k-Dirac operator and the boundary value problem

Tomáš Salač

Charles University in Prague MÚUK

zs

1 / 13

Tomáš Salač (Charles University in Prague)k-Dirac operator and the boundary value pro

The k-Dirac operator $(k \ge 2)$ is the differential operator

$$\begin{aligned} \partial : \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{S}_{\pm}) &\to \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{R}^{k}\otimes\mathbb{S}_{\pm}) \\ \partial(f) &= (\partial_{1}f,\ldots,\partial_{k}f) \\ \partial_{i}f &= \sum_{\alpha=1}^{n} \varepsilon_{\alpha}.\partial_{\alpha i}f \end{aligned}$$

where

Tomáš Salač (Charles University in Prague)k-Dirac operator and the boundary value pro

The k-Dirac operator $(k \ge 2)$ is the differential operator

$$\begin{aligned} \partial : \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{S}_{\pm}) &\to \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{R}^{k}\otimes\mathbb{S}_{\pm}) \\ \partial(f) &= (\partial_{1}f,\ldots,\partial_{k}f) \\ \partial_{i}f &= \sum_{\alpha=1}^{n} \varepsilon_{\alpha}.\partial_{\alpha i}f \end{aligned}$$

zs

2 / 13

where

• $M(n, k, \mathbb{R})$ is the affine space of matrices of size $n \times k$.

The k-Dirac operator $(k \ge 2)$ is the differential operator

$$\begin{aligned} \partial : \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{S}_{\pm}) &\to \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{R}^{k}\otimes\mathbb{S}_{\pm}) \\ \partial(f) &= (\partial_{1}f,\ldots,\partial_{k}f) \\ \partial_{i}f &= \sum_{\alpha=1}^{n} \varepsilon_{\alpha}.\partial_{\alpha i}f \end{aligned}$$

where

- $M(n, k, \mathbb{R})$ is the affine space of matrices of size $n \times k$.
- S_± := S_− ⊕ S₊ is the sum of complex spinor representations of so(n) (n is even).

The k-Dirac operator $(k \ge 2)$ is the differential operator

$$\begin{aligned} \partial : \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{S}_{\pm}) &\to \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{R}^{k}\otimes\mathbb{S}_{\pm}) \\ \partial(f) &= (\partial_{1}f,\ldots,\partial_{k}f) \\ \partial_{i}f &= \sum_{\alpha=1}^{n} \varepsilon_{\alpha}.\partial_{\alpha i}f \end{aligned}$$

where

- M(n, k, ℝ) is the affine space of matrices of size n × k.
- S_± := S_− ⊕ S₊ is the sum of complex spinor representations of so(n) (n is even).

ZS

2 / 13

• ∂_{ij} are the usual partial derivatives on $M(n, k, \mathbb{R})$.

The k-Dirac operator $(k \ge 2)$ is the differential operator

$$\begin{aligned} \partial : \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{S}_{\pm}) &\to \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{R}^{k}\otimes\mathbb{S}_{\pm}) \\ \partial(f) &= (\partial_{1}f,\ldots,\partial_{k}f) \\ \partial_{i}f &= \sum_{\alpha=1}^{n} \varepsilon_{\alpha}.\partial_{\alpha i}f \end{aligned}$$

where

- M(n, k, ℝ) is the affine space of matrices of size n × k.
- S_± := S_− ⊕ S₊ is the sum of complex spinor representations of so(n) (n is even).
- ∂_{ij} are the usual partial derivatives on $M(n, k, \mathbb{R})$.
- $\{\varepsilon_1, \ldots, \varepsilon_n\}$ is the standard basis of \mathbb{R}^n .

The k-Dirac operator $(k \ge 2)$ is the differential operator

$$\begin{aligned} \partial : \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{S}_{\pm}) &\to \mathcal{C}^{\infty}(M(n,k,\mathbb{R}),\mathbb{R}^{k}\otimes\mathbb{S}_{\pm}) \\ \partial(f) &= (\partial_{1}f,\ldots,\partial_{k}f) \\ \partial_{i}f &= \sum_{\alpha=1}^{n} \varepsilon_{\alpha}.\partial_{\alpha i}f \end{aligned}$$

where

- $M(n, k, \mathbb{R})$ is the affine space of matrices of size $n \times k$.
- S_± := S_− ⊕ S₊ is the sum of complex spinor representations of so(n) (n is even).
- ∂_{ij} are the usual partial derivatives on $M(n, k, \mathbb{R})$.
- $\{\varepsilon_1, \ldots, \varepsilon_n\}$ is the standard basis of \mathbb{R}^n .
- ε_j . denotes the multiplication by the Clifford number ε_j .

k-Dirac operator (in the parabolic setting).

Grassmannian variety of isotropic k-planes in ℝ^{k,n+k}. This is homogeneous model G/P of 2-graded parabolic geometry with G = SO(k, n + k).

ZS

k-Dirac operator (in the parabolic setting).

- Grassmannian variety of isotropic k-planes in R^{k,n+k}. This is homogeneous model G/P of 2-graded parabolic geometry with G = SO(k, n + k).
- Levi subgroup of P is isomorphic to $\operatorname{GL}(k, \mathbb{R}) \times \operatorname{SO}(n)$ with isomorphisms $\mathfrak{g}_{-1} \cong (\mathbb{R}^k)^* \otimes \mathbb{R}^n, \mathfrak{g}_{-2} \cong \Lambda^2(\mathbb{R}^k)^*.$

ZS

k-Dirac operator (in the parabolic setting).

- Grassmannian variety of isotropic k-planes in ℝ^{k,n+k}. This is homogeneous model G/P of 2-graded parabolic geometry with G = SO(k, n + k).
- Levi subgroup of P is isomorphic to $\operatorname{GL}(k, \mathbb{R}) \times \operatorname{SO}(n)$ with isomorphisms $\mathfrak{g}_{-1} \cong (\mathbb{R}^k)^* \otimes \mathbb{R}^n, \mathfrak{g}_{-2} \cong \Lambda^2(\mathbb{R}^k)^*$.
- k-Dirac operator is the invariant operator

$$D: \Gamma(\mathcal{S}_{\pm}) \to \Gamma(\mathbb{R}^k \otimes \mathcal{S}_{\pm})$$

where S_{\pm} is the homogeneous vector bundle associated \mathbb{S}_{\pm} (*n* is even) over G/P.

• Set $\mathfrak{g}_{-} := \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$ and $G_{-} := \exp(\mathfrak{g}_{-})$. Let $\pi : G \to G/P$ be the canonical projection.

- Set $\mathfrak{g}_{-} := \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$ and $G_{-} := \exp(\mathfrak{g}_{-})$. Let $\pi : G \to G/P$ be the canonical projection.
- Diffeomorphism $\pi \circ \exp : \mathfrak{g}_{-} \to G/P$. The image is an affine subset of G/P.

zs

- Set $\mathfrak{g}_{-} := \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$ and $G_{-} := \exp(\mathfrak{g}_{-})$. Let $\pi : G \to G/P$ be the canonical projection.
- Diffeomorphism $\pi \circ \exp : \mathfrak{g}_{-} \to G/P$. The image is an affine subset of G/P.

ZS

4 / 13

• Coordinates $x_{\alpha i}, y_{rs}$ on the affine subset. $\alpha = 1, \ldots, n, i = 1, \ldots, k$ and $1 \le s < r \le k$.

- Set $\mathfrak{g}_{-} := \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$ and $G_{-} := \exp(\mathfrak{g}_{-})$. Let $\pi : G \to G/P$ be the canonical projection.
- Diffeomorphism $\pi \circ \exp : \mathfrak{g}_{-} \to G/P$. The image is an affine subset of G/P.

ZS

- Coordinates $x_{\alpha i}, y_{rs}$ on the affine subset. $\alpha = 1, \ldots, n, i = 1, \ldots, k$ and $1 \le s < r \le k$.
- Coordinate vector fields $\partial_{\alpha i}, \partial_{rs} = -\partial_{sr}$.

- Set $\mathfrak{g}_{-} := \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$ and $G_{-} := \exp(\mathfrak{g}_{-})$. Let $\pi : G \to G/P$ be the canonical projection.
- Diffeomorphism $\pi \circ \exp : \mathfrak{g}_{-} \to G/P$. The image is an affine subset of G/P.
- Coordinates $x_{\alpha i}, y_{rs}$ on the affine subset. $\alpha = 1, \ldots, n, i = 1, \ldots, k$ and $1 \le s < r \le k$.
- Coordinate vector fields $\partial_{\alpha i}, \partial_{rs} = -\partial_{sr}$.
- Then $L_{\alpha i} := \partial_{\alpha i} \frac{1}{2} x_{\alpha j} \partial_{ij}$ are left invariant vector fields on G₋.

ZS

- Set $\mathfrak{g}_{-} := \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$ and $G_{-} := \exp(\mathfrak{g}_{-})$. Let $\pi : G \to G/P$ be the canonical projection.
- Diffeomorphism $\pi \circ \exp : \mathfrak{g}_{-} \to G/P$. The image is an affine subset of G/P.
- Coordinates $x_{\alpha i}, y_{rs}$ on the affine subset. $\alpha = 1, \ldots, n, i = 1, \ldots, k$ and $1 \le s < r \le k$.
- Coordinate vector fields $\partial_{\alpha i}, \partial_{rs} = -\partial_{sr}$.
- Then $L_{\alpha i} := \partial_{\alpha i} \frac{1}{2} x_{\alpha j} \partial_{ij}$ are left invariant vector fields on G₋.
- $\{L_{\alpha i}\}$ span non-integrable distribution with

$$[L_{\alpha i}, L_{\beta j}] = \delta_{\alpha \beta} \partial_{ij}.$$

- Set $\mathfrak{g}_{-} := \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$ and $G_{-} := \exp(\mathfrak{g}_{-})$. Let $\pi : G \to G/P$ be the canonical projection.
- Diffeomorphism $\pi \circ \exp : \mathfrak{g}_{-} \to G/P$. The image is an affine subset of G/P.
- Coordinates $x_{\alpha i}, y_{rs}$ on the affine subset. $\alpha = 1, \ldots, n, i = 1, \ldots, k$ and $1 \le s < r \le k$.
- Coordinate vector fields $\partial_{\alpha i}, \partial_{rs} = -\partial_{sr}$.
- Then $L_{\alpha i} := \partial_{\alpha i} \frac{1}{2} x_{\alpha j} \partial_{ij}$ are left invariant vector fields on G_{-} .
- $\{L_{\alpha i}\}$ span non-integrable distribution with

$$[L_{\alpha i}, L_{\beta j}] = \delta_{\alpha \beta} \partial_{ij}.$$

• Let $\varphi \in \Gamma(\mathcal{S}_{\pm})$.

$$D(\varphi) = (D_1\varphi, \dots, D_k\varphi)$$
$$D_i\varphi = \sum_{\alpha=1}^n \varepsilon_\alpha . L_{\alpha i}\varphi.$$

ZS

Relation between these two operators.

• There is a locally exact sequence (in the real analytic category) of invariant differential operators on G/P starting with *D*.

ZS

Relation between these two operators.

• There is a locally exact sequence (in the real analytic category) of invariant differential operators on G/P starting with *D*.

ZS

5 / 13

• Singular character.

- There is a locally exact sequence (in the real analytic category) of invariant differential operators on G/P starting with D.
- Singular character.
- If we pass to the local space of leaves corresponding to the integrable distribution $\langle R_X | X \in \mathfrak{g}_{-2} \rangle$, i.e. we kill the y_{rs} coordinates, then the sequence is still locally exact and descends to a resolution of the *k*-Dirac operator (in the Euclidean setting).

- There is a locally exact sequence (in the real analytic category) of invariant differential operators on G/P starting with *D*.
- Singular character.
- If we pass to the local space of leaves corresponding to the integrable distribution $\langle R_X | X \in \mathfrak{g}_{-2} \rangle$, i.e. we kill the y_{rs} coordinates, then the sequence is still locally exact and descends to a resolution of the *k*-Dirac operator (in the Euclidean setting).
- k-Dirac operator (in the parabolic setting) \rightarrow k-Dirac operator (in the Euclidean setting)

ZS

- There is a locally exact sequence (in the real analytic category) of invariant differential operators on G/P starting with *D*.
- Singular character.
- If we pass to the local space of leaves corresponding to the integrable distribution $\langle R_X | X \in \mathfrak{g}_{-2} \rangle$, i.e. we kill the y_{rs} coordinates, then the sequence is still locally exact and descends to a resolution of the *k*-Dirac operator (in the Euclidean setting).
- k-Dirac operator (in the parabolic setting) \rightarrow k-Dirac operator (in the Euclidean setting)
- Question: Is there also an arrow in the other direction?

- There is a locally exact sequence (in the real analytic category) of invariant differential operators on G/P starting with *D*.
- Singular character.
- If we pass to the local space of leaves corresponding to the integrable distribution $\langle R_X | X \in \mathfrak{g}_{-2} \rangle$, i.e. we kill the y_{rs} coordinates, then the sequence is still locally exact and descends to a resolution of the *k*-Dirac operator (in the Euclidean setting).
- k-Dirac operator (in the parabolic setting) \rightarrow k-Dirac operator (in the Euclidean setting)
- Question: Is there also an arrow in the other direction?
- Answer: Yes, there is.

 Let f ∈ C[∞](M(n, k, ℝ), S_±) be a solution of ∂f = 0. Then f is called a monogenic spinor.

ZS

• Let $f \in C^{\infty}(M(n, k, \mathbb{R}), \mathbb{S}_{\pm})$ be a solution of $\partial f = 0$. Then f is called a *monogenic spinor*.

ZS

6 / 13

• The components of f are harmonic and so f is real analytic.

• Let $f \in C^{\infty}(M(n, k, \mathbb{R}), \mathbb{S}_{\pm})$ be a solution of $\partial f = 0$. Then f is called a *monogenic spinor*.

ZS

- The components of f are harmonic and so f is real analytic.
- The spinor *f* is monogenic iff all its homogeneous parts are monogenic.

- Let f ∈ C[∞](M(n, k, ℝ), S_±) be a solution of ∂f = 0. Then f is called a monogenic spinor.
- The components of f are harmonic and so f is real analytic.
- The spinor *f* is monogenic iff all its homogeneous parts are monogenic.
- It is not hard to see that f is uniquely determined by its restriction to the set U := {x₁₁ = x₁₂ = ... = x_{1k} = 0}.

- Let f ∈ C[∞](M(n, k, ℝ), S_±) be a solution of ∂f = 0. Then f is called a monogenic spinor.
- The components of f are harmonic and so f is real analytic.
- The spinor *f* is monogenic iff all its homogeneous parts are monogenic.
- It is not hard to see that f is uniquely determined by its restriction to the set U := {x₁₁ = x₁₂ = ... = x_{1k} = 0}.
- Given a homogeneous spinor g of degree m which depends only on x_{αi}, α ≥ 2, does there exists a monogenic spinor f of degree m such that f|_U = g|_U?

ZS

- Let f ∈ C[∞](M(n, k, ℝ), S_±) be a solution of ∂f = 0. Then f is called a monogenic spinor.
- The components of f are harmonic and so f is real analytic.
- The spinor *f* is monogenic iff all its homogeneous parts are monogenic.
- It is not hard to see that f is uniquely determined by its restriction to the set U := {x₁₁ = x₁₂ = ... = x_{1k} = 0}.
- Given a homogeneous spinor g of degree m which depends only on $x_{\alpha i}, \alpha \ge 2$, does there exists a monogenic spinor f of degree m such that $f|_U = g|_U$?
- *f* is of the form $g + x_{1i}f_i + x_{1i}x_{1j}f_{ij} + \ldots$ where each $f_{i_1...i_r}$ is a homogeneous spinor of degree m r which depends only $x_{\alpha i}, \alpha \ge 2$.

ZS

Theorem

The monogenic spinor f exists iff $\forall i, j : [\tilde{\partial}_i, \tilde{\partial}_j]g = 0$ where $\tilde{\partial}_i = \sum_{\alpha \ge 2} \varepsilon_{\alpha} . \partial_{\alpha i}$.

Tomáš Salač (Charles University in Prague)k-Dirac operator and the boundary value pro

Z

Theorem

The monogenic spinor f exists iff $\forall i, j : [\tilde{\partial}_i, \tilde{\partial}_j]g = 0$ where $\tilde{\partial}_i = \sum_{\alpha \ge 2} \varepsilon_{\alpha} . \partial_{\alpha i}$.

• " \Rightarrow " in the previous theorem is a direct consequence of $[\partial_{1i}, \partial_{1j}] = 0.$

Ζ.

Theorem

The monogenic spinor f exists iff $\forall i, j : [\tilde{\partial}_i, \tilde{\partial}_j]g = 0$ where $\tilde{\partial}_i = \sum_{\alpha \ge 2} \varepsilon_{\alpha} . \partial_{\alpha i}$.

• " \Rightarrow " in the previous theorem is a direct consequence of $[\partial_{1i}, \partial_{1j}] = 0.$

ZS

7 / 13

• We seek a new system of PDEs such that:

Theorem

The monogenic spinor f exists iff $\forall i, j : [\tilde{\partial}_i, \tilde{\partial}_j]g = 0$ where $\tilde{\partial}_i = \sum_{\alpha \ge 2} \varepsilon_{\alpha} . \partial_{\alpha i}$.

- " \Rightarrow " in the previous theorem is a direct consequence of $[\partial_{1i}, \partial_{1j}] = 0.$
- We seek a new system of PDEs such that:
 - each solution of the k-Dirac operator extends naturally to a solution of the new system.

ZS

Theorem

The monogenic spinor f exists iff $\forall i, j : [\tilde{\partial}_i, \tilde{\partial}_j]g = 0$ where $\tilde{\partial}_i = \sum_{\alpha \ge 2} \varepsilon_{\alpha} . \partial_{\alpha i}$.

- " \Rightarrow " in the previous theorem is a direct consequence of $[\partial_{1i}, \partial_{1j}] = 0.$
- We seek a new system of PDEs such that:
 - each solution of the k-Dirac operator extends naturally to a solution of the new system.
 - 2 any spinor given on the set isomorphic to U extends to a unique solution of the new system.

Theorem

The monogenic spinor f exists iff $\forall i, j : [\tilde{\partial}_i, \tilde{\partial}_j]g = 0$ where $\tilde{\partial}_i = \sum_{\alpha \ge 2} \varepsilon_{\alpha} . \partial_{\alpha i}$.

- " \Rightarrow " in the previous theorem is a direct consequence of $[\partial_{1i}, \partial_{1j}] = 0.$
- We seek a new system of PDEs such that:
 - each solution of the k-Dirac operator extends naturally to a solution of the new system.
 - 2 any spinor given on the set isomorphic to U extends to a unique solution of the new system.
- The space of quadratic spinors in $x_{\alpha i}$ -variables ($\alpha \ge 2$): need to add y_{rs} coordinates ($1 \le r < s \le k$) and replace $\partial_{\alpha i} \mapsto L_{\alpha i}$.

ZS

Theorem

The monogenic spinor f exists iff $\forall i, j : [\tilde{\partial}_i, \tilde{\partial}_j]g = 0$ where $\tilde{\partial}_i = \sum_{\alpha \ge 2} \varepsilon_{\alpha} . \partial_{\alpha i}$.

- " \Rightarrow " in the previous theorem is a direct consequence of $[\partial_{1i}, \partial_{1j}] = 0.$
- We seek a new system of PDEs such that:
 - each solution of the k-Dirac operator extends naturally to a solution of the new system.
 - 2 any spinor given on the set isomorphic to U extends to a unique solution of the new system.
- The space of quadratic spinors in $x_{\alpha i}$ -variables ($\alpha \ge 2$): need to add y_{rs} coordinates ($1 \le r < s \le k$) and replace $\partial_{\alpha i} \mapsto L_{\alpha i}$.
- Any quadratic spinor given on the set U := {x_{1i} = y_{rs} = 0} extends to a unique monogenic spinor φ (in the parabolic setting, i.e. Dφ = 0).

Theorem

Let $\psi \in \Gamma(S_{\pm})$ be an arbitrary real analytic spinor given on an open subset U' of the set U, i.e. ψ depends only on $x_{\alpha i}, \alpha \ge 2$. Then ψ extends to a unique monogenic spinor Ψ on a small open neighbourhood of U', i.e. $D\Psi = 0$ and $\Psi|_{U'} = \psi|_{U'}$.

ZS

Theorem

Let $\psi \in \Gamma(S_{\pm})$ be an arbitrary real analytic spinor given on an open subset U' of the set U, i.e. ψ depends only on $x_{\alpha i}, \alpha \ge 2$. Then ψ extends to a unique monogenic spinor Ψ on a small open neighbourhood of U', i.e. $D\Psi = 0$ and $\Psi|_{U'} = \psi|_{U'}$.

Weighted degree: deg_w(x_{αi}) = 1, deg_w(y_{rs}) = 2. Extend deg_w to monomials, deg_w : (ℂ[y_{rs}, x_{αi}], .) → (ℤ, +) is a homomorphism.

ZS

Theorem

Let $\psi \in \Gamma(S_{\pm})$ be an arbitrary real analytic spinor given on an open subset U' of the set U, i.e. ψ depends only on $x_{\alpha i}, \alpha \ge 2$. Then ψ extends to a unique monogenic spinor Ψ on a small open neighbourhood of U', i.e. $D\Psi = 0$ and $\Psi|_{U'} = \psi|_{U'}$.

Weighted degree: deg_w(x_{αi}) = 1, deg_w(y_{rs}) = 2. Extend deg_w to monomials, deg_w : (ℂ[y_{rs}, x_{αi}], .) → (ℤ, +) is a homomorphism.

ZS

•
$$N_m = \langle f \in \mathbb{C}[y_{rs}, x_{\alpha i}] | deg_w f = m \rangle.$$

Theorem

Let $\psi \in \Gamma(S_{\pm})$ be an arbitrary real analytic spinor given on an open subset U' of the set U, i.e. ψ depends only on $x_{\alpha i}, \alpha \ge 2$. Then ψ extends to a unique monogenic spinor Ψ on a small open neighbourhood of U', i.e. $D\Psi = 0$ and $\Psi|_{U'} = \psi|_{U'}$.

Weighted degree: deg_w(x_{αi}) = 1, deg_w(y_{rs}) = 2. Extend deg_w to monomials, deg_w : (ℂ[y_{rs}, x_{αi}], .) → (ℤ, +) is a homomorphism.

•
$$N_m = \langle f \in \mathbb{C}[y_{rs}, x_{\alpha i}] | deg_w f = m \rangle.$$

•
$$\mathbb{C}[y_{rs}, x_{\alpha i}] = \bigoplus_{m \ge 0} N_m$$
.

Theorem

Let $\psi \in \Gamma(S_{\pm})$ be an arbitrary real analytic spinor given on an open subset U' of the set U, i.e. ψ depends only on $x_{\alpha i}, \alpha \ge 2$. Then ψ extends to a unique monogenic spinor Ψ on a small open neighbourhood of U', i.e. $D\Psi = 0$ and $\Psi|_{U'} = \psi|_{U'}$.

Weighted degree: deg_w(x_{αi}) = 1, deg_w(y_{rs}) = 2. Extend deg_w to monomials, deg_w : (ℂ[y_{rs}, x_{αi}], .) → (ℤ, +) is a homomorphism.

•
$$N_m = \langle f \in \mathbb{C}[y_{rs}, x_{\alpha i}] | deg_w f = m \rangle$$

- $\mathbb{C}[y_{rs}, x_{\alpha i}] = \bigoplus_{m \ge 0} N_m$.
- Extend to Γ(S_±) and Γ(ℝ^k ⊗ S_±) over the affine set, a spinor is homogeneous of degree *m* iff its components are homogeneous of the weighted degree *m*.

ZS

Theorem

Let $\psi \in \Gamma(S_{\pm})$ be an arbitrary real analytic spinor given on an open subset U' of the set U, i.e. ψ depends only on $x_{\alpha i}, \alpha \ge 2$. Then ψ extends to a unique monogenic spinor Ψ on a small open neighbourhood of U', i.e. $D\Psi = 0$ and $\Psi|_{U'} = \psi|_{U'}$.

Weighted degree: deg_w(x_{αi}) = 1, deg_w(y_{rs}) = 2. Extend deg_w to monomials, deg_w : (ℂ[y_{rs}, x_{αi}], .) → (ℤ, +) is a homomorphism.

•
$$N_m = \langle f \in \mathbb{C}[y_{rs}, x_{\alpha i}] | deg_w f = m \rangle$$

•
$$\mathbb{C}[y_{rs}, x_{\alpha i}] = \bigoplus_{m \ge 0} N_m$$

 Extend to Γ(S_±) and Γ(ℝ^k ⊗ S_±) over the affine set, a spinor is homogeneous of degree *m* iff its components are homogeneous of the weighted degree *m*.

• $\psi \in \Gamma(S_{\pm})$: $\psi = \psi_0 + \psi_1 + \dots$ where ψ_i is homogeneous of degree *i*.

ZS

Theorem

Let $\psi \in \Gamma(S_{\pm})$ be an arbitrary real analytic spinor given on an open subset U' of the set U, i.e. ψ depends only on $x_{\alpha i}, \alpha \ge 2$. Then ψ extends to a unique monogenic spinor Ψ on a small open neighbourhood of U', i.e. $D\Psi = 0$ and $\Psi|_{U'} = \psi|_{U'}$.

Weighted degree: deg_w(x_{αi}) = 1, deg_w(y_{rs}) = 2. Extend deg_w to monomials, deg_w : (ℂ[y_{rs}, x_{αi}], .) → (ℤ, +) is a homomorphism.

•
$$N_m = \langle f \in \mathbb{C}[y_{rs}, x_{\alpha i}] | deg_w f = m \rangle.$$

•
$$\mathbb{C}[y_{rs}, x_{\alpha i}] = \bigoplus_{m \ge 0} N_m$$
.

- Extend to Γ(S_±) and Γ(ℝ^k ⊗ S_±) over the affine set, a spinor is homogeneous of degree *m* iff its components are homogeneous of the weighted degree *m*.
- $\psi \in \Gamma(S_{\pm}) : \psi = \psi_0 + \psi_1 + \dots$ where ψ_i is homogeneous of degree *i*.
- D is homogeneous operator of the degree (-1). Thus Dψ = 0 iff Dψ_m = 0 for each homogeneous piece ψ_m of ψ.

• Let $\psi \in \Gamma(S_{\pm})$ be a monogenic spinor ($\forall i : D_i \psi = 0$).

Tomáš Salač (Charles University in Prague)k-Dirac operator and the boundary value pro

• Let $\psi \in \Gamma(S_{\pm})$ be a monogenic spinor ($\forall i : D_i \psi = 0$).

• Then $\{D_i, D_j\}\psi = 0$ and thus also

$$\frac{n}{2}\partial_{ij}\psi=\sum_{\alpha=1}^{n}L_{\alpha i}L_{\alpha j}\psi.$$

• Let $\psi \in \Gamma(S_{\pm})$ be a monogenic spinor $(\forall i : D_i \psi = 0)$.

• Then $\{D_i, D_j\}\psi = 0$ and thus also

$$\frac{n}{2}\partial_{ij}\psi=\sum_{\alpha=1}^{n}L_{\alpha i}L_{\alpha j}\psi.$$

This implies also that

$$(riangle):(rac{n}{2}-1)\partial_{ij}\psi=\sum_{lpha
eqeta\geq 2}arepsilon_{lpha}arepsilon_{eta}\mathsf{L}_{lpha i}\mathsf{L}_{eta j}\psi$$

or

$$(\frac{n}{2}-1)\partial_{ij}\psi=\frac{1}{2}[ilde{D}_i, ilde{D}_j]\psi$$

where $\tilde{D}_i = \sum_{\alpha \geq 2} \varepsilon_{\alpha} L_{\alpha i}$.

• Let $\psi \in \Gamma(\mathcal{S}_{\pm})$ be a monogenic spinor $(\forall i : D_i \psi = 0)$.

• Then $\{D_i, D_j\}\psi = 0$ and thus also

$$\frac{n}{2}\partial_{ij}\psi=\sum_{\alpha=1}^{n}L_{\alpha i}L_{\alpha j}\psi.$$

This implies also that

$$(\triangle): (\frac{n}{2}-1)\partial_{ij}\psi = \sum_{\alpha\neq\beta\geq 2} \varepsilon_{\alpha}\varepsilon_{\beta}L_{\alpha i}L_{\beta j}\psi$$

or

$$(\frac{n}{2}-1)\partial_{ij}\psi=\frac{1}{2}[\tilde{D}_i,\tilde{D}_j]\psi$$

ZS

9 / 13

where $\tilde{D}_i = \sum_{\alpha \ge 2} \varepsilon_{\alpha} L_{\alpha i}$. • Get PDE on $V := \{x_{11} = \ldots = x_{1k} = 0\}$.

 The Cartan-Kähler theorem states that any given spinor on U extends to a unique solution of (△).

zs

- The Cartan-Kähler theorem states that any given spinor on U extends to a unique solution of (△).
- Let φ be a homogeneous spinor of degree m on V. Let

$$\varphi = \varphi_0 + f_1^i \varphi_1^i + \ldots + f_{m-1}^i \varphi_{m-1}^i + f_m^i \varphi_m^i$$

where
$$f_i^j \in \mathbb{C}[y_{rs}], deg(f_j^i) = j$$
 and each spinor $\varphi_j^i \equiv \varphi_j^i(x_{\alpha i}), \alpha \ge 2, deg_w(\varphi_j^i) = m - 2j.$

- The Cartan-Kähler theorem states that any given spinor on U extends to a unique solution of (△).
- Let φ be a homogeneous spinor of degree m on V. Let

$$\varphi = \varphi_0 + f_1^i \varphi_1^i + \ldots + f_{m-1}^i \varphi_{m-1}^i + f_m^i \varphi_m^i$$

where
$$f_i^j \in \mathbb{C}[y_{rs}], deg(f_j^i) = j$$
 and each spinor
 $\varphi_j^i \equiv \varphi_j^i(x_{\alpha i}), \alpha \ge 2, deg_w(\varphi_j^i) = m - 2j.$

• If φ is a solution of (\triangle) , then for each $i : \varphi_m^i$ satisfies $[\tilde{\partial}_i, \tilde{\partial}_j] \varphi_m^i = 0$.

- The Cartan-Kähler theorem states that any given spinor on U extends to a unique solution of (△).
- Let φ be a homogeneous spinor of degree m on V. Let

$$\varphi = \varphi_0 + f_1^i \varphi_1^i + \ldots + f_{m-1}^i \varphi_{m-1}^i + f_m^i \varphi_m^i$$

where
$$f_i^j \in \mathbb{C}[y_{rs}], deg(f_j^i) = j$$
 and each spinor $\varphi_j^i \equiv \varphi_j^i(x_{\alpha i}), \alpha \ge 2, deg_w(\varphi_j^i) = m - 2j.$

- If φ is a solution of (\triangle) , then for each $i : \varphi_m^i$ satisfies $[\tilde{\partial}_i, \tilde{\partial}_j] \varphi_m^i = 0$.
- Thus for each *i* : φⁱ_m extends to a unique solution of the *k*-Dirac operator in the Euclidean setting.

Lemma

Let $\phi \in C^{\infty}(M(n, k, \mathbb{R}), \mathbb{S}_{\pm})$ be a (homogeneous) solution of $\partial \phi = 0$ and $f \in \mathbb{C}[y_{rs}]$ be an arbitrary homogeneous polynomial. Then there exists a monogenic spinor $\Phi = f\phi + 1.o.t.$ in the parabolic setting $(D\Phi = 0)$ where l.o.t. stands for a spinor whose components are polynomials of homogeneity strictly smaller then deg(f) in y_{rs} -variables. (Any monogenic spinor is of this form).

zs

Lemma

Let $\phi \in C^{\infty}(M(n, k, \mathbb{R}), \mathbb{S}_{\pm})$ be a (homogeneous) solution of $\partial \phi = 0$ and $f \in \mathbb{C}[y_{rs}]$ be an arbitrary homogeneous polynomial. Then there exists a monogenic spinor $\Phi = f\phi + l.o.t.$ in the parabolic setting $(D\Phi = 0)$ where *l.o.t.* stands for a spinor whose components are polynomials of homogeneity strictly smaller then deg(f) in y_{rs} -variables. (Any monogenic spinor is of this form).

zs

11 / 13

• Call $f\phi$ the *leading term* of Φ .

Lemma

Let $\phi \in C^{\infty}(M(n, k, \mathbb{R}), \mathbb{S}_{\pm})$ be a (homogeneous) solution of $\partial \phi = 0$ and $f \in \mathbb{C}[y_{rs}]$ be an arbitrary homogeneous polynomial. Then there exists a monogenic spinor $\Phi = f\phi + l.o.t.$ in the parabolic setting $(D\Phi = 0)$ where *l.o.t.* stands for a spinor whose components are polynomials of homogeneity strictly smaller then deg(f) in y_{rs} -variables. (Any monogenic spinor is of this form).

- Call $f\phi$ the *leading term* of Φ .
- The end of the proof of the theorem:

Lemma

Let $\phi \in C^{\infty}(M(n, k, \mathbb{R}), \mathbb{S}_{\pm})$ be a (homogeneous) solution of $\partial \phi = 0$ and $f \in \mathbb{C}[y_{rs}]$ be an arbitrary homogeneous polynomial. Then there exists a monogenic spinor $\Phi = f\phi + 1.o.t.$ in the parabolic setting $(D\Phi = 0)$ where l.o.t. stands for a spinor whose components are polynomials of homogeneity strictly smaller then deg(f) in y_{rs} -variables. (Any monogenic spinor is of this form).

- Call $f\phi$ the *leading term* of Φ .
- The end of the proof of the theorem:
- The uniqueness: Let ψ be a monogenic spinor such that $\psi|_U = 0$. Then $\psi|_V$ is a solution of (\triangle) so by Cartan-Kähler theorem $\psi = 0$ on V. By the previous lemma ψ is determined by its leading term which is zero. Thus $\psi = 0$ and so any monogenic spinor is uniquely determined by its restriction to U.

 The existence of an extension: Let ψ be a homogeneous spinor (Dψ = 0) in x_{αi}-variables, α ≥ 2. Let ψ the unique solution of (△) determined by ψ given by the Cartan-Kähler theorem.

zs

- The existence of an extension: Let ψ be a homogeneous spinor (Dψ = 0) in x_{αi}-variables, α ≥ 2. Let ψ the unique solution of (△) determined by ψ given by the Cartan-Kähler theorem.
- Let us write $\bar{\psi} = f_m^i \bar{\psi}_m^i + l.o.t.$ with $deg(f_m^i) = m$. Call $f_m^i \bar{\psi}_m^i$ the leading term of $\bar{\psi}$.

zs

- The existence of an extension: Let ψ be a homogeneous spinor (Dψ = 0) in x_{αi}-variables, α ≥ 2. Let ψ the unique solution of (△) determined by ψ given by the Cartan-Kähler theorem.
- Let us write $\bar{\psi} = f_m^i \bar{\psi}_m^i + l.o.t.$ with $deg(f_m^i) = m$. Call $f_m^i \bar{\psi}_m^i$ the leading term of $\bar{\psi}$.
- Let Ψ be a monogenic spinor given by the leading term of $\bar\psi$ from the previous lemma.

- The existence of an extension: Let ψ be a homogeneous spinor (Dψ = 0) in x_{αi}-variables, α ≥ 2. Let ψ the unique solution of (△) determined by ψ given by the Cartan-Kähler theorem.
- Let us write $\bar{\psi} = f_m^i \bar{\psi}_m^i + l.o.t.$ with $deg(f_m^i) = m$. Call $f_m^i \bar{\psi}_m^i$ the leading term of $\bar{\psi}$.
- Let Ψ be a monogenic spinor given by the leading term of $\bar\psi$ from the previous lemma.
- Then the leading terms of $\bar{\psi}$ and $\Psi|_V$ agree. Might happen that $\bar{\psi} \Psi|_V \neq 0$. Nevertheless, the difference $\bar{\psi} \Psi|_V$ is again a solution of (\triangle) and so you can apply the lemma again to the leading term of $\bar{\psi} \Psi|_V$. By induction on *m* the existence of an extension follows. \Box

Thank you for your attention!

