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k-Dirac operator (in the Euclidean setting).

The k-Dirac operator (k ≥ 2) is the differential operator

∂ : C∞(M(n, k ,R), S±)→ C∞(M(n, k ,R),Rk ⊗ S±)

∂(f ) = (∂1f , . . . , ∂k f )

∂i f =
∑n

α=1 εα.∂αi f

where

M(n, k ,R) is the affine space of matrices of size n × k .

S± := S− ⊕ S+ is the sum of complex spinor representations of so(n)
(n is even).

∂ij are the usual partial derivatives on M(n, k ,R).

{ε1, . . . , εn} is the standard basis of Rn.

εj . denotes the multiplication by the Clifford number εj .
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k-Dirac operator (in the parabolic setting).

Grassmannian variety of isotropic k-planes in Rk,n+k . This is
homogeneous model G/P of 2-graded parabolic geometry with
G = SO(k , n + k).

Levi subgroup of P is isomorphic to GL(k ,R)× SO(n) with
isomorphisms g−1

∼= (Rk)∗ ⊗ Rn, g−2
∼= Λ2(Rk)∗.

k-Dirac operator is the invariant operator

D : Γ(S±)→ Γ(Rk ⊗ S±)

where S± is the homogeneous vector bundle associated S± (n is even)
over G/P.
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Local expression for D.

Set g− := g−2 ⊕ g−1 and G− := exp(g−). Let π : G→ G/P be the
canonical projection.

Diffeomorphism π ◦ exp : g− → G/P. The image is an affine subset of
G/P.

Coordinates xαi , yrs on the affine subset. α = 1, . . . , n, i = 1, . . . , k
and 1 ≤ s < r ≤ k .

Coordinate vector fields ∂αi , ∂rs = −∂sr .

Then Lαi := ∂αi − 1
2 xαj∂ij are left invariant vector fields on G−.

{Lαi} span non-integrable distribution with

[Lαi , Lβj ] = δαβ∂ij .

Let ϕ ∈ Γ(S±).

D(ϕ) = (D1ϕ, . . . ,Dkϕ)

Diϕ =
∑n

α=1 εα.Lαiϕ.
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Relation between these two operators.

There is a locally exact sequence (in the real analytic category) of
invariant differential operators on G/P starting with D.

Singular character.

If we pass to the local space of leaves corresponding to the integrable
distribution 〈RX |X ∈ g−2〉, i.e. we kill the yrs coordinates, then the
sequence is still locally exact and descends to a resolution of the
k-Dirac operator (in the Euclidean setting).

k-Dirac operator (in the parabolic setting)→ k-Dirac operator (in the
Euclidean setting)

Question: Is there also an arrow in the other direction?

Answer: Yes, there is.
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The set of initial conditions for the k-Dirac operator
(in the Euclidean setting).

Let f ∈ C∞(M(n, k ,R), S±) be a solution of ∂f = 0. Then f is called
a monogenic spinor.

The components of f are harmonic and so f is real analytic.

The spinor f is monogenic iff all its homogeneous parts are
monogenic.

It is not hard to see that f is uniquely determined by its restriction to
the set U := {x11 = x12 = . . . = x1k = 0}.
Given a homogeneous spinor g of degree m which depends only on
xαi , α ≥ 2, does there exists a monogenic spinor f of degree m such
that f |U = g |U?

f is of the form g + x1i fi + x1ix1j fij + . . . where each fi1...ir is a
homogeneous spinor of degree m − r which depends only xαi , α ≥ 2.
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Tomáš Salač (Charles University in Prague)k-Dirac operator and the boundary value problem ZS 6 / 13



The set of initial conditions for the k-Dirac operator
(in the Euclidean setting).

Let f ∈ C∞(M(n, k ,R), S±) be a solution of ∂f = 0. Then f is called
a monogenic spinor.

The components of f are harmonic and so f is real analytic.

The spinor f is monogenic iff all its homogeneous parts are
monogenic.

It is not hard to see that f is uniquely determined by its restriction to
the set U := {x11 = x12 = . . . = x1k = 0}.

Given a homogeneous spinor g of degree m which depends only on
xαi , α ≥ 2, does there exists a monogenic spinor f of degree m such
that f |U = g |U?

f is of the form g + x1i fi + x1ix1j fij + . . . where each fi1...ir is a
homogeneous spinor of degree m − r which depends only xαi , α ≥ 2.
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Parabolic operator from the Euclidean k-Dirac op.

Theorem

The monogenic spinor f exists iff ∀i , j : [∂̃i , ∂̃j ]g = 0 where
∂̃i =

∑
α≥2 εα.∂αi .

”⇒ ” in the previous theorem is a direct consequence of
[∂1i , ∂1j ] = 0.

We seek a new system of PDEs such that:
1 each solution of the k-Dirac operator extends naturally to a solution of

the new system.
2 any spinor given on the set isomorphic to U extends to a unique

solution of the new system.

The space of quadratic spinors in xαi -variables (α ≥ 2): need to add
yrs coordinates (1 ≤ r < s ≤ k) and replace ∂αi 7→ Lαi .

Any quadratic spinor given on the set U := {x1i = yrs = 0} extends to
a unique monogenic spinor ϕ (in the parabolic setting, i.e. Dϕ = 0).
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Monogenic spinors in the parabolic setting.

Theorem

Let ψ ∈ Γ(S±) be an arbitrary real analytic spinor given on an open subset
U ′ of the set U, i.e. ψ depends only on xαi , α ≥ 2. Then ψ extends to a
unique monogenic spinor Ψ on a small open neighbourhood of U ′, i.e.
DΨ = 0 and Ψ|U′ = ψ|U′ .

Weighted degree: degw (xαi ) = 1, degw (yrs) = 2. Extend degw to
monomials, degw : (C[yrs , xαi ], .)→ (Z,+) is a homomorphism.

Nm = 〈f ∈ C[yrs , xαi ]|degw f = m〉.
C[yrs , xαi ] = ⊕m≥0Nm.

Extend to Γ(S±) and Γ(Rk ⊗ S±) over the affine set, a spinor is
homogeneous of degree m iff its components are homogeneous of the
weighted degree m.

ψ ∈ Γ(S±) : ψ = ψ0 + ψ1 + . . . where ψi is homogeneous of degree i .

D is homogeneous operator of the degree (−1). Thus Dψ = 0 iff
Dψm = 0 for each homogeneous piece ψm of ψ.
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Tomáš Salač (Charles University in Prague)k-Dirac operator and the boundary value problem ZS 8 / 13



Monogenic spinors in the parabolic setting.

Theorem

Let ψ ∈ Γ(S±) be an arbitrary real analytic spinor given on an open subset
U ′ of the set U, i.e. ψ depends only on xαi , α ≥ 2. Then ψ extends to a
unique monogenic spinor Ψ on a small open neighbourhood of U ′, i.e.
DΨ = 0 and Ψ|U′ = ψ|U′ .

Weighted degree: degw (xαi ) = 1, degw (yrs) = 2. Extend degw to
monomials, degw : (C[yrs , xαi ], .)→ (Z,+) is a homomorphism.

Nm = 〈f ∈ C[yrs , xαi ]|degw f = m〉.
C[yrs , xαi ] = ⊕m≥0Nm.

Extend to Γ(S±) and Γ(Rk ⊗ S±) over the affine set, a spinor is
homogeneous of degree m iff its components are homogeneous of the
weighted degree m.

ψ ∈ Γ(S±) : ψ = ψ0 + ψ1 + . . . where ψi is homogeneous of degree i .

D is homogeneous operator of the degree (−1). Thus Dψ = 0 iff
Dψm = 0 for each homogeneous piece ψm of ψ.
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Monogenic spinors in the parabolic setting.

Let ψ ∈ Γ(S±) be a monogenic spinor (∀i : Diψ = 0).

Then {Di ,Dj}ψ = 0 and thus also

n

2
∂ijψ =

n∑
α=1

LαiLαjψ.

This implies also that

(4) : (
n

2
− 1)∂ijψ =

∑
α 6=β≥2

εαεβLαiLβjψ

or

(
n

2
− 1)∂ijψ =

1

2
[D̃i , D̃j ]ψ

where D̃i =
∑

α≥2 εαLαi .

Get PDE on V := {x11 = . . . = x1k = 0}.
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Monogenic spinors in the parabolic setting.

The Cartan-Kähler theorem states that any given spinor on U extends
to a unique solution of (4).

Let ϕ be a homogeneous spinor of degree m on V . Let

ϕ = ϕ0 + f i
1ϕ

i
1 + . . .+ f i

m−1ϕ
i
m−1 + f i

mϕ
i
m

where f j
i ∈ C[yrs ], deg(f i

j ) = j and each spinor

ϕi
j ≡ ϕi

j(xαi ), α ≥ 2, degw (ϕi
j) = m − 2j .

If ϕ is a solution of (4), then for each i : ϕi
m satisfies [∂̃i , ∂̃j ]ϕ

i
m = 0.

Thus for each i : ϕi
m extends to a unique solution of the k-Dirac

operator in the Euclidean setting.
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Monogenic spinors in the parabolic setting.

Lemma

Let φ ∈ C∞(M(n, k,R),S±) be a (homogeneous) solution of ∂φ = 0 and
f ∈ C[yrs ] be an arbitrary homogeneous polynomial. Then there exists a
monogenic spinor Φ = f φ+ l .o.t. in the parabolic setting (DΦ = 0) where
l .o.t. stands for a spinor whose components are polynomials of
homogeneity strictly smaller then deg(f ) in yrs -variables. (Any monogenic
spinor is of this form).

Call f φ the leading term of Φ.

The end of the proof of the theorem:

The uniqueness: Let ψ be a monogenic spinor such that ψ|U = 0.
Then ψ|V is a solution of (4) so by Cartan-Kähler theorem ψ = 0 on
V . By the previous lemma ψ is determined by its leading term which
is zero. Thus ψ = 0 and so any monogenic spinor is uniquely
determined by its restriction to U.

Tomáš Salač (Charles University in Prague)k-Dirac operator and the boundary value problem ZS 11 / 13



Monogenic spinors in the parabolic setting.

Lemma

Let φ ∈ C∞(M(n, k,R),S±) be a (homogeneous) solution of ∂φ = 0 and
f ∈ C[yrs ] be an arbitrary homogeneous polynomial. Then there exists a
monogenic spinor Φ = f φ+ l .o.t. in the parabolic setting (DΦ = 0) where
l .o.t. stands for a spinor whose components are polynomials of
homogeneity strictly smaller then deg(f ) in yrs -variables. (Any monogenic
spinor is of this form).

Call f φ the leading term of Φ.

The end of the proof of the theorem:

The uniqueness: Let ψ be a monogenic spinor such that ψ|U = 0.
Then ψ|V is a solution of (4) so by Cartan-Kähler theorem ψ = 0 on
V . By the previous lemma ψ is determined by its leading term which
is zero. Thus ψ = 0 and so any monogenic spinor is uniquely
determined by its restriction to U.
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Tomáš Salač (Charles University in Prague)k-Dirac operator and the boundary value problem ZS 11 / 13



The end of the proof of the theorem.

The existence of an extension: Let ψ be a homogeneous spinor
(Dψ = 0) in xαi -variables, α ≥ 2. Let ψ̄ the unique solution of (4)
determined by ψ given by the Cartan-Kähler theorem.

Let us write ψ̄ = f i
mψ̄

i
m + l .o.t. with deg(f i

m) = m. Call f i
mψ̄

i
m the

leading term of ψ̄.

Let Ψ be a monogenic spinor given by the leading term of ψ̄ from the
previous lemma.

Then the leading terms of ψ̄ and Ψ|V agree. Might happen that
ψ̄ −Ψ|V 6= 0. Nevertheless, the difference ψ̄ −Ψ|V is again a solution
of (4) and so you can apply the lemma again to the leading term of
ψ̄ −Ψ|V . By induction on m the existence of an extension follows. �
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Thank you for your attention!
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