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Iterated power intersections of an ideal

Definition
Let R be a ring and let I be an ideal. By transfinite induction we
define the following sequence of ideals:

1. I (0) = I

2. I (α + 1) = ∩n∈NI (α)n

3. If α is limit I (α) = ∩β<αI (β)

Theorem
(Krull’s intersection theorem) If R is a commutative noetherian
ring, I an ideal. Then there exists a ∈ I such that I (1)(1− a) = 0.

Corollary

1. Let R be a commutative noetherian domain, I a proper ideal.
Then I (1) = 0.

2. Let R be a commutative noetherian ring and I = I 2. Then
I = eR for some idempotent e ∈ R.
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A similar concept has been studied by P. Smith who defined a
sequence κn(I ), n ∈ N0, where κ0(I ) = I and κn+1(I ) is the
greatest ideal such that κn+1(I )κn(I ) = κn+1(I ).



Projective modules over some noetherian rings

When study countably but not finitely generated modules over a
(left and right) noetherian rings one is interested if the ring
satisfies the following condition (*): There is no infinite strictly
descending chain of ideals I0 ! I1 ! · · · such that In+1In = In+1.
When this condition holds, one can classify countably generated
projective modules by pairs (I ,P), where I is an idempotent ideal
of R and P is a finitely generated projective module over R/I .

Remark

1. Suppose we have such a sequence I0, I1, . . . If we put I = I0,
then an easy induction shows that In ⊆ I (n).

2. Suppose that for every maximal ideal I there exists n such
that I (n) = 0. Then the condition (*) holds and the only
idempotent ideals of R are 0 and R. Then every countably
generated projective R-module is either finitely generated or
free.
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The following results can be seen as a consequence of 2.

Theorem

1. (Bass) If R is a simple noetherian ring, then every countably
but not finitely generated projective module is free.

2. (Bass) If R is a connected commutative noetherian ring, then
every countably but not finitely generated projective module is
free.

3. (Swan) If G is a finite solvable group, then every countably
but not finitely generated projective ZG -module is free.

4. (P.) If L is a finite dimensional solvable Lie algebra over a field
of characteristic 0. Then every countably but not finitely
generated projective U(L)-module is free.



Rings of differential polynomials

Definition
Let S be a ring. A derivation on S is an additive map δ : S → S
satisfying the Leibniz rule δ(ab) = δ(a)b + aδ(b). If there exists
d ∈ S such that δ(x) = dx − xd for every x ∈ S , then δ is an inner
derivation on S .

Definition
Let S be a ring and let δ : S → S be a derivation on S . A ring of
differential polynomials S [y , δ] is a free right S-module with basis
1, y , y2, . . . and a multiplication given by the rule
sy = ys − δ(s), s ∈ S .

Every element of S [y , δ] has a unique expression as
ynsn + yn−1sn−1 + · · ·+ s0 and also as s ′nyn + s ′n−1yn−1 + · · ·+ s ′0,
where sn = s ′n.

Example

Let k be a field, S = k[x ] and δ : S → S the standard derivation.
S [y , δ] = A1(k) is then the first Weyl algebra over k .
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Rings of iterated differential polynomials

Iteration of this construction gives rings of iterated differential
polynomials S [y1, δ1, y2, δ2, . . . , yn, δn] (δi is a derivation on
S [y1, δ1, . . . , yi−1, δi−1])

Example

Let S = k[x1, . . . , xn]. For i = 0, . . . , n define Ri : R0 = S and
Ri = Ri−1[S , yi , ∂/∂i ]. Then Rn = An(k) is the n-th Weyl algebra
over k . If k is a field of characteristic zero then An(k) is a simple
noetherian domain.
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Some standard properties

Lemma
If T is an Ore set in S consisting of nonzerodivisors, then any
derivation on S can be uniquely extended to a derivation on ST−1

by t−1 7→ −t−1δ(t)t−1, t ∈ T .

Lemma
If S is a skew field and δ is a derivation on S, then S [y , δ] is a left
and right principal ideal domain. In particular I (1) = 0 for every
proper ideal I ⊆ S [y , δ].

Theorem
Let S be a commutative noetherian domain that is a Q-algebra.
Let R = S [y1, δ1, . . . , yn, δn] be a ring of iterated differential
polynomials. Then every prime ideal of R is completely prime.
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The result

Theorem
Let S be a commutative noetherian domain that is a Q-algebra.
Let I be a proper ideal in the ring of iterated differential
polynomials R = S [y1, δ1, . . . , yn, δn]. Then I (n + 1) = 0.

Corollary

If R is as above then every countably but not finitely generated
projective module is free.
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A prominent example

Definition
Let L be a Lie algebra over a field k , let B be a basis of L. The
universal enveloping algebra of L is the algebra
U(L) = k〈B〉/(bibj − bjbi = [bi , bj ] | bi , bj ∈ B).

Theorem
Let L be a finite dimensional solvable Lie algebra over an
algebraically closed field k of characteristic zero. Then there exists
a basis {b1, . . . , bn} such that for every i = 1, . . . , n the space
kb1 + · · · kbi is an ideal of L. In particular, U(L) can be seen as a
ring of iterated differential operators.

Theorem
Let L be a finite dimensional solvable Lie algebra over a field of
characteristic zero. Then I (2) = 0 for every proper ideal I of U(L).
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A strange connection

Proposition

Let R be a noetherian k-algebra. Let V be a finite dimensional
simple module. Then AnnRV is idempotent, if Ext1R(V ,V ) = 0.
So if S is a noetherian Q-algebra, R = S [y1, δ1, . . . , yn, δn], then all
finite dimensional simple R-modules have nontrivial self-extensions.


