i_{p}}$.

Nambu sigma model

Notation basics

- Joint work with Branislav Jurčo and Peter Schupp.
- In whole talk $p \geq 1$ is fixed integer.
- We wish to cook a classical field theory. We have to create the environment where all objects live:
(1) Let Σ be a $(p+1)$-dimensional orientable compact manifold, possibly with boundary. Σ is called worldvolume, with local coordinates $\left(\sigma^{0}, \sigma^{1}, \ldots, \sigma^{p}\right)$, where σ^{0} is observed as time.
(2) Let M be a n-dimensional manifold, called target manifold, with local coordinates $\left(y^{1}, \ldots, y^{n}\right)$.
- In whole talk small Latin letters denote components w.r.t. y^{i} coordinates.
- Capital Latin letters denote strictly ordered p-indices, $I=\left(i_{1}, \ldots, i_{p}\right), i_{1}<\cdots<i_{p}$.
- Let $X: \Sigma \rightarrow M$ be a smooth map of manifolds. We denote $X^{i}=y^{i}(X)$ and $d X^{\prime}=d X^{i_{1}} \wedge \ldots \wedge d X^{i_{p}}$.
- Finally $\widetilde{\partial X}^{\prime}=\left(d X^{\prime}\right)_{1 \ldots p}$, "spacelike" components of p-form $d X^{\prime}$ on Σ.

Nambu sigma model

Action

- Moreover, we introduce auxiliary fields η_{i} and $\tilde{\eta}_{I}$, both in $C^{\infty}(\Sigma)$, well transforming according to their index structure.
- The action of Nambu sigma model is given as integral


```
where
- (G-1}\mp@subsup{)}{}{ij}\mathrm{ is the inverse of Riemannian metric G on M
- (\widetilde{G}}\mp@subsup{}{-1}{)}\mp@subsup{)}{}{/J}\mathrm{ is the inverse of fiberwise Riemannian metric }\widetilde{G}\mathrm{ on \}\mp@subsup{\Lambda}{}{p}TM\mathrm{ ,
- \Pi is a (p+1)-vector field on M,
- B is a (p+1)-form on M.
```

- Note that generalized generalized geometry is a natural playground for NSM, i.e. the geometry of vector bundle $T M \oplus \Lambda^{p} T^{*} M$.

Nambu sigma model

Action

- Moreover, we introduce auxiliary fields η_{i} and $\widetilde{\eta}_{I}$, both in $C^{\infty}(\Sigma)$, well transforming according to their index structure.
- The action of Nambu sigma model is given as integral:

$$
\begin{align*}
S[\eta, \widetilde{\eta}, X]:=\int d^{p+1} \sigma[& -\frac{1}{2}\left(G^{-1}\right)^{i j} \eta_{i} \eta_{j}+\frac{1}{2}\left(\widetilde{G}^{-1}\right)^{I J} \widetilde{\eta}_{I} \widetilde{\eta}_{J}+\eta_{i} \partial_{0} X^{i} \\
& \left.+\widetilde{\eta}_{l} \widetilde{\partial X}^{\prime}-\Pi^{i J} \eta_{i} \widetilde{\eta}_{J}-B_{i J} \partial_{0} X^{i} \widetilde{\partial X}{ }^{J}\right], \quad \text { (1) } \tag{1}
\end{align*}
$$

where

- Note that generalized generalized geometry is a natural playground for NSM, i.e. the geometry of vector bundle $T M \oplus \Lambda^{p} T^{*} M$.

Nambu sigma model

Action

- Moreover, we introduce auxiliary fields η_{i} and $\widetilde{\eta}_{I}$, both in $C^{\infty}(\Sigma)$, well transforming according to their index structure.
- The action of Nambu sigma model is given as integral:

$$
\begin{align*}
S[\eta, \widetilde{\eta}, X]:=\int d^{p+1} \sigma[& -\frac{1}{2}\left(G^{-1}\right)^{i j} \eta_{i} \eta_{j}+\frac{1}{2}\left(\widetilde{G}^{-1}\right)^{I J} \widetilde{\eta}_{I} \widetilde{\eta}_{J}+\eta_{i} \partial_{0} X^{i} \\
& \left.+\widetilde{\eta}_{l} \widetilde{\partial X}^{\prime}-\Pi^{i J} \eta_{i} \widetilde{\eta}_{J}-B_{i J} \partial_{0} X^{i} \widetilde{\partial X}^{J}\right], \quad \text { (1) } \tag{1}
\end{align*}
$$

where

- $\left(G^{-1}\right)^{i j}$ is the inverse of Riemannian metric G on M,
- $\left(G^{-1}\right)^{1 J}$ is the inverse of fiberwise Riemannian metric G on $\Lambda^{P} T M$,
- Π is a $(p+1)$-vector field on M,
- B is a $(p+1)$-form on M.
- Note that generalized generalized geometry is a natural playground for NSM, i.e. the geometry of vector bundle $T M \oplus \Lambda^{p} T^{*} M$.

Nambu sigma model

Action

- Moreover, we introduce auxiliary fields η_{i} and $\widetilde{\eta}_{I}$, both in $C^{\infty}(\Sigma)$, well transforming according to their index structure.
- The action of Nambu sigma model is given as integral:

$$
\begin{align*}
S[\eta, \widetilde{\eta}, X]:=\int d^{p+1} \sigma[& -\frac{1}{2}\left(G^{-1}\right)^{i j} \eta_{i} \eta_{j}+\frac{1}{2}\left(\widetilde{G}^{-1}\right)^{I J} \widetilde{\eta}_{I} \widetilde{\eta}_{J}+\eta_{i} \partial_{0} X^{i} \\
& \left.+\widetilde{\eta}_{I} \widetilde{\partial X}^{\prime}-\Pi^{i J} \eta_{i} \widetilde{\eta_{J}}-B_{i J} \partial_{0} X^{i} \widetilde{\partial X}^{J}\right], \tag{1}
\end{align*}
$$

where

- $\left(G^{-1}\right)^{i j}$ is the inverse of Riemannian metric G on M,
- $\left(\widetilde{G}^{-1}\right)^{1 J}$ is the inverse of fiberwise Riemannian metric \widetilde{G} on $\Lambda^{p} T M$,
- B is a $(p+1)$-form on M
- Note that generalized generalized geometry is a natural playground for NSM, i.e. the geometry of vector bundle $T M \oplus \Lambda^{p} T^{*} M$.

Nambu sigma model

Action

- Moreover, we introduce auxiliary fields η_{i} and $\widetilde{\eta}_{I}$, both in $C^{\infty}(\Sigma)$, well transforming according to their index structure.
- The action of Nambu sigma model is given as integral:

$$
\begin{align*}
S[\eta, \widetilde{\eta}, X]:=\int d^{p+1} \sigma[& -\frac{1}{2}\left(G^{-1}\right)^{i j} \eta_{i} \eta_{j}+\frac{1}{2}\left(\widetilde{G}^{-1}\right)^{I J} \widetilde{\eta}_{I} \widetilde{\eta}_{J}+\eta_{i} \partial_{0} X^{i} \\
& \left.+\widetilde{\eta}_{I} \widetilde{\partial X}^{\prime}-\Pi^{i J} \eta_{i} \widetilde{\eta}_{J}-B_{i J} \partial_{0} X^{i} \widetilde{\partial X}^{J}\right], \tag{1}
\end{align*}
$$

where

- $\left(G^{-1}\right)^{i j}$ is the inverse of Riemannian metric G on M,
- $\left(\widetilde{G}^{-1}\right)^{1 J}$ is the inverse of fiberwise Riemannian metric \widetilde{G} on $\Lambda^{p} T M$,
- Π is a $(p+1)$-vector field on M,
- Note that generalized generalized geometry is a natural playground for NSM, i.e. the geometry of vector bundle $T M \oplus \Lambda^{p} T^{*} M$.

Nambu sigma model

Action

- Moreover, we introduce auxiliary fields η_{i} and $\widetilde{\eta}_{I}$, both in $C^{\infty}(\Sigma)$, well transforming according to their index structure.
- The action of Nambu sigma model is given as integral:

$$
\begin{align*}
S[\eta, \widetilde{\eta}, X]:=\int d^{p+1} \sigma[& -\frac{1}{2}\left(G^{-1}\right)^{i j} \eta_{i} \eta_{j}+\frac{1}{2}\left(\widetilde{G}^{-1}\right)^{I J} \widetilde{\eta}_{I} \widetilde{\eta}_{J}+\eta_{i} \partial_{0} X^{i} \\
& \left.+\widetilde{\eta}_{I} \widetilde{\partial X}^{\prime}-\Pi^{i J} \eta_{i} \widetilde{\eta_{J}}-B_{i J} \partial_{0} X^{i} \widetilde{\partial X}^{J}\right], \tag{1}
\end{align*}
$$

where

- $\left(G^{-1}\right)^{i j}$ is the inverse of Riemannian metric G on M,
- $\left(\mathcal{G}^{-1}\right)^{1 J}$ is the inverse of fiberwise Riemannian metric \widetilde{G} on $\Lambda^{p} T M$,
- Π is a $(p+1)$-vector field on M,
- B is a $(p+1)$-form on M.
- Note that generalized generalized geometry is a natural playground for NSM , i.e. the geometry of vector bundle $T M \oplus \Lambda^{p} T^{*} M$.

Nambu sigma model

- Moreover, we introduce auxiliary fields η_{i} and $\widetilde{\eta}_{I}$, both in $C^{\infty}(\Sigma)$, well transforming according to their index structure.
- The action of Nambu sigma model is given as integral:

$$
\begin{align*}
S[\eta, \widetilde{\eta}, X]:=\int d^{p+1} \sigma[& -\frac{1}{2}\left(G^{-1}\right)^{i j} \eta_{i} \eta_{j}+\frac{1}{2}\left(\widetilde{G}^{-1}\right)^{\prime J} \widetilde{\eta}_{l} \widetilde{\eta}_{J}+\eta_{i} \partial_{0} X^{i} \\
& \left.+\widetilde{\eta}_{l} \widetilde{\partial X}^{\prime}-\Pi^{i J} \eta_{i} \widetilde{\eta}_{J}-B_{i J} \partial_{0} X^{i} \widetilde{\partial X}^{J}\right], \quad \text { (1) } \tag{1}
\end{align*}
$$

where

- $\left(G^{-1}\right)^{i j}$ is the inverse of Riemannian metric G on M,
- $\left(\widetilde{G}^{-1}\right)^{l J}$ is the inverse of fiberwise Riemannian metric \widetilde{G} on $\Lambda^{p} T M$,
- Π is a $(p+1)$-vector field on M,
- B is a $(p+1)$-form on M.
- Note that generalized generalized geometry is a natural playground for NSM, i.e. the geometry of vector bundle $T M \oplus \Lambda^{p} T^{*} M$.

Nambu sigma model

Hamiltonian formulation

- We can try to naively construct a Hamiltonian corresponding to this Lagrangian.
- The canonical momenta has the form:

- We can thus express η_{i} using P and B. Define

- For G, G nonzero, one can express $\widetilde{\eta}$'s using their EQM, to get new Hamiltonian $H=H[X, P]$.
- For $G^{-1}=G^{-1}$ we cannot do that \Rightarrow topological Nambu sigma model
- We obtain the Hamiltonian of X and P only, not loosing any dynamics.

Nambu sigma model

Hamiltonian formulation

- We can try to naively construct a Hamiltonian corresponding to this Lagrangian.
- The canonical momenta has the form:

$$
P_{i}=\eta_{i}-B_{i J} \widetilde{\partial X}^{J}
$$

- We can thus express η_{i} using P and B. Define

- For G, G nonzero, one can express $\tilde{\eta}^{\prime}$ s using their EQM, to get new Hamiltonian $H=H[X, P]$
- For $G^{-1}=G^{-1}$ we cannot do that \Rightarrow topological Nambu sigma model
- We obtain the Hamiltonian of X and P only, not loosing any dynamics.

Nambu sigma model

Hamiltonian formulation

- We can try to naively construct a Hamiltonian corresponding to this Lagrangian.
- The canonical momenta has the form:

$$
P_{i}=\eta_{i}-B_{i J} \widetilde{\partial X}^{J}
$$

- We can thus express η_{i} using P and B. Define

- For G, G nonzero, one can express $\widetilde{\eta}$'s using their EQM, to get new Hamiltonian $H=H[X, P]$.
- For $G^{-1}=G^{-1}$ we cannot do that \Rightarrow topological Nambu sigma model
- We obtain the Hamiltonian of X and P only, not loosing any

Nambu sigma model

Hamiltonian formulation

- We can try to naively construct a Hamiltonian corresponding to this Lagrangian.
- The canonical momenta has the form:

$$
P_{i}=\eta_{i}-B_{i J} \widetilde{\partial X}^{J}
$$

- We can thus express η_{i} using P and B. Define

$$
H[X, P, \widetilde{\eta}]:=\int d^{p} \sigma \dot{X}^{m} P_{m}-\mathcal{L}[X, P, \widetilde{\eta}] .
$$

- For G, G nonzero, one can express $\widetilde{\eta}$'s using their EQM, to get new Hamiltonian $H=H[X, P]$.
- For $G^{-1}=G^{-1}$ we cannot do that \Rightarrow topological Nambu sigma model
- We obtain the Hamiltonian of X and P only, not loosing any

Nambu sigma model

Hamiltonian formulation

- We can try to naively construct a Hamiltonian corresponding to this Lagrangian.
- The canonical momenta has the form:

$$
P_{i}=\eta_{i}-B_{i J} \widetilde{\partial X}^{J}
$$

- We can thus express η_{i} using P and B. Define

$$
H[X, P, \tilde{\eta}]:=\int d^{p} \sigma \dot{X}^{m} P_{m}-\mathcal{L}[X, P, \tilde{\eta}] .
$$

- For G, \widetilde{G} nonzero, one can express $\widetilde{\eta}$'s using their EQM , to get new Hamiltonian $H=H[X, P]$.
- For $G^{-1}=G^{-1}$ we cannot do that \Rightarrow topological Nambu sigma model
- We obtain the Hamiltonian of X and P only, not loosing any dynamics.

Nambu sigma model

Hamiltonian formulation

- We can try to naively construct a Hamiltonian corresponding to this Lagrangian.
- The canonical momenta has the form:

$$
P_{i}=\eta_{i}-B_{i J} \widetilde{\partial X}^{J}
$$

- We can thus express η_{i} using P and B. Define

$$
H[X, P, \widetilde{\eta}]:=\int d^{p} \sigma \dot{X}^{m} P_{m}-\mathcal{L}[X, P, \tilde{\eta}] .
$$

- For G, \widetilde{G} nonzero, one can express $\widetilde{\eta}$'s using their EQM , to get new Hamiltonian $H=H[X, P]$.
- For $G^{-1}=\widetilde{G}^{-1}$ we cannot do that \Rightarrow topological Nambu sigma model.
- We obtain the Hamiltonian of X and P only, not loosing any dynamics.

Nambu sigma model

Hamiltonian formulation

- We can try to naively construct a Hamiltonian corresponding to this Lagrangian.
- The canonical momenta has the form:

$$
P_{i}=\eta_{i}-B_{i J} \widetilde{\partial X}^{J}
$$

- We can thus express η_{i} using P and B. Define

$$
H[X, P, \widetilde{\eta}]:=\int d^{p} \sigma \dot{X}^{m} P_{m}-\mathcal{L}[X, P, \widetilde{\eta}]
$$

- For G, \widetilde{G} nonzero, one can express $\widetilde{\eta}$'s using their EQM, to get new Hamiltonian $H=H[X, P]$.
- For $G^{-1}=\widetilde{G}^{-1}$ we cannot do that \Rightarrow topological Nambu sigma model.
- We obtain the Hamiltonian of X and P only, not loosing any dynamics.

Nambu sigma model

Hamiltonian formulation

- Define the following currents:

- The resulting Hamiltonian is quadratic and has the form

$$
H[X, P]=\frac{1}{2} \int d^{P} \sigma\left[\left(G^{-1}\right)^{i j} K_{i} K_{j}+\widetilde{G}_{J J} \widetilde{K}^{\prime} \tilde{K}^{\prime}\right] .
$$

- Expanding the K and \widetilde{K} we can express it as quadratic form in P, and ∂X

- The matrix \mathbf{H} can be written as following product:

Nambu sigma model

Hamiltonian formulation

- Define the following currents:

$$
K_{i}:=\eta_{i}=P_{i}+B_{i K} \widetilde{\partial X}^{K}, \quad \widetilde{K}^{\prime}:=\widetilde{\partial X}^{\prime}-\Pi^{m \prime} K_{m} .
$$

- The resulting Hamiltonian is quadratic and has the form

- Expanding the K and \widetilde{K} we can express it as quadratic form in P, and ∂X

- The matrix \mathbf{H} can be written as following product:

Nambu sigma model

Hamiltonian formulation

- Define the following currents:

$$
K_{i}:=\eta_{i}=P_{i}+B_{i K} \widetilde{\partial X}^{K}, \quad \widetilde{K}^{\prime}:=\widetilde{\partial X}^{\prime}-\Pi^{m \prime} K_{m} .
$$

- The resulting Hamiltonian is quadratic and has the form

$$
H[X, P]=\frac{1}{2} \int d^{p} \sigma\left[\left(G^{-1}\right)^{i j} K_{i} K_{j}+\widetilde{G}_{J J} \widetilde{K}^{\prime} \widetilde{K}^{J}\right] .
$$

- Expanding the K and K we can express it as quadratic form in P and ∂X

- The matrix \mathbf{H} can be written as following product:

Nambu sigma model

Hamiltonian formulation

- Define the following currents:

$$
K_{i}:=\eta_{i}=P_{i}+B_{i K} \widetilde{\partial X}^{K}, \quad \widetilde{K}^{\prime}:=\widetilde{\partial X}^{\prime}-\Pi^{m l} K_{m} .
$$

- The resulting Hamiltonian is quadratic and has the form

$$
H[X, P]=\frac{1}{2} \int d^{p} \sigma\left[\left(G^{-1}\right)^{i j} K_{i} K_{j}+\widetilde{G}_{I J} \widetilde{K}^{\prime} \widetilde{K}^{J}\right] .
$$

- Expanding the K and \widetilde{K} we can express it as quadratic form in P, and $\widetilde{\partial X}$:

$$
H[X, P]=\frac{1}{2} \int d^{p} \sigma\left[\mathbf{H}^{i j} P_{i} P_{j}+2 \mathbf{H}_{J}^{i} P_{i} \widetilde{\partial X}^{J}+\mathbf{H}_{I J} \widetilde{\partial X}^{\prime} \widetilde{\partial X}^{J}\right] .
$$

- The matrix \mathbf{H} can be written as following product:

Nambu sigma model

Hamiltonian formulation

- Define the following currents:

$$
K_{i}:=\eta_{i}=P_{i}+B_{i K} \widetilde{\partial X}^{K}, \quad \widetilde{K}^{\prime}:=\widetilde{\partial X}^{\prime}-\Pi^{m l} K_{m} .
$$

- The resulting Hamiltonian is quadratic and has the form

$$
H[X, P]=\frac{1}{2} \int d^{p} \sigma\left[\left(G^{-1}\right)^{i j} K_{i} K_{j}+\widetilde{G}_{J} \widetilde{K}^{\prime} \widetilde{K}^{J}\right] .
$$

- Expanding the K and \widetilde{K} we can express it as quadratic form in P, and $\widetilde{\partial X}$:

$$
H[X, P]=\frac{1}{2} \int d^{p} \sigma\left[\mathbf{H}^{i j} P_{i} P_{j}+2 \mathbf{H}_{J}^{i} P_{i} \widetilde{\partial X}^{J}+\mathbf{H}_{I J} \widetilde{\partial X}^{\prime} \widetilde{\partial X}^{J}\right] .
$$

- The matrix \mathbf{H} can be written as following product:

$$
\mathbf{H}=\left(\begin{array}{cc}
1 & 0 \\
B^{T} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\Pi \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
G^{-1} & 0 \\
0 & \widetilde{G}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\Pi^{T} & 1
\end{array}\right)\left(\begin{array}{ll}
1 & B \\
0 & 1
\end{array}\right) .
$$

Higher brackets

Higher Dorfman bracket

- Vector field commutator on M can be viewed as skew-symmetric bracket on $\Gamma(T M)$, satisfying

- Replace now $T M$ with $E=T M \oplus \Lambda^{p} T^{*} M$. Is there a bracket with similar properties?
- Answer $=$ higher Dorfman bracket. Define

$$
[V+\xi, W+\eta]_{D}=[V, W]+\mathcal{L}_{V} \eta-i_{W} d \xi
$$

\square

- Jacobi $=$ ves,
- Leibniz $=$ yes, just replace $\rho=I d_{T M}$ with $p r_{1}: E \rightarrow T M$
- Skew-symmetry = no, but symmetric part can be controlled

Higher brackets

Higher Dorfman bracket

- Vector field commutator on M can be viewed as skew-symmetric bracket on $\Gamma(T M)$, satisfying
(1) $\left[e_{1},\left[e_{2}, e_{3}\right]\right]=\left[\left[e_{1}, e_{2}\right], e_{3}\right]+\left[e_{2},\left[e_{1}, e_{3}\right]\right]$ (Jacobi identity),
- Replace now $T M$ with $E=T M \oplus \Lambda^{p} T^{*} M$. Is there a bracket with similar properties?
- Answer $=$ higher Dorfman bracket. Define

$$
[V+\xi, W+\eta]_{D}=[V, W]+\mathcal{L}_{V} \eta-i_{W} d \xi,
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- Jacobi $=$ yes,
- Leibniz $=$ yes, just replace $\rho=I d_{T M}$ with $p r_{1}: E \rightarrow T M$
- Skew-symmetry $=$ no, but symmetric part can be controlled

Higher brackets

Higher Dorfman bracket

- Vector field commutator on M can be viewed as skew-symmetric bracket on $\Gamma(T M)$, satisfying
(1) $\left[e_{1},\left[e_{2}, e_{3}\right]\right]=\left[\left[e_{1}, e_{2}\right], e_{3}\right]+\left[e_{2},\left[e_{1}, e_{3}\right]\right]$ (Jacobi identity),
(2) $\left[e_{1}, f e_{2}\right]=\left(\rho\left(e_{1}\right) . f\right) e_{2}+f\left[e_{1}, e_{2}\right]$ (Leibniz rule),
- Replace now $T M$ with $E=T M \oplus \Lambda^{p} T^{*} M$. Is there a bracket with similar properties?
- Answer $=$ higher Dorfman bracket. Define

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.
- Jacobi $=$ yes,
- Leibniz $=$ yes, just replace $\rho=I_{\text {TM }}$ with pr $_{1}: E \rightarrow$ TM
- Skew-symmetry = no, but symmetric part can be controlled

Higher brackets

Higher Dorfman bracket

- Vector field commutator on M can be viewed as skew-symmetric bracket on $\Gamma(T M)$, satisfying
(1) $\left[e_{1},\left[e_{2}, e_{3}\right]\right]=\left[\left[e_{1}, e_{2}\right], e_{3}\right]+\left[e_{2},\left[e_{1}, e_{3}\right]\right]$ (Jacobi identity),
(2) $\left[e_{1}, f e_{2}\right]=\left(\rho\left(e_{1}\right) . f\right) e_{2}+f\left[e_{1}, e_{2}\right]$ (Leibniz rule), for all
$e_{1}, e_{2}, e_{3} \in \Gamma(T M)$ and $f \in C^{\infty}(M)$, where $\rho=I d_{T M}$
- Replace now $T M$ with $E=T M \oplus \Lambda^{p} T^{*} M$. Is there a bracket with similar properties?
- Answer $=$ higher Dorfman bracket. Define

$$
[V+\xi, W+\eta]_{D}=[V, W]+\mathcal{L}_{V} \eta-i_{W} d \xi
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- Jacobi $=$ yes,
- Leibniz $=$ yes, just replace $\rho=I_{T M}$ with pr $_{1}: E \rightarrow$ TM.
- Skew-symmetry = no, but symmetric part can be controlled

Higher brackets

Higher Dorfman bracket

- Vector field commutator on M can be viewed as skew-symmetric bracket on $\Gamma(T M)$, satisfying
(1) $\left[e_{1},\left[e_{2}, e_{3}\right]\right]=\left[\left[e_{1}, e_{2}\right], e_{3}\right]+\left[e_{2},\left[e_{1}, e_{3}\right]\right]$ (Jacobi identity),
(2) $\left[e_{1}, f e_{2}\right]=\left(\rho\left(e_{1}\right) . f\right) e_{2}+f\left[e_{1}, e_{2}\right]$ (Leibniz rule), for all $e_{1}, e_{2}, e_{3} \in \Gamma(T M)$ and $f \in C^{\infty}(M)$, where $\rho=I d_{T M}$
- Replace now $T M$ with $E=T M \oplus \Lambda^{p} T^{*} M$. Is there a bracket with similar properties?
- Answer $=$ higher Dorfman bracket. Define

for all $(V+\xi),(W+\eta) \in \Gamma(E)$
- Jacobi $=$ yes,
- Leibniz $=$ yes, just replace $\rho=I_{T M}$ with pr $_{1}: E \rightarrow$ TM
- Skew-symmetry = no, but symmetric part can be controlled

Higher brackets

Higher Dorfman bracket

- Vector field commutator on M can be viewed as skew-symmetric bracket on $\Gamma(T M)$, satisfying
(1) $\left[e_{1},\left[e_{2}, e_{3}\right]\right]=\left[\left[e_{1}, e_{2}\right], e_{3}\right]+\left[e_{2},\left[e_{1}, e_{3}\right]\right]$ (Jacobi identity),
(2) $\left[e_{1}, f e_{2}\right]=\left(\rho\left(e_{1}\right) . f\right) e_{2}+f\left[e_{1}, e_{2}\right]$ (Leibniz rule), for all $e_{1}, e_{2}, e_{3} \in \Gamma(T M)$ and $f \in C^{\infty}(M)$, where $\rho=I d_{T M}$
- Replace now $T M$ with $E=T M \oplus \Lambda^{p} T^{*} M$. Is there a bracket with similar properties?
- Answer = higher Dorfman bracket
for all $(V+\xi),(W+\eta) \in \Gamma(E)$.
- Jacobi $=$ yes,
- Leibniz $=$ yes, just replace $\rho=I_{T M}$ with pr ${ }_{1}: E \rightarrow$ TM
- Skew-symmetry = no, but symmetric part can be controlled

Higher brackets

Higher Dorfman bracket

- Vector field commutator on M can be viewed as skew-symmetric bracket on $\Gamma(T M)$, satisfying
(1) $\left[e_{1},\left[e_{2}, e_{3}\right]\right]=\left[\left[e_{1}, e_{2}\right], e_{3}\right]+\left[e_{2},\left[e_{1}, e_{3}\right]\right]$ (Jacobi identity),
(2) $\left[e_{1}, f e_{2}\right]=\left(\rho\left(e_{1}\right) . f\right) e_{2}+f\left[e_{1}, e_{2}\right]$ (Leibniz rule), for all

$$
e_{1}, e_{2}, e_{3} \in \Gamma(T M) \text { and } f \in C^{\infty}(M) \text {, where } \rho=I d_{T M}
$$

- Replace now $T M$ with $E=T M \oplus \Lambda^{p} T^{*} M$. Is there a bracket with similar properties?
- Answer $=$ higher Dorfman bracket. Define

$$
[V+\xi, W+\eta]_{D}=[V, W]+\mathcal{L}_{V} \eta-i_{W} d \xi
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- Leibniz $=$ yes, just replace $\rho=I_{T M}$ with $p r_{1}: E \rightarrow$ TM
- Sleew symmetry = no, but symmetric part can be controlled

Higher brackets

Higher Dorfman bracket

- Vector field commutator on M can be viewed as skew-symmetric bracket on $\Gamma(T M)$, satisfying
(1) $\left[e_{1},\left[e_{2}, e_{3}\right]\right]=\left[\left[e_{1}, e_{2}\right], e_{3}\right]+\left[e_{2},\left[e_{1}, e_{3}\right]\right]$ (Jacobi identity),
(2) $\left[e_{1}, f e_{2}\right]=\left(\rho\left(e_{1}\right) . f\right) e_{2}+f\left[e_{1}, e_{2}\right]$ (Leibniz rule), for all

$$
e_{1}, e_{2}, e_{3} \in \Gamma(T M) \text { and } f \in C^{\infty}(M) \text {, where } \rho=I d_{T M}
$$

- Replace now $T M$ with $E=T M \oplus \Lambda^{p} T^{*} M$. Is there a bracket with similar properties?
- Answer $=$ higher Dorfman bracket. Define

$$
[V+\xi, W+\eta]_{D}=[V, W]+\mathcal{L}_{V} \eta-i_{W} d \xi
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- Jacobi $=$ yes,
- Leibniz $=$ yes, just replace $\rho=I d_{T M}$ with $p r_{1}: E \rightarrow T M$.
- Skew-symmetry $=$ no, but symmetric part can be controlled

Higher brackets

Higher Dorfman bracket

- Vector field commutator on M can be viewed as skew-symmetric bracket on $\Gamma(T M)$, satisfying
(1) $\left[e_{1},\left[e_{2}, e_{3}\right]\right]=\left[\left[e_{1}, e_{2}\right], e_{3}\right]+\left[e_{2},\left[e_{1}, e_{3}\right]\right]$ (Jacobi identity),
(2) $\left[e_{1}, f e_{2}\right]=\left(\rho\left(e_{1}\right) . f\right) e_{2}+f\left[e_{1}, e_{2}\right]$ (Leibniz rule), for all

$$
e_{1}, e_{2}, e_{3} \in \Gamma(T M) \text { and } f \in C^{\infty}(M) \text {, where } \rho=I d_{T M}
$$

- Replace now $T M$ with $E=T M \oplus \Lambda^{p} T^{*} M$. Is there a bracket with similar properties?
- Answer $=$ higher Dorfman bracket. Define

$$
[V+\xi, W+\eta]_{D}=[V, W]+\mathcal{L}_{V} \eta-i_{W} d \xi
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- Jacobi = yes,
- Leibniz $=$ yes, just replace $\rho=I d_{T M}$ with $p r_{1}: E \rightarrow T M$.
- Skew-symmetry = no, but symmetric part can be controlled

Higher brackets

Higher Dorfman bracket

- Vector field commutator on M can be viewed as skew-symmetric bracket on $\Gamma(T M)$, satisfying
(1) $\left[e_{1},\left[e_{2}, e_{3}\right]\right]=\left[\left[e_{1}, e_{2}\right], e_{3}\right]+\left[e_{2},\left[e_{1}, e_{3}\right]\right]$ (Jacobi identity),
(2) $\left[e_{1}, f e_{2}\right]=\left(\rho\left(e_{1}\right) . f\right) e_{2}+f\left[e_{1}, e_{2}\right]$ (Leibniz rule), for all

$$
e_{1}, e_{2}, e_{3} \in \Gamma(T M) \text { and } f \in C^{\infty}(M) \text {, where } \rho=I d_{T M}
$$

- Replace now $T M$ with $E=T M \oplus \Lambda^{p} T^{*} M$. Is there a bracket with similar properties?
- Answer $=$ higher Dorfman bracket. Define

$$
[V+\xi, W+\eta]_{D}=[V, W]+\mathcal{L}_{V} \eta-i_{W} d \xi
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- Jacobi = yes,
- Leibniz $=$ yes, just replace $\rho=I d_{T M}$ with $p r_{1}: E \rightarrow T M$.
- Skew-symmetry $=$ no, but symmetric part can be controlled.

Higher brackets

Higher Dorfman bracket

- This bracket has many interesting properties. For instance, define $\langle\cdot, \cdot\rangle: \Gamma(E) \times \Gamma(E) \rightarrow \Omega^{p-1}(M)$ as

$$
\langle V+\xi, W+\eta\rangle:=i_{V} \eta+i_{W} \xi,
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$. This is a non-degenerate pairing.

- This pairing is "invariant" under higher Dorfman bracket, there holds:

for all $e, e_{2}, e_{2} \in \Gamma(E)$

for all $e \in \Gamma(E)$

Higher brackets

Higher Dorfman bracket

- This bracket has many interesting properties. For instance, define $\langle\cdot, \cdot\rangle: \Gamma(E) \times \Gamma(E) \rightarrow \Omega^{p-1}(M)$ as

$$
\langle V+\xi, W+\eta\rangle:=i_{V} \eta+i_{W} \xi,
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$. This is a non-degenerate pairing, that is $\Gamma(E)^{\perp}=\{0\}$.

- This pairing is "invariant" under higher Dorfman bracket, there holds:

$$
\mathcal{L}_{\rho(e)}\left\langle e_{1}, e_{2}\right\rangle=\left\langle\left[e, e_{1}\right]_{D}, e_{2}\right\rangle+\left\langle e_{1},\left[e, e_{2}\right]_{D}\right\rangle
$$

for all $e, e_{2}, e_{2} \in \Gamma(E)$

- Let $\mathcal{D}=j \circ d$, where $j: \Omega^{p}(M) \rightarrow \Gamma(E)$ is an inclusion. Then we have

for all $e \in \Gamma(E)$

Higher brackets

Higher Dorfman bracket

- This bracket has many interesting properties. For instance, define $\langle\cdot, \cdot\rangle: \Gamma(E) \times \Gamma(E) \rightarrow \Omega^{p-1}(M)$ as

$$
\langle V+\xi, W+\eta\rangle:=i_{V} \eta+i_{W} \xi,
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$. This is a non-degenerate pairing, that is $\Gamma(E)^{\perp}=\{0\}$.

- This pairing is "invariant" under higher Dorfman bracket, there holds:

$$
\mathcal{L}_{\rho(e)}\left\langle e_{1}, e_{2}\right\rangle=\left\langle\left[e, e_{1}\right]_{D}, e_{2}\right\rangle+\left\langle e_{1},\left[e, e_{2}\right]_{D}\right\rangle,
$$

for all $e, e_{2}, e_{2} \in \Gamma(E)$.
for all $e \in \Gamma(E)$

Higher brackets

Higher Dorfman bracket

- This bracket has many interesting properties. For instance, define $\langle\cdot, \cdot\rangle: \Gamma(E) \times \Gamma(E) \rightarrow \Omega^{p-1}(M)$ as

$$
\langle V+\xi, W+\eta\rangle:=i_{V} \eta+i_{W} \xi,
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$. This is a non-degenerate pairing, that is $\Gamma(E)^{\perp}=\{0\}$.

- This pairing is "invariant" under higher Dorfman bracket, there holds:

$$
\mathcal{L}_{\rho(e)}\left\langle e_{1}, e_{2}\right\rangle=\left\langle\left[e, e_{1}\right]_{D}, e_{2}\right\rangle+\left\langle e_{1},\left[e, e_{2}\right]_{D}\right\rangle,
$$

for all $e, e_{2}, e_{2} \in \Gamma(E)$.

- Let $\mathcal{D}=j \circ d$, where $j: \Omega^{p}(M) \rightarrow \Gamma(E)$ is an inclusion. Then we have

$$
[e, e]_{D}=\frac{1}{2} \mathcal{D}\langle e, e\rangle,
$$

for all $e \in \Gamma(E)$.

Higher brackets

Twisting the brackets

- We may ask how to modify the bracket, not spoiling the good properties.
- Let H be a closed $(p+2)$-form. Define H-twisted higher Dorfman bracket:

- Let $\Pi^{\#}: \Omega^{p}(M) \rightarrow \Gamma(E)$ be a $C^{\infty}(M)$-linear map of sections. Define new anchor map ρ as

$$
\rho(V+\xi):=V-\Pi^{\#}(\xi),
$$

twisted inclusion $j: \Omega^{p}(M) \rightarrow \Gamma(E)$ as

Higher brackets

Twisting the brackets

- We may ask how to modify the bracket, not spoiling the good properties.
- Let H be a closed $(p+2)$-form. Define H -twisted higher Dorfman bracket:
- Let $\Pi^{\#}: \Omega^{p}(M) \rightarrow \Gamma(E)$ be a $C^{\infty}(M)$-linear map of sections. Define new anchor map ρ as

$$
\rho(V+\xi):=V-\Pi^{\#}(\xi),
$$

twisted inclusion $j: \Omega^{P}(M) \rightarrow \Gamma(E)$ as

Higher brackets

Twisting the brackets

- We may ask how to modify the bracket, not spoiling the good properties.
- Let H be a closed ($p+2$)-form. Define H-twisted higher Dorfman bracket:

$$
[V+\xi, W+\eta]_{D}^{(H)}=[V+\xi, W+\eta]_{D}+i_{W} i_{V} H .
$$

- Let $\Pi^{\#}: \Omega^{p}(M) \rightarrow \Gamma(E)$ be a $C^{\infty}(M)$-linear map of sections. Define new anchor map ρ as
twisted inclusion $j: \Omega^{p}(M) \rightarrow \Gamma(E)$ as

Higher brackets

Twisting the brackets

- We may ask how to modify the bracket, not spoiling the good properties.
- Let H be a closed ($p+2$)-form. Define H-twisted higher Dorfman bracket:

$$
[V+\xi, W+\eta]_{D}^{(H)}=[V+\xi, W+\eta]_{D}+i_{W} i_{V} H .
$$

- Let $\Pi^{\#}: \Omega^{p}(M) \rightarrow \Gamma(E)$ be a $C^{\infty}(M)$-linear map of sections. Define new anchor map ρ as
twisted inclusion $j: \Omega^{P}(M) \rightarrow \Gamma(E)$ as

Higher brackets

Twisting the brackets

- We may ask how to modify the bracket, not spoiling the good properties.
- Let H be a closed ($p+2$)-form. Define H-twisted higher Dorfman bracket:

$$
[V+\xi, W+\eta]_{D}^{(H)}=[V+\xi, W+\eta]_{D}+i_{W} i_{V} H .
$$

- Let $\Pi^{\#}: \Omega^{p}(M) \rightarrow \Gamma(E)$ be a $C^{\infty}(M)$-linear map of sections. Define new anchor map ρ as

$$
\rho(V+\xi):=V-\Pi^{\#}(\xi),
$$

twisted inclusion $j: \Omega^{P}(M) \rightarrow \Gamma(E)$ as

Higher brackets

Twisting the brackets

- We may ask how to modify the bracket, not spoiling the good properties.
- Let H be a closed ($p+2$)-form. Define H-twisted higher Dorfman bracket:

$$
[V+\xi, W+\eta]_{D}^{(H)}=[V+\xi, W+\eta]_{D}+i_{W} i_{V} H .
$$

- Let $\Pi^{\#}: \Omega^{p}(M) \rightarrow \Gamma(E)$ be a $C^{\infty}(M)$-linear map of sections.

Define new anchor map ρ as

$$
\rho(V+\xi):=V-\Pi^{\#}(\xi),
$$

twisted inclusion $j: \Omega^{p}(M) \rightarrow \Gamma(E)$ as

$$
j(\xi)=\xi+\Pi^{\#}(\xi) .
$$

Higher brackets

Higher Roytenberg bracket

- Next, we have to modify the pairing, denote it as $\langle\cdot, \cdot\rangle_{R}$:

$\left(e_{1}, e_{2}\right\rangle_{R}:=i_{p\left(e_{1}\right)} p r_{2}\left(e_{2}\right)+i_{p\left(e_{2}\right)} p r_{2}\left(e_{1}\right)$,
 for all $e_{1}, e_{2} \in \Gamma(E)$, where $p r_{2}: \Gamma(E) \rightarrow \Omega^{p}(M)$.
 - Finally, we have to "twist" the twisted higher Dorfrnan bracket:
 $\left[e_{1}, e_{2}\right]_{R}:=\left[\rho\left(e_{1}\right), \rho\left(e_{2}\right)\right]+j\left(\mathcal{L}_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)-i_{\rho\left(e_{2}\right)} d\left(p r_{2}\left(e_{1}\right)\right)+i_{\rho\left(e_{2}\right)} i_{\rho\left(e_{1}\right)} H\right)$,
 for all $e_{1}, e_{2} \in \Gamma(E)$. We call this bracket higher Roytenberg bracket.

- This bracket is isomorphic to $[\cdot, \cdot]_{D}^{(H)}$
- [. $]_{D}^{(H)}$ is isomorphic to $\left[\ldots 1_{D}^{\left(H^{\prime}\right)}\right.$ iff $[H]=\left[H^{\prime}\right]$ in $H_{d R}^{p+2}(M)$

Higher brackets

Higher Roytenberg bracket

- Next, we have to modify the pairing, denote it as $\langle\cdot, \cdot\rangle_{R}$:

$$
\left\langle e_{1}, e_{2}\right\rangle_{R}:=i_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)+i_{\rho\left(e_{2}\right)} p r_{2}\left(e_{1}\right),
$$

for all $e_{1}, e_{2} \in \Gamma(E)$, where $p r_{2}: \Gamma(E) \rightarrow \Omega^{p}(M)$.

- Finally, we have to "twist" the twisted higher Dorfman bracket:
$\left[e_{1}, e_{2}\right]_{R}:=\left[\rho\left(e_{1}\right), \rho\left(e_{2}\right)\right]+j\left(\mathcal{L}_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)-i_{\rho\left(e_{2}\right)} d\left(p r_{2}\left(e_{1}\right)\right)+i_{\rho\left(e_{2}\right)} i_{\rho\left(e_{1}\right)} H\right)$
for all $c_{1}, c_{2} \in \Gamma(E)$. We call this bracket higher Roytenberg bracket.
- This bracket is isomorphic to $[\cdot,]_{D}^{(H)}$
- [... $]_{D}^{(H)}$ is isomorphic to $[. .]_{D}^{\left(H^{\prime}\right)}$ iff $[H]=\left[H^{\prime}\right]$ in $H_{d R}^{(+2}(M)$

Higher brackets

Higher Roytenberg bracket

- Next, we have to modify the pairing, denote it as $\langle\cdot, \cdot\rangle_{R}$:

$$
\left\langle e_{1}, e_{2}\right\rangle_{R}:=i_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)+i_{\rho\left(e_{2}\right)} p r_{2}\left(e_{1}\right),
$$

for all $e_{1}, e_{2} \in \Gamma(E)$, where $p r_{2}: \Gamma(E) \rightarrow \Omega^{p}(M)$.

- Finally, we have to "twist" the twisted higher Dorfman bracket:
$\left[e_{1}, e_{2}\right]_{R}:=\left[\rho\left(e_{1}\right), \rho\left(e_{2}\right)\right]+j\left(\mathcal{L}_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)-i_{\rho\left(e_{2}\right)} d\left(p r_{2}\left(e_{1}\right)\right)+i_{\rho\left(e_{2}\right)} i_{\rho\left(e_{1}\right)} H\right)$
for all $e_{1}, e_{2} \in \Gamma(E)$. We call this bracket higher Roytenberg bracket.
- This bracket is isomorphic to $[,]_{D}^{(1+1)}$
- $[\cdot,]_{D}^{(H)}$ is isomorphic to $[\cdot, \cdot]_{D}^{\left(H^{\prime}\right)}$ iff $[H]=\left[H^{\prime}\right]$ in $H_{d R}^{p+2}(M)$

Higher brackets

Higher Roytenberg bracket

- Next, we have to modify the pairing, denote it as $\langle\cdot, \cdot\rangle_{R}$:

$$
\left\langle e_{1}, e_{2}\right\rangle_{R}:=i_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)+i_{\rho\left(e_{2}\right)} p r_{2}\left(e_{1}\right),
$$

for all $e_{1}, e_{2} \in \Gamma(E)$, where $p r_{2}: \Gamma(E) \rightarrow \Omega^{p}(M)$.

- Finally, we have to "twist" the twisted higher Dorfman bracket:
$\left[e_{1}, e_{2}\right]_{R}:=\left[\rho\left(e_{1}\right), \rho\left(e_{2}\right)\right]+j\left(\mathcal{L}_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)-i_{\rho\left(e_{2}\right)} d\left(p r_{2}\left(e_{1}\right)\right)+i_{\rho\left(e_{2}\right)} i_{\rho\left(e_{1}\right)} H\right)$, for all $e_{1}, e_{2} \in \Gamma(E)$. We call this bracket higher Roytenberg bracket.
- This bracket is isomorphic to $[\cdot, \cdot]_{D}^{(H)}$
- [.. . $]_{D}^{(H)}$ is isomornhic to $[. .]_{D}^{\left(H^{\prime}\right)}$ iff $[H]=\left[H^{\prime}\right]$ in $H_{d R}^{p+2}(M)$

Higher brackets

Higher Roytenberg bracket

- Next, we have to modify the pairing, denote it as $\langle\cdot, \cdot\rangle_{R}$:

$$
\left\langle e_{1}, e_{2}\right\rangle_{R}:=i_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)+i_{\rho\left(e_{2}\right)} p r_{2}\left(e_{1}\right)
$$

for all $e_{1}, e_{2} \in \Gamma(E)$, where $p r_{2}: \Gamma(E) \rightarrow \Omega^{p}(M)$.

- Finally, we have to "twist" the twisted higher Dorfman bracket:
$\left[e_{1}, e_{2}\right]_{R}:=\left[\rho\left(e_{1}\right), \rho\left(e_{2}\right)\right]+j\left(\mathcal{L}_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)-i_{\rho\left(e_{2}\right)} d\left(p r_{2}\left(e_{1}\right)\right)+i_{\rho\left(e_{2}\right)} i_{\rho\left(e_{1}\right)} H\right)$,
for all $e_{1}, e_{2} \in \Gamma(E)$. We call this bracket higher Roytenberg bracket.
- This bracket is isomorphic to $[\cdot, \cdot]_{D}^{(H)}$
- $[\cdot, \cdot]_{D}^{(H)}$ is isomorphic to $[\cdot, \cdot]_{D}^{\left(H^{\prime}\right)}$ iff $[H]=\left[H^{\prime}\right]$ in $H_{d R}^{p+2}(M)$.

Higher brackets

Higher Roytenberg bracket

- Next, we have to modify the pairing, denote it as $\langle\cdot, \cdot\rangle_{R}$:

$$
\left\langle e_{1}, e_{2}\right\rangle_{R}:=i_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)+i_{\rho\left(e_{2}\right)} p r_{2}\left(e_{1}\right)
$$

for all $e_{1}, e_{2} \in \Gamma(E)$, where $p r_{2}: \Gamma(E) \rightarrow \Omega^{p}(M)$.

- Finally, we have to "twist" the twisted higher Dorfman bracket:
$\left[e_{1}, e_{2}\right]_{R}:=\left[\rho\left(e_{1}\right), \rho\left(e_{2}\right)\right]+j\left(\mathcal{L}_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)-i_{\rho\left(e_{2}\right)} d\left(p r_{2}\left(e_{1}\right)\right)+i_{\rho\left(e_{2}\right)} i_{\rho\left(e_{1}\right)} H\right)$,
for all $e_{1}, e_{2} \in \Gamma(E)$. We call this bracket higher Roytenberg bracket.
- This bracket is isomorphic to $[\cdot, \cdot]_{D}^{(H)}$.
- $[\cdot, \cdot]_{D}^{(H)}$ is isomorphic to $[\cdot, \cdot]_{D}^{\left(H^{\prime}\right)}$ iff $[H]=\left[H^{\prime}\right]$ in $H_{d R}^{p+2}(M)$

Higher brackets

Higher Roytenberg bracket

- Next, we have to modify the pairing, denote it as $\langle\cdot, \cdot\rangle_{R}$:

$$
\left\langle e_{1}, e_{2}\right\rangle_{R}:=i_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)+i_{\rho\left(e_{2}\right)} p r_{2}\left(e_{1}\right)
$$

for all $e_{1}, e_{2} \in \Gamma(E)$, where $p r_{2}: \Gamma(E) \rightarrow \Omega^{p}(M)$.

- Finally, we have to "twist" the twisted higher Dorfman bracket:
$\left[e_{1}, e_{2}\right]_{R}:=\left[\rho\left(e_{1}\right), \rho\left(e_{2}\right)\right]+j\left(\mathcal{L}_{\rho\left(e_{1}\right)} p r_{2}\left(e_{2}\right)-i_{\rho\left(e_{2}\right)} d\left(p r_{2}\left(e_{1}\right)\right)+i_{\rho\left(e_{2}\right)} i_{\rho\left(e_{1}\right)} H\right)$,
for all $e_{1}, e_{2} \in \Gamma(E)$. We call this bracket higher Roytenberg bracket.
- This bracket is isomorphic to $[\cdot, \cdot]_{D}^{(H)}$.
- $[\cdot, \cdot]_{D}^{(H)}$ is isomorphic to $[\cdot, \cdot]_{D}^{\left(H^{\prime}\right)}$ iff $[H]=\left[H^{\prime}\right]$ in $H_{d R}^{p+2}(M)$.

Charge algebra

Generalized charges

- Dynamics of the Nambu sigma model is governed by a canonical Poisson bracket:

$$
\left\{X^{m}(\sigma), P_{n}\left(\sigma^{\prime}\right)\right\}=\delta_{n}^{m} \delta^{p}\left(\sigma-\sigma^{\prime}\right)
$$

where σ, σ^{\prime} are p-tuples of spacelike coordinates on Σ.

- To any two functionals F functional

- Let f be a test function on Σ. Define generalized charges as:

$$
Q_{f}(V+\xi)=\int d^{1 D} \sigma\left[V^{m}(X) K_{m}+\xi(X) \widetilde{K}^{\prime}\right](\sigma) f(\sigma)
$$

- For many computational purposes, we were interested in Poisson bracket of two such charges

Charge algebra

Generalized charges

- Dynamics of the Nambu sigma model is governed by a canonical Poisson bracket:

$$
\left\{X^{m}(\sigma), P_{n}\left(\sigma^{\prime}\right)\right\}=\delta_{n}^{m} \delta^{p}\left(\sigma-\sigma^{\prime}\right)
$$

where σ, σ^{\prime} are p-tuples of spacelike coordinates on Σ.

- To any two functionals F, G of $[X, P]$, we can assign new field functional:

$$
\{F, G\}[X, P]=\int d^{p} \sigma \sum_{m=1}^{n} \frac{\delta F[X, P]}{\delta X^{m}(\sigma)} \frac{\delta G[X, P]}{\delta P_{m}(\sigma)}-\frac{\delta G[X, P]}{\delta X^{m}(\sigma)} \frac{\delta F[X, P]}{\delta P_{m}(\sigma)}
$$

- Let f be a test function on Σ. Define generalized charges as: $Q_{f}(V+\xi)=\int d^{p} \sigma\left[V^{m}(X) K_{m}+\xi_{1}(X) \widetilde{K}^{\prime}\right](\sigma) f(\sigma)$.
- For many computational purposes, we were interested in Poisson bracket of two such charges $\{Q$

Charge algebra

Generalized charges

- Dynamics of the Nambu sigma model is governed by a canonical Poisson bracket:

$$
\left\{X^{m}(\sigma), P_{n}\left(\sigma^{\prime}\right)\right\}=\delta_{n}^{m} \delta^{p}\left(\sigma-\sigma^{\prime}\right)
$$

where σ, σ^{\prime} are p-tuples of spacelike coordinates on Σ.

- To any two functionals F, G of $[X, P]$, we can assign new field functional:

$$
\{F, G\}[X, P]=\int d^{p} \sigma \sum_{m=1}^{n} \frac{\delta F[X, P]}{\delta X^{m}(\sigma)} \frac{\delta G[X, P]}{\delta P_{m}(\sigma)}-\frac{\delta G[X, P]}{\delta X^{m}(\sigma)} \frac{\delta F[X, P]}{\delta P_{m}(\sigma)}
$$

- Let f be a test function on Σ. Define generalized charges as:

$$
Q_{f}(V+\xi)=\int d^{p} \sigma\left[V^{m}(X) K_{m}+\xi_{I}(X) \widetilde{K}^{\prime}\right](\sigma) f(\sigma)
$$

- For many computational purposes, we were interested in Poisson bracket of two such charges

Charge algebra

Generalized charges

- Dynamics of the Nambu sigma model is governed by a canonical Poisson bracket:

$$
\left\{X^{m}(\sigma), P_{n}\left(\sigma^{\prime}\right)\right\}=\delta_{n}^{m} \delta^{p}\left(\sigma-\sigma^{\prime}\right)
$$

where σ, σ^{\prime} are p-tuples of spacelike coordinates on Σ.

- To any two functionals F, G of $[X, P]$, we can assign new field functional:

$$
\{F, G\}[X, P]=\int d^{p} \sigma \sum_{m=1}^{n} \frac{\delta F[X, P]}{\delta X^{m}(\sigma)} \frac{\delta G[X, P]}{\delta P_{m}(\sigma)}-\frac{\delta G[X, P]}{\delta X^{m}(\sigma)} \frac{\delta F[X, P]}{\delta P_{m}(\sigma)}
$$

- Let f be a test function on Σ. Define generalized charges as:

$$
Q_{f}(V+\xi)=\int d^{p} \sigma\left[V^{m}(X) K_{m}+\xi_{l}(X) \widetilde{K}^{\prime}\right](\sigma) f(\sigma) .
$$

- For many computational purposes, we were interested in Poisson bracket of two such charges $\left\{Q_{f}(V+\xi), Q_{g}(W+\eta)\right\}$.

Charge algebra

Generalized charges

- The resulting Poisson bracket of the charges is

for all $(V+\xi),(W+\eta) \in \Gamma(E)$
- Note that restriction of charges onto an isotropic subbundle of E closes to Poisson algebra.
- Also setting $f=1$ implies the vanishing of the "anomalous term"
- The right-hand side is skew-symmetric in both inputs, despite the fact $[\cdot, \cdot]_{R}$ is not.

Charge algebra

Generalized charges

- The resulting Poisson bracket of the charges is

$$
\begin{align*}
\left\{Q_{f}(V+\xi),\right. & \left.Q_{g}(W+\eta)\right\}=-Q_{f g}\left([V+\xi, W+\eta]_{R}\right) \\
& -\int d^{p} \sigma g(\sigma)\left(d f \wedge X^{*}\left(\langle V+\xi, W+\eta\rangle_{R}\right)\right)_{1 \ldots p} \tag{2}
\end{align*}
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- Note that restriction of charges onto an isotropic subbundle of E closes to Poisson algebra.
- Also setting $f=1$ implies the vanishing of the "anomalous term"
- The right-hand side is skew-symmetric in both inputs, despite the fact $[\cdot, \cdot]_{R}$ is not.

Charge algebra

- The resulting Poisson bracket of the charges is

$$
\begin{align*}
\left\{Q_{f}(V+\xi),\right. & \left.Q_{g}(W+\eta)\right\}=-Q_{f g}\left([V+\xi, W+\eta]_{R}\right) \\
& -\int d^{p} \sigma g(\sigma)\left(d f \wedge X^{*}\left(\langle V+\xi, W+\eta\rangle_{R}\right)\right)_{1 \ldots p} \tag{2}
\end{align*}
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- Note that restriction of charges onto an isotropic subbundle of E closes to Poisson algebra.
- Also setting $f=1$ implies the vanishing of the "anomalous term"
- The right-hand side is skew-symmetric in both inputs, despite the fact $[\cdot, \cdot]_{R}$ is not.

Charge algebra

- The resulting Poisson bracket of the charges is

$$
\begin{align*}
\left\{Q_{f}(V+\xi),\right. & \left.Q_{g}(W+\eta)\right\}=-Q_{f g}\left([V+\xi, W+\eta]_{R}\right) \\
& -\int d^{p} \sigma g(\sigma)\left(d f \wedge X^{*}\left(\langle V+\xi, W+\eta\rangle_{R}\right)\right)_{1 \ldots p}, \tag{2}
\end{align*}
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- Note that restriction of charges onto an isotropic subbundle of E closes to Poisson algebra.
- Also setting $f=1$ implies the vanishing of the "anomalous term".
- The right-hand side is skew-symmetric in both inputs, despite the fact $[\cdot, \cdot]_{R}$ is not.

Charge algebra

- The resulting Poisson bracket of the charges is

$$
\begin{align*}
\left\{Q_{f}(V+\xi),\right. & \left.Q_{g}(W+\eta)\right\}=-Q_{f g}\left([V+\xi, W+\eta]_{R}\right) \\
& -\int d^{p} \sigma g(\sigma)\left(d f \wedge X^{*}\left(\langle V+\xi, W+\eta\rangle_{R}\right)\right)_{1 \ldots p}, \tag{2}
\end{align*}
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- Note that restriction of charges onto an isotropic subbundle of E closes to Poisson algebra.
- Also setting $f=1$ implies the vanishing of the "anomalous term".
- The right-hand side is skew-symmetric in both inputs, despite the fact $[\cdot, \cdot]_{R}$ is not.

Charge algebra

Charges conservation

- One may naturally ask when do the generalized charges $Q_{f}(V+\xi)$ conserve under time evolution.
- For simplicity, we have assumed only $Q(V+\xi)=Q_{1}(V+\xi)$
- Thus we have to find sufficient conditions to solve $\{Q(V+\xi), H\}=0$
- Using the result above, one arrives to the following set of equations:

$$
\mathcal{L}_{W}(G)_{i j}=G_{i n} \Pi^{n L}\left(W^{m} d B_{m j L}-(d \xi)_{j L}\right)+(i \leftrightarrow j),
$$

$$
\mathcal{L}_{W}(\widetilde{G})_{I J}=\widetilde{G}_{l L} \Pi^{n L}\left(W^{m} d B_{m n J}-(d \xi)_{n J}\right)+(I \leftrightarrow J),
$$

where $W=V-\Pi^{\#}(\xi)$

Charge algebra

Charges conservation

- One may naturally ask when do the generalized charges $Q_{f}(V+\xi)$ conserve under time evolution.
- For simplicity, we have assumed only $Q(V+\xi)=Q_{1}(V+\xi)$.
- Thus we have to find sufficient conditions to solve
$\{Q(V+\xi), H\}=0$
- Using the result above, one arrives to the following set of equations:

$$
\mathcal{L}_{W}(G)_{i j}=G_{i n} \Pi^{n L}\left(W^{m} d B_{m j L}-(d \xi)_{j L}\right)+(i \leftrightarrow j),
$$

$$
\mathcal{L}_{W}(\widetilde{G})_{I J}=\widetilde{G}_{l L} \Pi^{n L}\left(W^{m} d B_{m n J}-(d \xi)_{n J}\right)+(I \leftrightarrow J),
$$

where $W=V-\Pi^{\#}(\xi)$

Charge algebra

Charges conservation

- One may naturally ask when do the generalized charges $Q_{f}(V+\xi)$ conserve under time evolution.
- For simplicity, we have assumed only $Q(V+\xi)=Q_{1}(V+\xi)$.
- Thus we have to find sufficient conditions to solve $\{Q(V+\xi), H\}=0$.
- Using the result above, one arrives to the following set of equations:

$$
\mathcal{L}_{W}(G)_{i j}=G_{i n} \Pi^{n L}\left(W^{m} d B_{m j L}-(d \xi)_{j L}\right)+(i \leftrightarrow j),
$$

$$
\mathcal{L}_{W}(\widetilde{G})_{I J}=\widetilde{G}_{l L} \Pi^{n L}\left(W^{m} d B_{m n J}-(d \xi)_{n J}\right)+(I \leftrightarrow J),
$$

\square where $W=V-\Pi^{\#}(\xi)$

Charge algebra

Charges conservation

- One may naturally ask when do the generalized charges $Q_{f}(V+\xi)$ conserve under time evolution.
- For simplicity, we have assumed only $Q(V+\xi)=Q_{1}(V+\xi)$.
- Thus we have to find sufficient conditions to solve $\{Q(V+\xi), H\}=0$.
- Using the result above, one arrives to the following set of equations:

where $W=V-\Pi^{\#}(\xi)$

Charge algebra

Charges conservation

- One may naturally ask when do the generalized charges $Q_{f}(V+\xi)$ conserve under time evolution.
- For simplicity, we have assumed only $Q(V+\xi)=Q_{1}(V+\xi)$.
- Thus we have to find sufficient conditions to solve $\{Q(V+\xi), H\}=0$.
- Using the result above, one arrives to the following set of equations:

$$
\mathcal{L}_{W}(G)_{i j}=G_{i n} \Pi^{n L}\left(W^{m} d B_{m j L}-(d \xi)_{j L}\right)+(i \leftrightarrow j),
$$

$$
\mathcal{L}_{W}(\widetilde{G})_{I J}=\widetilde{G}_{l L} \Pi^{n L}\left(W^{m} d B_{m n J}-(d \xi)_{n J}\right)+(I \leftrightarrow J),
$$

where $W=V-\Pi^{\#}(\xi)$

Charge algebra

Charges conservation

- One may naturally ask when do the generalized charges $Q_{f}(V+\xi)$ conserve under time evolution.
- For simplicity, we have assumed only $Q(V+\xi)=Q_{1}(V+\xi)$.
- Thus we have to find sufficient conditions to solve $\{Q(V+\xi), H\}=0$.
- Using the result above, one arrives to the following set of equations:

$$
\begin{gathered}
\mathcal{L}_{W}(G)_{i j}=G_{i n} \Pi^{n L}\left(W^{m} d B_{m j L}-(d \xi)_{j L}\right)+(i \leftrightarrow j), \\
\mathcal{L}_{W}(\widetilde{G})_{I J}=\widetilde{G}_{l L} \Pi^{n L}\left(W^{m} d B_{m n J}-(d \xi)_{n J}\right)+(I \leftrightarrow J),
\end{gathered}
$$

where $W=V-\Pi^{\#}(\xi)$

Charge algebra

Charges conservation

- One may naturally ask when do the generalized charges $Q_{f}(V+\xi)$ conserve under time evolution.
- For simplicity, we have assumed only $Q(V+\xi)=Q_{1}(V+\xi)$.
- Thus we have to find sufficient conditions to solve $\{Q(V+\xi), H\}=0$.
- Using the result above, one arrives to the following set of equations:

$$
\begin{gathered}
\mathcal{L}_{W}(G)_{i j}=G_{i n} \Pi^{n L}\left(W^{m} d B_{m j L}-(d \xi)_{j L}\right)+(i \leftrightarrow j), \\
\mathcal{L}_{W}(\tilde{G})_{I J}=\tilde{G}_{I L} \Pi^{n L}\left(W^{m} d B_{m n J}-(d \xi)_{n J}\right)+(I \leftrightarrow J), \\
\mathcal{L}_{W}(\Pi)^{k l}=\left(\Pi^{k J} \Pi^{n \prime}-\left(\widetilde{G}^{-1}\right)^{\prime J}\left(G^{-1}\right)^{k n}\right)\left(W^{m} d B_{m n J}-(d \xi)_{n J}\right),
\end{gathered}
$$

where $W=V-\Pi^{\#}(\xi)$

Charge algebra

Charges conservation

- One may naturally ask when do the generalized charges $Q_{f}(V+\xi)$ conserve under time evolution.
- For simplicity, we have assumed only $Q(V+\xi)=Q_{1}(V+\xi)$.
- Thus we have to find sufficient conditions to solve $\{Q(V+\xi), H\}=0$.
- Using the result above, one arrives to the following set of equations:

$$
\begin{gathered}
\mathcal{L}_{W}(G)_{i j}=G_{i n} \Pi^{n L}\left(W^{m} d B_{m j L}-(d \xi)_{j L}\right)+(i \leftrightarrow j), \\
\mathcal{L}_{W}(\widetilde{G})_{I J}=\widetilde{G}_{l L} \Pi^{n L}\left(W^{m} d B_{m n J}-(d \xi)_{n J}\right)+(I \leftrightarrow J), \\
\mathcal{L}_{W}(\Pi)^{k l}=\left(\Pi^{k J} \Pi^{n \prime}-\left(\widetilde{G}^{-1}\right)^{\prime J}\left(G^{-1}\right)^{k n}\right)\left(W^{m} d B_{m n J}-(d \xi)_{n J}\right),
\end{gathered}
$$

where $W=V-\Pi^{\#}(\xi)$.

Charge algebra

Charges conservation

- There exists a nice geometrical interpretation of these conditions. Define a fiberwise metric (\cdot, \cdot) on $T M \oplus \Lambda^{p} T^{*} M$ as

$$
(V+\xi, W+\eta):=\binom{V}{\xi}^{T}\left(\begin{array}{cc}
G & 0 \\
0 & \widetilde{G}^{-1}
\end{array}\right)\binom{W}{\eta},
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- The conditions on the previous slide are then equivalent to the "Killing equations" for $V+\xi$ and (\cdot, \cdot) :
for all $e_{1}, e_{2} \in \Gamma(E)$
- Solving $d \xi=i_{W}(d B)$, this equations simplify to

$$
\mathcal{L}_{W}(G)=\mathcal{L}_{W}(\widetilde{G})=\mathcal{L}_{W}(\Pi)=0
$$

Charge algebra

Charges conservation

- There exists a nice geometrical interpretation of these conditions.

Define a fiberwise metric (\cdot, \cdot) on $T M \oplus \Lambda^{p} T^{*} M$ as

$$
(V+\xi, W+\eta):=\binom{V}{\xi}^{T}\left(\begin{array}{cc}
G & 0 \\
0 & \widetilde{G}^{-1}
\end{array}\right)\binom{W}{\eta}
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- The conditions on the previous slide are then equivalent to the "Killing equations" for $V+\xi$ and (\cdot, \cdot) :

$$
\rho(V+\xi) \cdot\left(e_{1}, e_{2}\right)=\left(\left[V+\xi, e_{1}\right]_{R}, e_{2}\right)+\left(e_{1},\left[V+\xi, e_{2}\right]_{R}\right)
$$

for all $e_{1}, e_{2} \in \Gamma(E)$.

- Solving $d \xi=i_{W}(d B)$, this equations simplify to

$$
\mathcal{L}_{W}(G)=\mathcal{L}_{W}(\widetilde{G})=\mathcal{L}_{W}(\Pi)=0
$$

Charge algebra

Charges conservation

- There exists a nice geometrical interpretation of these conditions.

Define a fiberwise metric (\cdot, \cdot) on $T M \oplus \Lambda^{p} T^{*} M$ as

$$
(V+\xi, W+\eta):=\binom{V}{\xi}^{T}\left(\begin{array}{cc}
G & 0 \\
0 & \widetilde{G}^{-1}
\end{array}\right)\binom{W}{\eta}
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- The conditions on the previous slide are then equivalent to the "Killing equations" for $V+\xi$ and (\cdot, \cdot) :

$$
\rho(V+\xi) \cdot\left(e_{1}, e_{2}\right)=\left(\left[V+\xi, e_{1}\right]_{R}, e_{2}\right)+\left(e_{1},\left[V+\xi, e_{2}\right]_{R}\right)
$$

for all $e_{1}, e_{2} \in \Gamma(E)$.

- Solving $d \xi=i_{W}(d B)$, this equations simplify to

$$
\mathcal{L}_{W}(G)=\mathcal{L}_{W}(\widetilde{G})=\mathcal{L}_{W}(\Pi)=0
$$

Charge algebra

Charges conservation

- There exists a nice geometrical interpretation of these conditions.

Define a fiberwise metric (\cdot, \cdot) on $T M \oplus \Lambda^{p} T^{*} M$ as

$$
(V+\xi, W+\eta):=\binom{V}{\xi}^{T}\left(\begin{array}{cc}
G & 0 \\
0 & \widetilde{G}^{-1}
\end{array}\right)\binom{W}{\eta}
$$

for all $(V+\xi),(W+\eta) \in \Gamma(E)$.

- The conditions on the previous slide are then equivalent to the "Killing equations" for $V+\xi$ and (\cdot, \cdot) :

$$
\rho(V+\xi) \cdot\left(e_{1}, e_{2}\right)=\left(\left[V+\xi, e_{1}\right]_{R}, e_{2}\right)+\left(e_{1},\left[V+\xi, e_{2}\right]_{R}\right)
$$

for all $e_{1}, e_{2} \in \Gamma(E)$.

- Solving $d \xi=i_{W}(d B)$, this equations simplify to

$$
\mathcal{L}_{W}(G)=\mathcal{L}_{W}(\widetilde{G})=\mathcal{L}_{W}(\Pi)=0
$$

Topological model

- Starting all over with the action $S[X, \eta, \widetilde{\eta}]$, we may set $G^{-1}=\widetilde{G}^{-1}=0$. We call this a topological Nambu sigma model.
- One comes to the new Hamiltonian

$$
\begin{equation*}
H[X, \widetilde{\eta}, P]=-\int d^{p} \sigma \widetilde{\eta}_{I} \widetilde{K}^{\prime} \tag{3}
\end{equation*}
$$

- One of the original EQM is $\widetilde{K}^{\prime}=0$, which can be considered as constraint, with $\widetilde{\eta}_{I}$ as a corresponding Lagrange multiplier.
- Without G, G Nambu sigma model becomes a constrained system. To have consistent system, one has to check if

$$
\left\{H, \widetilde{K}^{\prime}(\sigma)\right\} \approx 0
$$

that is if it is zero whenever $\widetilde{K}^{\prime}=0$.

Topological model

Action

- Starting all over with the action $S[X, \eta, \widetilde{\eta}]$, we may set $G^{-1}=\widetilde{G}^{-1}=0$. We call this a topological Nambu sigma model.
- One comes to the new Hamiltonian

- One of the original EQM is $K^{\prime}=0$, which can be considered as constraint, with \tilde{n}_{1} as a corresponding Lagrange multiplier.
- Without G, G Nambu sigma model becomes a constrained system To have consistent system, one has to check if

that is if it is zero whenever $\widetilde{K}^{\prime}=0$

Topological model

- Starting all over with the action $S[X, \eta, \widetilde{\eta}]$, we may set $G^{-1}=\widetilde{G}^{-1}=0$. We call this a topological Nambu sigma model.
- One comes to the new Hamiltonian

$$
\begin{equation*}
H[X, \widetilde{\eta}, P]=-\int d^{p} \sigma \widetilde{\eta}_{I} \widetilde{K}^{\prime} . \tag{3}
\end{equation*}
$$

- One of the original EQM is $K^{\prime}=0$, which can be considered as constraint, with $\widetilde{\eta}_{\prime}$ as a corresponding Lagrange multiplier.
- Without G,G Nambu sigma model becomes a constrained system To have consistent system, one has to check if

$$
\left\{H, \widetilde{K}^{\prime}(\sigma)\right\} \approx 0,
$$

that is if it is zero whenever $\widetilde{K}^{\prime}=0$.

Topological model

- Starting all over with the action $S[X, \eta, \widetilde{\eta}]$, we may set $G^{-1}=\widetilde{G}^{-1}=0$. We call this a topological Nambu sigma model.
- One comes to the new Hamiltonian

$$
\begin{equation*}
H[X, \widetilde{\eta}, P]=-\int d^{p} \sigma \widetilde{\eta}_{I} \widetilde{K}^{\prime} \tag{3}
\end{equation*}
$$

- One of the original EQM is $\widetilde{K}^{\prime}=0$, which can be considered as constraint, with $\widetilde{\eta}_{I}$ as a corresponding Lagrange multiplier.
- Without G,G Nambu sigma model becomes a constrained system To have consistent system, one has to check if
that is if it is zero whenever $\widetilde{K}^{\prime}=0$.

Topological model

- Starting all over with the action $S[X, \eta, \widetilde{\eta}]$, we may set $G^{-1}=\widetilde{G}^{-1}=0$. We call this a topological Nambu sigma model.
- One comes to the new Hamiltonian

$$
\begin{equation*}
H[X, \widetilde{\eta}, P]=-\int d^{p} \sigma \widetilde{\eta}_{I} \widetilde{K}^{\prime} \tag{3}
\end{equation*}
$$

- One of the original EQM is $\widetilde{K}^{\prime}=0$, which can be considered as constraint, with $\widetilde{\eta}_{I}$ as a corresponding Lagrange multiplier.
- Without G, \widetilde{G} Nambu sigma model becomes a constrained system. To have consistent system, one has to check if

$$
\left\{H, \widetilde{K}^{\prime}(\sigma)\right\} \approx 0,
$$

that is if it is zero whenever $\widetilde{K}^{\prime}=0$.

Topological model

Consistency of constraints

- Calculation may be carried out using the Poisson bracket of generalized charges.
- The result has the following form:
$\left\{\widetilde{K}^{\prime}(\sigma), \widetilde{K}^{J}\left(\sigma^{\prime}\right)\right\}=-\delta\left(\sigma-\sigma^{\prime}\right)\left(R^{I J k} K_{k}+S_{K}^{\prime J} \widetilde{K}^{K}\right)\left(\sigma^{\prime}\right)$

$$
-\left(d(\delta(\sigma-\cdot)) \wedge X^{*}\left(\left|d y^{\prime}, d y^{J}\right\rangle_{R}\right)\right)_{1 \ldots p}\left(\sigma^{\prime}\right)
$$

where $R^{I J k}$ are (one of) structure functions of $[\cdot, \cdot]_{R}$.

- One may demand $R^{I J k}$ to vanish. For $p>1$, this is exactly the differential part of the equation

$$
\left(\mathcal{L}_{\Pi^{\#}(\xi)}(\Pi)\right)^{\#}(\eta)=-\Pi^{\#}\left(i_{\Pi \#(\eta)}(d \xi)\right)
$$

which says that Π is a Nambu-Poisson structure. For $p=1$ this is exactly Jacobi identity for Poisson bracket induced by Π.

Topological model

Consistency of constraints

- Calculation may be carried out using the Poisson bracket of generalized charges.
- The result has the following form:

$$
-\left(d(\delta(\sigma-\cdot)) \wedge X^{*}\left(\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)\right)_{1 \ldots p}\left(\sigma^{\prime}\right),
$$

> where $R^{I J k}$ are (one of) structure functions of $[\cdot, \cdot]_{R}$
> - One may demand $R^{I J k}$ to vanish. For $p>1$, this is exactly the differential part of the equation

$$
\left(\mathcal{L}_{\Pi \#(\xi)}(\Pi)\right)^{\#}(\eta)=-\Pi^{\#}\left(i_{\Pi \#}(\eta)(d \xi)\right)
$$

which says that Π is a Nambu-Poisson structure. For $p=1$ this is exactly Jacobi identity for Poisson bracket induced by Π.

Topological model

- Calculation may be carried out using the Poisson bracket of generalized charges.
- The result has the following form:

$$
\begin{align*}
\left\{\widetilde{K}^{\prime}(\sigma), \widetilde{K}^{J}\left(\sigma^{\prime}\right)\right\} & =-\delta\left(\sigma-\sigma^{\prime}\right)\left(R^{\prime J k} K_{k}+S_{\kappa}^{\prime} \widetilde{K}^{K}\right)\left(\sigma^{\prime}\right) \\
& -\left(d(\delta(\sigma-\cdot)) \wedge X^{*}\left(\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)\right)_{1 \ldots p}\left(\sigma^{\prime}\right), \tag{4}
\end{align*}
$$

where $R^{I J k}$ are (one of) structure functions of $[\cdot, \cdot]_{R}$

- One may demand $R^{I J k}$ to vanish. For $p>1$, this is exactly the differential part of the equation

$$
\left(\mathcal{L}_{\Pi^{\#}(\xi)}(\Pi)\right)^{\#}(\eta)=-\Pi^{\#}\left(i_{\Pi \#(\eta)}(d \xi)\right)
$$

which says that Π is a Nambu-Poisson structure. For $p=1$ this is exactly Jacobi identity for Poisson bracket induced by Π

Topological model

- Calculation may be carried out using the Poisson bracket of generalized charges.
- The result has the following form:

$$
\begin{align*}
\left\{\widetilde{K}^{\prime}(\sigma), \widetilde{K}^{J}\left(\sigma^{\prime}\right)\right\} & =-\delta\left(\sigma-\sigma^{\prime}\right)\left(R^{I J k} K_{k}+S_{K}^{\prime J} \widetilde{K}^{K}\right)\left(\sigma^{\prime}\right) \\
& -\left(d(\delta(\sigma-\cdot)) \wedge X^{*}\left(\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)\right)_{1 \ldots p}\left(\sigma^{\prime}\right), \tag{4}
\end{align*}
$$

where $R^{I J k}$ are (one of) structure functions of $[\cdot, \cdot]_{R}$.

- One may demand $R^{J / k}$ to vanish. For $p>1$, this is exactly the
differential part of the equation $\left(\mathcal{L}_{\Pi^{\#}(\xi)}(\Pi)\right)^{\#}(\eta)=-\Pi^{\#}\left(i_{\Pi \#(\eta)}(d \xi)\right)$
which says that Π is a Nambu Poisson structure. For $p=1$ this is exactly Jacobi identity for Poisson bracket induced by $П$

Topological model

- Calculation may be carried out using the Poisson bracket of generalized charges.
- The result has the following form:

$$
\begin{align*}
\left\{\widetilde{K}^{\prime}(\sigma), \widetilde{K}^{J}\left(\sigma^{\prime}\right)\right\} & =-\delta\left(\sigma-\sigma^{\prime}\right)\left(R^{I J k} K_{k}+S_{K}^{\prime J} \widetilde{K}^{K}\right)\left(\sigma^{\prime}\right) \\
& -\left(d(\delta(\sigma-\cdot)) \wedge X^{*}\left(\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)\right)_{1 \ldots p}\left(\sigma^{\prime}\right), \tag{4}
\end{align*}
$$

where $R^{I J k}$ are (one of) structure functions of $[\cdot, \cdot]_{R}$.

- One may demand $R^{I J k}$ to vanish. \qquad

Topological model

- Calculation may be carried out using the Poisson bracket of generalized charges.
- The result has the following form:

$$
\begin{align*}
\left\{\widetilde{K}^{\prime}(\sigma), \widetilde{K}^{J}\left(\sigma^{\prime}\right)\right\} & =-\delta\left(\sigma-\sigma^{\prime}\right)\left(R^{I J k} K_{k}+S_{K}^{I J} \widetilde{K}^{K}\right)\left(\sigma^{\prime}\right) \\
& -\left(d(\delta(\sigma-\cdot)) \wedge X^{*}\left(\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)\right)_{1 \ldots p}\left(\sigma^{\prime}\right) \tag{4}
\end{align*}
$$

where $R^{I J k}$ are (one of) structure functions of $[\cdot, \cdot]_{R}$.

- One may demand $R^{I J k}$ to vanish. For $p>1$, this is exactly the differential part of the equation

$$
\left(\mathcal{L}_{\Pi^{\#}(\xi)}(\Pi)\right)^{\#}(\eta)=-\Pi^{\#}\left(i_{\Pi^{\#}(\eta)}(d \xi)\right)
$$

which says that Π is a Nambu-Poisson structure. For $p=1$ this is exactly Jacobi identity for Poisson bracket induced by $П$.

Topological model

- Calculation may be carried out using the Poisson bracket of generalized charges.
- The result has the following form:

$$
\begin{align*}
\left\{\widetilde{K}^{\prime}(\sigma), \widetilde{K}^{J}\left(\sigma^{\prime}\right)\right\} & =-\delta\left(\sigma-\sigma^{\prime}\right)\left(R^{I J k} K_{k}+S_{K}^{I J} \widetilde{K}^{K}\right)\left(\sigma^{\prime}\right) \\
& -\left(d(\delta(\sigma-\cdot)) \wedge X^{*}\left(\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)\right)_{1 \ldots p}\left(\sigma^{\prime}\right), \tag{4}
\end{align*}
$$

where $R^{I J k}$ are (one of) structure functions of $[\cdot, \cdot]_{R}$.

- One may demand $R^{I J k}$ to vanish. For $p>1$, this is exactly the differential part of the equation

$$
\left(\mathcal{L}_{\Pi^{\#}(\xi)}(\Pi)\right)^{\#}(\eta)=-\Pi^{\#}\left(i_{\Pi^{\#}(\eta)}(d \xi)\right)
$$

which says that Π is a Nambu-Poisson structure.

Topological model

- Calculation may be carried out using the Poisson bracket of generalized charges.
- The result has the following form:

$$
\begin{align*}
\left\{\widetilde{K}^{\prime}(\sigma), \widetilde{K}^{J}\left(\sigma^{\prime}\right)\right\} & =-\delta\left(\sigma-\sigma^{\prime}\right)\left(R^{I J k} K_{k}+S_{K}^{I J} \widetilde{K}^{K}\right)\left(\sigma^{\prime}\right) \\
& -\left(d(\delta(\sigma-\cdot)) \wedge X^{*}\left(\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)\right)_{1 \ldots p}\left(\sigma^{\prime}\right), \tag{4}
\end{align*}
$$

where $R^{I J k}$ are (one of) structure functions of $[\cdot, \cdot]_{R}$.

- One may demand $R^{I J k}$ to vanish. For $p>1$, this is exactly the differential part of the equation

$$
\left(\mathcal{L}_{\Pi^{\#}(\xi)}(\Pi)\right)^{\#}(\eta)=-\Pi^{\#}\left(i_{\Pi \#(\eta)}(d \xi)\right)
$$

which says that Π is a Nambu-Poisson structure. For $p=1$ this is exactly Jacobi identity for Poisson bracket induced by Π.

Topological model

Consistency of constraints

- We are half-way to justify the name "Nambu" sigma model.
- The vanishing of anomalous term is a little bit problematic, since $\left.d y^{\prime}, d y^{J}\right\rangle_{R}$ can in general vanish only for $\Pi=0$
- The key is to add a set of secondary constraints:

- Again, one has to check if they are consistent with a time evolution.
- This can be assured by algebraic nart of the fundamental identity for Nambu-Poisson tensor!
- Result: To have consistent equations of motion, choose Π to be a Nambu-Poisson structure.

Topological model

Consistency of constraints

- We are half-way to justify the name "Nambu" sigma model.
- The vanishing of anomalous term is a little bit problematic, since $\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}$ can in general vanish only for $\Pi=0$.
- The key is to add a set of secondary constraints:
- Again, one has to check if they are consistent with a time evolution
- This can be assured by algebraic part of the fundamental identity for Nambu-Poisson tensor!
- Result: To have consistent equations of motion, choose Π to be a Nambu-Poisson structure

Topological model

- We are half-way to justify the name "Nambu" sigma model.
- The vanishing of anomalous term is a little bit problematic, since $\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}$ can in general vanish only for $\Pi=0$.
- The key is to add a set of secondary constraints:
- Again, one has to check if they are consistent with a time evolution
- This can be assured by algebraic nart of the fundamental identity for Nambu-Poisson tensor!
- Result: To have consistent equations of motion, choose Π to be a Nambu-Poisson structure

Topological model

- We are half-way to justify the name "Nambu" sigma model.
- The vanishing of anomalous term is a little bit problematic, since $\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}$ can in general vanish only for $\Pi=0$.
- The key is to add a set of secondary constraints:

$$
\chi_{q}^{I J} \equiv\left(X^{*}\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)_{1 \ldots \hat{q} \ldots p}=0
$$

- Again, one has to check if they are consistent with a time evolution
- This can be assured by algebraic nart of the fundamental identity for Nambu-Poisson tensor!
- Result: To have consistent equations of motion, choose Π to be a Nambu-Poisson structure

Topological model

- We are half-way to justify the name "Nambu" sigma model.
- The vanishing of anomalous term is a little bit problematic, since $\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}$ can in general vanish only for $\Pi=0$.
- The key is to add a set of secondary constraints:

$$
\chi_{q}^{I J} \equiv\left(X^{*}\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)_{1 \ldots \hat{q} \ldots p}=0
$$

- Again, one has to check if they are consistent with a time evolution.
- This can be assured by algebraic part of the fundamental identity for Nambu-Poisson tensor!
- Result: To have consistent equations of motion, choose Π to be a Nambu-Poisson structure

Topological model

- We are half-way to justify the name "Nambu" sigma model.
- The vanishing of anomalous term is a little bit problematic, since $\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}$ can in general vanish only for $\Pi=0$.
- The key is to add a set of secondary constraints:

$$
\chi_{q}^{I J} \equiv\left(X^{*}\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)_{1 \ldots \hat{q} \ldots p}=0
$$

- Again, one has to check if they are consistent with a time evolution.
- This can be assured by algebraic part of the fundamental identity for Nambu-Poisson tensor!
- Result: To have consistent equations of motion, choose Π to be a Nambu-Poisson structure

Topological model

- We are half-way to justify the name "Nambu" sigma model.
- The vanishing of anomalous term is a little bit problematic, since $\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}$ can in general vanish only for $\Pi=0$.
- The key is to add a set of secondary constraints:

$$
\chi_{q}^{I J} \equiv\left(X^{*}\left\langle d y^{\prime}, d y^{J}\right\rangle_{R}\right)_{1 \ldots \hat{q} \ldots p}=0
$$

- Again, one has to check if they are consistent with a time evolution.
- This can be assured by algebraic part of the fundamental identity for Nambu-Poisson tensor!
- Result: To have consistent equations of motion, choose Π to be a Nambu-Poisson structure.

Conclusions

- Nambu sigma model seems to be a generalization of Poisson sigma model.
- Higher Roytenberg bracket was rederived using worldsheet algebra of this model.
- Consistency of topological model equations can be assured by introducing Nambu-Poisson structures.
- Future efforts:
(1) Understand the generalized generalized geometry, especially the generalized generalized metric.
(2) Understand the higher Courant algebroids, find their axiomatiozation
(3) Find supersymmetric description of Nambu sigma models, BV formalism et cetera.

Conclusions

- Nambu sigma model seems to be a generalization of Poisson sigma model.
- Higher Roytenberg bracket was rederived using worldsheet algebra of this model.
- Consistency of topological model equations can be assured by introducing Nambu-Poisson structures.
- Future efforts:
(1) Understand the generalized generalized geometry, especially the generalized generalized metric.
(2) Understand the higher Courant algebroids, find their axiomatiozation
(3) Find supersymmetric description of Nambu sigma models, BV formalism et cetera.

Conclusions

- Nambu sigma model seems to be a generalization of Poisson sigma model.
- Higher Roytenberg bracket was rederived using worldsheet algebra of this model.
- Consistency of topological model equations can be assured by introducing Nambu-Poisson structures.
- Future efforts:
(1) Understand the generalized generalized geometry, especially the generalized generalized metric.
(2) Understand the higher Courant algebroids, find their axiomatiozation
(3) Find supersymmetric description of Nambu sigma models, BV formalism et cetera.

Conclusions

- Nambu sigma model seems to be a generalization of Poisson sigma model.
- Higher Roytenberg bracket was rederived using worldsheet algebra of this model.
- Consistency of topological model equations can be assured by introducing Nambu-Poisson structures.
- Future efforts:
(1) Understand the generalized generalized geometry, especially the generalized generalized metric

2) Understand the higher Courant algebroids, find their axiomatiozation
(3) Find supersymmetric description of Nambu sigma models, BV formalism et cetera.

Conclusions

- Nambu sigma model seems to be a generalization of Poisson sigma model.
- Higher Roytenberg bracket was rederived using worldsheet algebra of this model.
- Consistency of topological model equations can be assured by introducing Nambu-Poisson structures.
- Future efforts:
(1) Understand the generalized generalized geometry, especially the generalized generalized metric.
(3) Understand the higher Courant algebroids, find their axiomatiozation
(3) Find supersymmetric description of Nambu sigma models, BV formalism et cetera.

Conclusions

- Nambu sigma model seems to be a generalization of Poisson sigma model.
- Higher Roytenberg bracket was rederived using worldsheet algebra of this model.
- Consistency of topological model equations can be assured by introducing Nambu-Poisson structures.
- Future efforts:
(1) Understand the generalized generalized geometry, especially the generalized generalized metric.
(2) Understand the higher Courant algebroids, find their axiomatiozation.
(3) Find supersymmetric description of Nambu sigma models, BV formalism et cetera.

Conclusions

- Nambu sigma model seems to be a generalization of Poisson sigma model.
- Higher Roytenberg bracket was rederived using worldsheet algebra of this model.
- Consistency of topological model equations can be assured by introducing Nambu-Poisson structures.
- Future efforts:
(1) Understand the generalized generalized geometry, especially the generalized generalized metric.
(2) Understand the higher Courant algebroids, find their axiomatiozation.
(3) Find supersymmetric description of Nambu sigma models, BV formalism et cetera.N. Hamlagyi: Non-geometric String Backgrounds and Worldsheet Algebras, JHEP 0807:137, (2008).

囯 A. Alekseev and T. Strobl: Current algebras and Differential Geometry, JHEP 03:35, (2005).
R J. Ekstrand and M. Zabzine: Courant-like brackets and loop spaces, JHEP 1103:074, (2011).

嗇 B. Jurčo and P. Schupp: Nambu-Sigma model and effective membrane actions, Phys.Lett. B713 (2012).

Thank you for your attention!

