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TRANSFINITE ADAMS REPRESENTABILITY

FERNANDO MURO AND ORIOL RAVENTOS

ABSTRACT. We consider the following problems in a well generated triangu-
lated category 7. Let a be a regular cardinal and 9% C .7 the full sub-
category of a-compact objects. Is every functor H: (J%)°P — Ab that pre-
serves products of < a objects and takes exact triangles to exact sequences of
the form H = 9(—,X)|9a for some X in .77 Is every natural transforma-
tion 7: 7 (—, X)| 5o — Z(=Y)| ya of the form 7 = T(—, f)|,, for some
f: X — Y in 7 If the answer to both questions is positive we say that
7 satisfies a-Adams representability. A classical result going back to Brown
and Adams shows that the stable homotopy category satisfies Rg-Adams rep-
resentability. The case a = g is well understood thanks to the work of
Christensen, Keller and Neeman. In this paper we develop an obstruction
theory to decide when 7 satisfies a-Adams representability. We derive neces-
sary and sufficient conditions of homological nature, and we compute several
examples. In particular, we show that, for all @ > Ng, there are rings whose
derived category satisfies a-Adams representability and also rings for which
the answer to the second question is no.
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INTRODUCTION

There are two classical representability theorems in the stable homotopy cate-
gory 7. Any spectrum X gives rise to a cohomology theory 7 (—, X): T°P — Ab.
The Brown representability theorem, [Bro62], says that any cohomology theory
H: 7°P — Ab is of the form H = J(—, X) for some spectrum X. The Adams
representability theorem, [AdaTl], is a kind of analog for cohomology theories de-
fined only on the full subcategory of compact spectra .7 ¢ C 7. It asserts that any
cohomology theory H: (7¢)°° — Ab is of the form H = (-, X),,, for some X,
and, moreover, any natural transformation

l7e

7 T(—,X) . — T(=,Y)

|ge |ze

is induced by a map f: X — Y, 7 = J(—, f)|,.. By Yoneda’s lemma, the rep-
resenting spectrum in Brown’s theorem is unique and any natural transformation
between cohomology theories on .7 comes from a unique map between the repre-
senting spectra. In Adams’ theorem the spectrum X is still unique, but there may
be different maps f representing a given natural transformation 7. Maps represent-
ing the trivial natural transformation are called phantoms. Brown proved Adams’
theorem under the restrictive hypothesis that the cohomology theory H takes val-
ues in countable abelian groups. Adams’ theorem allows to extend cohomology
theories which are, in principle, only defined for compact spectra like topological
K-theory defined in terms of vector bundles. Adams’ theorem is stronger than
Brown’s, cf. [Ada71]], and it also implies the representability of homology theories
via the Spanier—Whitehead duality.

The analog of Brown’s representability theorem is satisfied by a wide class of tri-
angulated categories .7 including the well generated ones, i.e. if 7 is well generated
any functor H: .7°P — Ab preserving products and taking exact triangles to exact
sequences is of the form H = .7 (—, X) for some X in 7 [NeeOID, Theorem 8.3.3].
The simplest examples of well generated categories are the compactly generated
ones. An object C' in 7 is compact if the functor 7 (C, —) preserves direct sums,
and 7 is compactly generated if it has coproducts and the full subcategory of com-
pact objects .7¢ is essentially small and generates .77, i.e. an object X in .7 is
trivial if and only if 7 (C,X) =0 for all C in .7°. A compactly generated category
T satisfies Adams representability if any additive functor H: (Z¢)°P — Ab taking
exact triangles to exact sequences is of the form H = .7 (—, X),. for some X in
7, and any natural transformation as 7 above is induced by a map f: X — Y,
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T = (=, f)|,.- Despite the category of compact objects contains much infor-
mation about the whole category, Adams representability is seldom satisfied. It
is satisfied, for instance, when .7 is essentially countable [Nee97]. This covers
the stable homotopy category, but not the derived category D(R) of a ring R un-
less R is countable. Adams representability is thoroughly studied in [Bel00] and
[CKNOT], with emphasis on derived categories of rings. It turns out to be strongly
related to the pure global dimension of the ring R, a homological invariant con-
nected to set theory, e.g. the first part of Adams representability for the derived
category D(C(z,y)) of a non-commutative polynomial ring on two variables over
the complex numbers is equivalent to the continuum hypothesis.

Many well generated triangulated categories have not enough compact objects
to generate, e.g. the homotopy category K (Proj- R) of complexes of projective right
R-modules over a ring R which is not right coherent [NeeO8| Example 7.16]. There
are even some well generated categories with no non-trivial compact objects at all,
e.g. the derived category D(Sh/M) of sheaves of abelian groups on a connected
non-compact paracompact manifold M of dim M > 1 [Nee(Ola]. Therefore, in these
contexts, Adams representability does not make much sense as considered above.
In such cases, the role of compact objects is played by a-compact objects for a
regular cardinal «. In a well generated category, for a large enough cardinal «, the
category 7% of a-compact objects is essentially small, closed under coproducts of
< « objects, and generates .7. In this paper, we consider the following transfinite
analog of Adams representability in 7.

Definition. Let a be a regular cardinal and .7 a well generated triangulated
category. A functor H: (J)°° — Ab is cohomological if it takes exact triangles to
exact sequences. We say that .7 satisfies a-Adams representability if the following
two properties are satisfied:

ARO,, Any cohomological functor H: (J)°°? — Ab that preserves products of
< a objects is isomorphic to 7 (—, X)), for some X in .7.

ARM,, Any natural transformation 7: .7 (—, X)|,. — 7 (—,Y)
a morphism f: X =Y in 7, 7= 9(—, f),a-

The only case where these properties hold by obvious reasons for all « is the
derived category D(k) of a field k. Observe that if 7 is compactly generated
Ng-Adams representability is the same as Adams representability as considered
above. Since AROy, and ARMy, fail so often, it is also natural to consider ARO,,
and ARM,, for @ > Ry in compactly generated categories.

For .7 a well generated triangulated category with models, Rosicky stated in
[Ros05] that ARO, and ARM,, were satisfied for a proper class of regular cardinals
a. Unfortunately, his proof contains a gap acknowledged in [Ros08] and [Ros09].
Nevertheless, this statement is a fairly natural question. Heuristically, since any
well generated category is an increasing union of the subcategories of a-compact
objects T = Ua T by [NeeOlbl Proposition 8.4.2], Brown representability can be
regarded as the limit of ARO, and ARM, as « runs over all cardinals, and this
question suggests that the limit statement is satisfied because it is satisfied in a
‘cofinal’” sequence.

Neeman obtained in [Nee(9] striking consequences of Rosicky’s statement. One
of them is that any covariant functor on a well generated triangulated category
H: .7 — Ab preserving coproducts and taking exact triangles to exact sequences
would be representable H = 7 (X, —). This is Brown representability for the dual

is induced by

|7
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Z°P. This result cannot be deduced from the Brown representability theorem for
well generated categories since the opposite of a well generated category is never
well generated. It was known for compactly generated triangulated categories,
cf. [Nee98] and [Kra02], and it is a major open problem in the field for well generated
categories.

In this paper, we show that some well generated triangulated categories do not
satisfy a-Adams representability. For instance, we prove that D(Z) satisfies ARM,,
if and only if @ = Xy. This uses the fact that the a-pure global dimension of Z is
pgd,(Z) > 1 for a > Ny, cf. [BG12]. The a-pure global dimension of a ring R is
the smallest n such that, for each right R-module M, there is a sequence

0O—-P,—--—P—-M=0

where each P; is a retract of a direct sum of right R-modules with < « generators
and relations and

0 - Homg(Q, P,) — -+ = Hompg(Q, P1) — Homp(Q, M) — 0

is exact for any right R-module @ with < « generators and relations, cf. [JL89,
Chapter 7].

A ring R is a-coherent if any right R-module with < « generators has a pre-
sentation with < « generators and relations. Rings of card R < « are a-coherent,
cf. [Murldl, Lemma 19]. We prove that, if R is a-coherent for some a > ¥y and
D(R) satisfies ARM,,, then pgd (R) < 1.

A ring R is hereditary if it has global dimension < 1, e.g. R = Z and path
algebras of quivers over a field. Hereditary rings are a-coherent for all a@ > N.
For hereditary rings, we prove that ARO,, is equivalent to pgd,(R) < 2 and that
ARM,, is equivalent to pgd,(R) < 1, @ > Ng. The case a = Yy was shown in
[CKNOI]. As we already mentioned, pgd, (Z) > 1 for all & > R, but nothing else is
known about pgd,, (Z) without set-theoretical assumptions. Under the continuum
hypothesis, we prove that pgdy, (Z) = 2, which implies AROy, for D(Z), and more
generally, if 2%°-1 = N, then pgdy (Z) < n+1. Computing pgd,(Z) becomes now
a relevant problem since pgd, (Z) = 2 is equivalent to ARO,, for D(Z). The first
examples of rings with pgd, (R) > 1 for all & > R have been obtained in [BS13],
e.g. R = k[[z,y]] for k a field. As in the case of Z, we do not know better bounds
for pgd,, (R) without set-theoretical hypotheses. These rings do not satisfy ARM,,
for any a > Ny.

Concerning positive results, we show that the derived category D(R) of a hered-
itary right pure-semisimple ring, e.g. the path algebra of a Dynkin quiver over a
field, satisfies ARO, and ARM,, for all @. Under the continuum hypothesis, we
prove AROy, for the following categories, where R denotes a ring of card R < Ny:
the stable homotopy category, the derived category D(R) of right R-modules, the
homotopy category K (Proj- R) of complexes of projective right R-modules, the ho-
motopy category K (Inj- R) of complexes of injective right R-modules if R is right
noetherian, the derived category D(Sh/M) of sheaves of abelian groups on a con-
nected paracompact manifold, and the stable motivic homotopy category over a
noetherian scheme of finite Krull dimension that can be covered by spectra of rings
of cardinal < N;. We believe that set-theoretical assumptions are really necessary
in these examples, as they are in order for D(C(x,y)) to satisfy AROy,. These
results obtained under the continuum hypothesis suggest that for any specific coho-
mological functor H: (.7%1)°P — Ab preserving countable products there are many
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chances to find an object X with H = .7 (—, X)
exist the continuum hypothesis would be false.

We tackle ARO, and ARM, by means of a fairly general obstruction theory
for triangulated categories. We consider a well generated triangulated category 7
and a full subcategory 4 C 7% closed under (de)suspensions and coproducts of
< « objects which generates 7. We do not require ¢ to be triangulated, although
in this paper the main example is € = 7. We consider the restricted Yoneda
functor,

|_x, » for if such an object did not
T

Su: T — Moda(€), Sa(X)=7(~,X)

where Mod,, (%) is the abelian category of a-continuous (right) € -modules, i.e. func-
tors €°P — Ab preserving products of < « objects. Morphisms in the kernel of S,
are called phantom maps. We interpolate the functor S, by an inverse sequence of
categories

>

T = - = Post, | =5 Post> — --- — Posty — Mod,, ().

For each step t,, : Post;,,; — Post;, we define obstructions to the lifting of objects
and morphisms along ¢,. Obstructions take values in Ext groups in Mod,(%’). The
obstructions for the lifting of objects were first considered in for a = V.
In addition, we prove that the induced functor
t: 7 — Post,, = li7rln Post;;

is full and essentially surjective. We also analyze the kernel of ¢,, and, moreover,
we show that the kernel of the functor ¢ is the ideal of co-phantom maps, i.e. maps
f: X =Y in Z which decompose as a product f = f, --- f1 of n phantom maps
fi, 1 < i <mn, for all n > 1. Furthermore, we prove that co-phantom maps form
a square-zero ideal, i.e. the composition of two co-phantom maps is always zero.
This is a new result even for a compactly generated triangulated category .7 and

€ =9
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1. THE RESTRICTED YONEDA FUNCTOR

For the basic notions and properties of triangulated categories used in this section
we refer the reader to [NeeQ1D], [Kra00] and [Kral0).

Throughout this paper « is a regular cardinal, .7 is a well generated triangu-
lated category with suspension functor ¥, and 4 C ¢ is an essentially small full
subcategory such that:

(1) it is closed under (de)suspensions,

(2) it has coproducts of less than « objects, and

(3) it generates .7, i.e. an object X in .7 is zero if and ounly if 7 (C,X) =0
for all C'in €.
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In particular, 7 is a-compactly generated in the sense of Neeman [NeeOTD] and has
products and coproducts. We do not require € to be triangulated. If it were, then
necessarily ¢ = .7%. In order to avoid absurd situations, we assume that both ¢
and .7 are non-trivial, i.e. € contains at least one object X # 0.

Let Mod,, (%) be the abelian category of functors °? — Ab preserving products
of less than « objects. Such functors are called a-continuous (right) € -modules.
This category is locally a-presentable, a-filtered colimits are exact, and repre-
sentable functors form a set of a-presentable projective generators. Moreover,
a-filtered colimits in Mod, (%) are computed pointwise, i.e. if A is an a-filtering
category, A = Mod,(€): A — F) is a diagram of a-continuous ¢-modules, and C
is an object in ¥, then

(Cgél/{n F\)(C) = cg)éllr\n(F,\ @)),
where the first colimit is taken in Mod, (%) and the second one is in the category
Ab of abelian groups.

The restricted Yoneda functor,

So: T — Mody(€), So(X)=T(—,X)

>

preserves products and coproducts, takes exact triangles to exact sequences, and
reflects isomorphisms. If Add (¢) C .7 denotes the smallest subcategory closed un-
der coproducts and retracts containing %, then S, induces an equivalence between
Add (%) and the full subcategory of projective objets in Mod, (%’). Moreover, if P
is in Add (¥¢) and X is in .7, then S, induces an isomorphism

7 (P, X) = Homg, % (Sa(P), Sa (X)),

where Hom,, ¢ denotes the morphism sets in Mod, (%).
Notice that properties ARO,, and ARM,, defined in the introduction, translate
as follows for ¢ = .7

ARO, The essential image of S, is the class of cohomological functors in Mod, (%).
ARM, The functor S, is full.

Denote pd(A) the projective dimension of an object A in an abelian category 7.
Proposition 1.1. If S, is full, then pd(S,(X)) <1 for all X in 7.

The proof of this proposition is essentially the same as the proof of [Nee97,
Lemma 4.1]. We will use the following elementary lemma.

Lemma 1.2. If X Ly & 7 5 X is an ezact triangle and f decomposes as

f= ({;) X =>Y'@Y" =Y, then this exact triangle is the direct sum of an exact
triangle

x Ly 7 5x
and 0 =YY" 5Y" 0. In particular Z = 7' &Y.
Proof of Proposition[I.Il Choose a projective presentation of S, (X),

Sa(Pl) — Sa(Po) —» SQ(X)
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It comes from unique morphisms P; 2y Py 2% X with pop1 = 0, therefore pg
factors through the mapping cone of p; in an exact triangle

P1 q

P, Py—sy Y P,
Pol /
p
X.

The universal property of a cokernel shows that S, (i) factors through S, (po),

Sa(p1 Sa (i Sa
Sa(Pr) 222 5, () 22D 5, (v) 229

Sa(po)l /

S (X).

So(XPy)

Since S, (po) is an epimorphism and

Sa(p/)(bsa(pO) = Sa(p/)sa(i) = Sa(p/i) = Sa(p0)7

we deduce that S, (p')¢ = 1g,(x). Using that the functor S, is full, we can take
a morphism i": X — Y with ¢ = S,(i"). Hence, So(p')¢ = Sa(p'i’) = 15, (x) and,
since S, reflects isomorphisms, p’i’ is an automorphism of X, so Y decomposes as
(¢,i"): X @& Z 2 Y for some Z and i”. On the other hand, since the morphism
Sa (i) factors as S (i')So(p) and S, (Py) is projective, @ itself factors as i = i'po,
i.e. i decomposes as i = (%0): Py — X®Z =Y. Now, Lemma shows that
P; = P ® X717 and that there is an exact triangle

Pl — Py 2 X — 2P

In particular, S, (Pj) is projective. Since S,(pp) is an epimorphism, the image
under S, of the previous exact triangle produces a length 1 projective resolution
of S, (X),

Sa(P]) = So(Py) = Sa(X).

We derive the following necessary condition for ARM,,.

Corollary 1.3. If F satisfies ARM,, then pd(S,(X)) <1 for all X in .

2. AN OBSTRUCTION THEORY FOR THE RESTRICTED YONEDA FUNCTOR

In this section, we describe the formal properties of the obstruction theory devel-
oped in Section [l We derive a sufficient condition for ARO,, (Corollary 2Z.13]) and
necessary and sufficient conditions for ARM,, (Corollary 23] and for the a-Adams
representability theorem (Corollary 2TH).

The following notion of exact sequence of categories generalizes [Bau89, Defini-
tion IV.4.10] by incorporating an obstruction x to the lifting of objects.

Definition 2.1. Given an additive category %, a %-bimodule M is a biadditive
functor M: #°P x ## — Ab. The canonical example is the bimodule defined by
morphism sets, that we denote Z = %B(—, —). As usual, we can change coefficients
along additive functors &/ — %, so #B-bimodules become o7-bimodules.
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An ezxact sequence of categories
My
|
My —— o — 2
consists of an additive functor ¢, three #-bimodules M;, i = 0,1,2, an exact se-
quence

eMl

Ma(t(X), 1Y) 5 o/ (X, ¥) — B(H(X), 1Y) =5 My(1(X), 1Y)
for any two objects X and Y in &/, and an element
k(B) € Mo(B, B)
for any object B in %. The following conditions must be satisfied:
(1) For any morphism f: B — C in %,
[+ 6(B) =k(C)- f € My(B,C).

(2) k(B) =0 if and only if there exists an object A in o with t(A) = B.

(3) Given objects X,Y, Z in o/ and morphisms ¢(X) 5 t(Y) % ¢(Z) in %,

Ox,z(9f) =0vz(9) - f+g-Oxy(f) € Mi(X, Z).
(4) For any object X in & and any e € M;(¢(X),t(X)) there exists an object
X' =X +ein & with t(X) = t(X/) and GX,X/(idt(X)) =e.
(5) ¢ is a morphism of .&7-bimodules.
We sometimes omit the subscripts from 2 and 6 so as not to overload notation.

In an exact sequence of categories, x is a 0-dimensional element in Baues—
Wirsching cohomology of categories H(%, My), cf. [BW85]. Moreover, the rest
of the exact sequence is determined by a 1-dimensional and a 2-dimensional coho-
mology class, compare [Bau89, Chapter IV].

A triangulated category 7 is regarded as a graded category with graded mor-
phism sets

THXY) =P 7(X,2"Y).
nez
Since € is closed under (de)suspensions, ¥ admits an essentially unique exact exten-
sion to Mod, (¢) compatible with the restricted Yoneda functor, i.e. the following
diagram commutes up to natural isomorphism:

T 7

J s

Moda(€) —— Mod, (%).

The functor ¥ endows Mod, (¢’) with the structure of a graded abelian category.
Graded morphism sets in Mod, (%) are defined as in .7,

Hom}, (M, N) = @5 Hom (M, =" N).
nez

In a graded abelian category we also have graded Ext functors that we denote
Ext?? . where p indicates the length of the extension, i.e. the p'" derived functor



TRANSFINITE ADAMS REPRESENTABILITY 9

of Hom,, ¢, and ¢ is the internal degree coming from the graded Homy, . Notice
that Ext)% is a Mod,(%)-bimodule. We refer to [Str68] for additive and abelian
category theory in the graded setting.

The following theorem summarizes the main results of Section

Theorem 2.2. There is a sequence of exact sequences of categories, n > 0,

n+3,—1—-n
Exta_%

571/{\
K3

n+1l,—1—n n ~ in ~ On n+2,—1—n
Ext, & —— Post | Post,, Ext, &

with Posty ~ Mod, (%) and a full and essentially surjective functor
7 — Post-, = lim Post;,

such that the composite 7 — PostS, — Posty ~ Mod, (%) is naturally isomorphic
to the restricted Yoneda functor S,.

In Section [6] we omit the subscript n from ¢, § and k. Under the hypotheses of
the following corollary all obstructions vanish since the recipient bimodules vanish.

Corollary 2.3. Under the standing assumptions:
(1) If F is an a-continuous € -module with pd(F) < 2, then F = S, (X) for
some X in T .
(2) If pd(Sa(X)) < 1, then any morphism 7: So(X) = So(Y) is 7 = S (f)
for some f: X —-Y in .

Combining Corollary 23] with Proposition [Tl we obtain the following results.

Corollary 2.4. The functor S, is full if and only if its essential image consists of
the a-continuous € -modules F with pd(F) < 1.

Corollary 2.5. The category  satisfies ARM,, if and only if pd(S.(X)) <1 for
all X in 7.

Remark 2.6. A different approach to the lifting of morphisms along the restricted
Yonead functor for o = ¥y is developed in [BK03].

We now list some examples of .7 and € # 7% were it would be interesting to
apply the obstruction theory summarized in Theorem In all cases a = Ny:

e 7 the stable module category of the group ring kG of a finite group G over
a field k and € the full subcategory of finite-dimensional k-vector spaces
with the trivial action of G. In this case, Mody, (%) is equivalent to the
category of H*(G, k)-modules, where H*(G, k) is the Tate cohomology ring,
and the restricted Yoneda functor identifies with M — H*(G, M).

e 7 the homotopy category of modules over a ring spectrum R and % the
full subcategory spanned by free R-modules, i.e. finite coproducts of sus-
pensions of R. In this case, Mody, (%) is the category of m.(R)-modules
and the restricted Yoneda functor corresponds to M — 7, (M).

e 7 the derived category of a differential graded algebra A and ¢ the full
subcategory of free A-modules, i.e. finite coproducts of shifts of A. Here
Mody, (%) is the category of H,(A)-modules and the restricted Yoneda
functor identifies with M — H, (M)
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The first obstruction ko to the realizability of an object has been considered with

detail in these three cases, see [GHO§]| respectively. Indeed,

is where the obstructions x,, to the realizability of objects were first treated sys-
tematically.

We now consider a-flat objects and their connection with a-Adams represen-
tability.

Definition 2.7. Let &/ be a cocomplete abelian category. An a-flat object A in of
is an a-filtered colimit of a-presentable projective objects A = colimyecp Py. The
a-flat global dimension of <7 is

fed,, (/) = sup{pd(A) | 4 is a-flat}.

Remark 2.8. An a-flat object A = colimyecp Py has a canonical projective resolution

of the form
RN @ P)\—) @ P)\—>@P)\—»A
A= pu—rvEA A—=peEA AEA

These direct sums are indexed by the simplices of the nerve NA of the category A
indexing the colimit, i.e. for each n, N, A = {chains of n composable maps in A}.
In particular, for any other object B in &7 the higher Ext’s

Ext”, (A, B) = }\m/l\” Hom, (Py, B)
€
are the derived functors of the inverse limit.

Remark 2.9. In Mod,(.7%), the a-flat objects coincide with the cohomological
functors, cf. [NeeOTD, Section 7.2].

The a-flat global dimension of % can be bounded above if the cardinal of % is
not too large.

Definition 2.10. The cardinal of a small category % is
card ¢ = card H C(z,y),
z,y€S
where S is a set of isomorphism classes of objects in €.

Lemma 2.11. If % is a non-trivial additive category with coproducts of less than
« objects, then card € > «.

Proof. If X # 0 the identity in X is non-trivial, so card ¢ (X, X) > 2. For § < «,
c(J[x.X)=[[¢x.X), cad][%(X X)=>2"
B B B

Hence, card 6" > supg_,, 28 We now distinguish two cases, if &« = 4 is a successor,
then supg_,, 26 = 27 > 4t = @, and, if a is a limit cardinal, then SUPg<q 28 >
Supg.q B = a.

In Section 8 we show, under the generalized continuum hypothesis, that there is
always a large enough cardinal a such that card ¢ = «.

By Lemma 2.17] the hypothesis of the following proposition can only be satisfied
if o <N,

Proposition 2.12. If card 4 < R,,, then fgd,(Mod, (%)) <n+ 1.
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Proof. The full inclusion Mod, (%) C Mody, (%) preserves a-filtered colimits. The
a-presentable projective objects in Mod, (%) are the retracts of the representable
functors ¢ (—, X ), which also coincide with the Rg-presentable objects in Mody, (%).
Therefore a-flat objects in Mod, (%) are also a-flat in Mody, (%), in particular
No-flat. Moreover, by Remark 28 if F' is an a-continuous %-module and H =
colimyep Py is an a-flat a-continuous %-module, then

Extgﬁ(vp(H, F)= }\lenzlxn Hom, ¢(Py, F) = ;1€n[1X" Homy, ¢ (P, F) = Extgoﬂ(g(H, F).

This is proven in [NeeQIbl, Proposition 7.5.5] assuming that ¢ is triangulated, but
this hypothesis is not really used. If card ¢ < N,,, then any Ry-flat Nyp-continuous
%-module has projective dimension < n + 1 in Mody, (%), see [Sim77, Corollary
3.13]. Hence the proposition follows from the previous equation. O

We now concentrate in the case 4 = 7 *. The following sufficient condition for
ARO,, follows from Corollary 2.3] and Remark

Corollary 2.13. If fgd,(Mod,(7%)) < 2, then 7 satisfies ARO,,.

For the following corollary we also use Proposition [2.12] The restrictions on the
cardinal a are imposed by Lemma 2.11]

Corollary 2.14. Let a be Xg or V. If card 7% < Ny, then 7 satisfies ARO,.

The following homological characterization of a-Adams representability is a con-
sequence of Corollaries 2.4 and 213 and Remark

Corollary 2.15. A triangulated category 7 satisfies a-Adams representability if
and only if fgd,,(Mod,(Z7%)) < 1.

Using Proposition 2121 we obtain Neeman’s sufficient condition for Ng-Adams
representability, cf. [Nee97].

Corollary 2.16. If card TR0 < N, then 7 satisfies No-Adams representability.

Remark 2.17. In the case a = Ng, Beligiannis proves in Theorem 11.8] that
T satisfies ARMy, if and only if fgdy, (Mody, (-7 ™)) < 1. Thus, by Corollary 215
ARMy, implies AROy,.

A crucial step in his proof if that, since Mody,(7°) is a Grothendieck cate-
gory, it follows from [Sim77, Theorem 2.7] that fgdy, (Mody, (7)) = sup{pd(A) |
A is a-flat and pd(A) < oo}.

The fact that Mody, (7 0) is Grothendieck is used in order to apply (in each step
of an inductive argument) the Auslander Lemma: If X = {J,.; X;, where {X}icr
well ordered by inclusion, and pd(X;+1/X;) < k, then pd(X) < k. However, for
a > Ng, Mod, (7%) need not be a Grothendieck category because filtered colimits
need not be exact, only a-filtered colimits are exact. In fact, Mod, (7 %) can fail
to have enough injectives, cf. [NeeO1b, Section C.4]. The authors have proved an
analog of the Auslander Lemma that applies to Mody, (Z%") (to be published
elsewhere). However, it does not help in extending Beligiannis’ result for larger
cardinals, since, in the analog hypotheses of the Auslander Lemma above, we obtain
pd(X) < k 4+ n, which hampers the inductive argument.

Using a completely different approach, we will extend Beligiannis’ result to the
case 7 = D(R) for a hereditary ring R and any «, see Theorem B.3] and Corollary
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3. TRANSFINITE ADAMS REPRESENTABILITY IN THE DERIVED CATEGORY OF A
RING

In this section we consider ARO, and ARM,, for the derived category D(R) of
an a-coherent ring R. The main result is Theorem B3] which gives a necessary
condition for ARM,, and also necessary and sufficient conditions for both ARO,,
and ARM,, if R is hereditary. We also prove AROy, for rings of cardinality < XN,
under the continuum hypothesis (Proposition B7). All modules considered in this
section are right modules.

Definition 3.1. Let R be a ring and « a regular cardinal. An R-module is
a-generated if it has a set of generators of cardinal < «, it is a-presentable if
it is the quotient of two a-generated modules. The ring R is «a-coherent if all
a-generated modules are a-presentable. It is enough to check this condition on

ideals, cf. [JL89, Chapter 7].

Remark 3.2. Alternatively, an R-module P is a-presentable if it admits a free

presentation
Pr—Pr-r
J I

with card I, card J < a.. Any a-presentable R-module is a-generated. The converse
is true for projective R-modules.

If card R < «, then R is a-coherent, cf. [Murlll Lemma 19]. Moreover, heredi-
tary rings are a-coherent for all « since ideals are projective.

We now state the main result of this section. We make use of the a-pure global
dimension of a ring pgd, (R) as it was defined in the introduction, cf. [JL89, Chap-
ter 7], although below we give a more general definition for abelian categories.

Theorem 3.3. Let R be an «a-coherent ring, o > Ro. If D(R) satisfies ARM,,
then pgd,, (R) < 1. Moreover, if R is hereditary, then

(1) ARO,, for D(R) < pgd,(R) <2, and
(2) ARM,, for D(R) < pgd,(R) <1.

We prove Theorem [B.3]at the end of this section. The version for a = Xg, proved
in [CKNOIl, Theorem 2.13], also requires that finitely presented R-modules have
finite projective dimension, which is of course true for R hereditary.

Ezample 3.4. A consequence of Theorem [3.3]is that ARM,, is not satisfied for the
derived category of a-coherent rings R such that pgd,(R) > 1. Hence we can use
computations of lower bounds to a-pure projective dimensions in [BL82], [BG12],
and ﬂm to show that ARM,, is not satisfied for rings R and regular cardinals «
as indicated.

(1) R=12Z for a > Ry.
(2) Let k be an uncountable field and « any regular cardinal or k a countable
field and o > Ng.
(a) R=k[z,y].
(b) R the path algebra of a finite quiver without oriented cycles which is
not a Dynkin quiver.
(3) R = kl[[x,y]] for any field k and any regular cardinal a.
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Remark 3.5. Tt is well known that a ring R has pgd,(R) = 0 for some « if and
only if pgdy, (R) = 0, see [JL89J, Theorem 8.4]. These rings are called (right) pure-
semisimple. Rings of finite representation type are (two-sided) pure-semisimple
[JL89, Theorem 8.8]. If R is hereditary and pure-semisimple, e.g. the path algebra
of a Dynkin quiver, then D(R) satisifes ARM,, for all a > Ng. So far we do not
know of any ring R with pgd,(R) = 1 for some o > Y.

Remark 3.6. The most important open problem concerning a-Adams representabil-
ity for derived categories of rings is the following:

e Is there any ring R and any o > X for which D(R) does not satisfy ARO,?
Our feeling is that the situation should be similar to ARM,, i.e. there should be
rings which do not satisfy ARO,, for any « > Ny, even for any a. By Theorem B3]
it would be enough to find a hereditary ring with pgd, (R) > 2. So far, there are no
known computations of pgd,, (R) for uncountable ¢, except from what is mentioned
in Example B:4] and in the Remark We now obtain upper bounds under the
(generalized) continuum hypothesis.

The following result proves AROy, for rings of cardinality < ¥; under the con-
tinuum hypothesis. The proof is given after some preliminary considerations.

Proposition 3.7. Let o be an inaccessible cardinal or o« = BT =28, If R is a ring
of card R < a, then card D(R)® < «a. In particular, if card R < X,, = 28=—1 then
pgdy , (R) < n. Moreover, if card R < Ry and the continuum hypothesis holds then
pgdy, (R) <1 and D(R) satisfies AROy, .

Remark 3.8. Recall from Example[3.4lthat for the following rings R, pgdy, (R) > 1.

(1) R=12Z.
(2) Let k be a field of card k < N;.
(a) R = k[z,yl.

(b) R the path algebra of a finite quiver without oriented cycles which is
not a Dynkin quiver.
(3) R = kl[[x,y]] for a countable field k& and any regular cardinal a.

The las part of PropositionB.fapplies to these rings, therefore, under the continuum
hypothesis, pgdy, (R) = 2 and D(R) satisfies AROy, .

Moreover, 1 < pgdy (R) < n+ 1 if 2% -1 = X,,, but the explicit computation
of pgd, (R) for « > N; remains an open problem. It is not known if there is a
lower bound better than > 1 or if one can compute pgdy () without assumptions
related to the (generalized) continuum hypothesis.

Definition 3.9. Let a be a regular cardinal and &7 a locally a-presentable abelian
category with exact a-filtered colimits and a set of a-presentable projective gener-
ators. A short exact sequence A — B — C' is a-pure if

(P, A) — o (P,B) - o/ (P,C)

is shot exact for any a-presentable object P, or equivalently, if it is an a-filtered
colimit of split short exact sequences.

A sequence -+ — A1 — A, dy Ap_1 — -+ in o is a-pure exact if it is exact
and Kerd,, — A,, - Imd, is a-pure for all n € Z.

An object Q in & is a-pure projective if Hompg(Q, —) takes a-pure exact se-
quences to exact sequences, this is equivalent to say that @) is a retract of a direct
sum of a-presentables.
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The notions of a-pure projective resolution, a-pure projective dimension ppd,, (A)
of an object A in o7, etc. are defined in the obvious way. The a-pure global dimen-
sion of &7 is denoted by

pgd, () = sup{ppd,(4) | A in o}
If o7 = Mod(R) is the category of modules over a ring R we abbreviate pgd,, (R) =
pgd,, (Mod(R)).
Given A and B in &, the a-pure extension groups
PExt, (A, B)
are defined as the cohomology of an a-pure projective resolution of A with coeffi-

cients in B.

Remark 3.10. Any object A in &7 is an a-filtered colimit of a-presentable objects
A = colimyep Py, hence the construction in Remark 2.8 yields an a-pure projective
resolution of A, in particular

PExt; (A, B) = }\lgll\n Hom,, (Py, B).
If A is a-flat we can take Py projective for all A € A and the projective resolution
of A in Remark 28 is also a-pure, so PExt,, (A, B) = Ext}, (A, B) in this case.
This proves that
fgd, () < pgd, (o).
For an arbitrary object A, the spectral sequence for the composition of functors
Homg (A, B) = Hom g (colimyep Py, B) = limyep Homg (Py, B) is of the form

ED? = }\inj{p Ext? (P, B) = Ext?/%(A, B).
€

The comparison homomorphism between a-pure and ordinary extensions groups is
part of this spectral sequence,

PExt? (A, B) = E3° — E%° C Ext, (A, B).
Lemma 3.11. Any short exact sequence A — B — C where C' is a-flat is a-pure.

Proof. Since C' = colimyep Py is an a-filtered colimit of a-presentable projective
objects, taking pullback along the canonical morphisms Py — C

AC—)Q)\—»PA

| ]

A B—»C
we can express the short exact sequence below as an a-filtered colimit
Cgéi}gl(A — Qx> Py)
of short exact sequences which split since P is projective. O

The following lemma admits the same proof than [Murlll Theorem 20]. There,
it is assumed that R is right noetherian or card R < a but actually only a-coherence
is used.

Lemma 3.12. Let R be an a-coherent ring for some a > Wo. A complex X in
D(R) is a-compact if and only if H,(X) is an a-generated R-module for all n € Z.

Lemma 3.13. Let R be an a-coherent ring, o > Ng.
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(1) The functor Hy: Mody(D(R)®) — Mod(R) defined as Ho(F') = F(R) takes
projective objects to a-pure projective R-modules and preserves a-filtered
colimits and a-pure exact sequences.

(2) The functory: Mod(R) C D(R) Sa, Mod, (D(R)%) takes a-pure projective
R-modules to projective objects and preserves a-filtered colimits and c-pure
exact sequences.

Proof. If X is in D(R)%, then HpSo(X) = So(X)(R) = D(X)(R,X) = Hy(R),
which is a-presentable by the Lemma B.I3] hence H, takes projective objects to
a-pure projective R-modules. In Mod, (D(R)®), a-filtered colimits are computed
pointwise hence Hj preserves these colimits. Since H( preserves split short exact
sequences and a-filtered colimits, we deduce that it also preserves a-pure short
(exact) sequences. This finishes the proof of (1).

If M is an a-presentable R-module, then M is a-compact in D(R) by Lemma
BI2 so S,(M) is projective in Mod,(D(R)®). It follows that y takes a-pure
projective R-modules to projective objects.

Let M = colimyep M)y be an a-filtered colimit of R-modules. Denote .¥ C 7
the full subcategory of objects X such that the natural morphism

(colim o (M) (X) = colim (X, My) — 7 (X, colim M) = (Sa(M))(X)

is an isomorphism. The category . contains X" R, n € Z. Indeed, for n # 0 this
morphism is 0 — 0 and for n = 0 it is the identity colimycp My — colimyep M.
The category of abelian groups is locally finitely presentable, hence a-filtered col-
imits commute with products of less than « objects. This shows that . is closed
under coproducts of less than « objects. The category .7 is also closed under exact
triangles by the five lemma. Therefore . = D(R)® and hence y preserves a-filtered
colimits.

Any a-pure short exact sequence of R-modules is an a-filtered colimit of split
ones. Since y preserves split short exact sequences and a-filtered colimits we deduce
that y preserves a-pure (short) exact sequences. This concludes the proof of (2). O

Corollary 3.14. Given an a-coherent ring R, a > Yg, and an R-module M =
colimy Py expressed as an a-filtered colimit of a-presentable R-modules Py,

Extg 4 (Sa(M), F) = Im" F(Py).

In particular, for F = S, (X'N), j € Z,
Ext!) o (Sa(M), So(2N)) = lim" Ext},(Py, N).

Proof. Take the a-pure projective resolution of M in Remark[3.10. Applying S, we
obtain a projective resolution of S, (M) by Lemma B3] (2). Using this resolution
to compute Exty, «(Sa (M), F') we obtain the equation in the statement. O

Proposition 3.15. Given an a-coherent ring R, o > No, if H is a cohomolog-
ical functor in Mod,(D(R)%), then ppd,(H(R)) < pd(H). Moreover, for any
R-module M, ppd, (M) = pd(S,(M)).

Proof. By Remark and Lemma BTl any projective resolution of H is also an
a-pure projective resolution, hence Lemma (1) proves the first part. Since
So(M)(R) = M, this also proves ppd, (M) < pd(S,(M)). The other inequality
follows from Lemma (2). O
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Corollary 3.16. If R is an a-coherent ring, then o > X, then
pgd, (R) < fgd, (Moda (D(R)®)).

Moreover, if R is hereditary and fgd,(Mod, (D(R)%)) < 2, then the equality holds
fgd,(Moda (D(R)*)) = pgd, (R).

Proof. The first part follows directly from Proposition 315l By Corollary 2.13] if
fgd,, (Mod, (D(R)®)) < 2, then every a-flat object is representable and the result
follows from PropositionB.I5land the fact that, if R is hereditary, then any complex

X splits as X =P, ., " Hp(X). O

We can now prove Proposition 3.7

Proof of Proposition[3.7 Let S be the set of K-projective complexes formed by
free R-modules of the form @, ; R with card I < a. By [Murlll Theorem 15], any
a-compact complex in D(R) is isomorphic to an object in S. The morphism set
between two of those free R-modules

Homp(EH R.EP R) = [[Homp(R,P R) = [[ D Homr (R, R) = [[PR
i€l jeJ il jeJ el jeJ el jeJ

has cardinal < 4! and, under our assumptions, a**4! < «a, compare [Jec03,
Theorem 5.20]. This shows that card S < «, and moreover that the set of chain
maps between two objects X and Y in S has cardinal < . Since D(R)(X,Y) is
the quotient of the set of chain maps by the homotopy relation, we deduce that
card D(R)* < a.

For the last part of the statement we use Proposition 2.12] and Corollaries 2Z.14]
and [3.10G O

The following result gives a necessary condition for the representability of co-
homological functors in Mod,(D(R)*) which fit into an extension of restricted
representables.

: a b
Lemma 3.17. Let M and N be R-modules and So(X/N) — F — S, (M) an
extension in Mod(D(R)®), j > 0, classified by an element

er € Bxt], p(pye (Sa(M), Sa(S/N)) = hinl Ext},(Py, N) = Ey”.

Here M = colimyep P\ is an a-filtered colimit of a-presentable R-modules. If
F = S,(X) for some X in D(R), then the second differential of the spectral sequence
m Remark[Z10 maps ep to zero,

dy: By — E377' ) dy(er) = 0.

Proof. The spectral sequence in Remark identifies with the Adams spectral
sequence in Section below abutting to D(R)(M, X/ N) = Ext} (M, N) via the
second equation in Corollary [B.14l Hence, the statement follows from Theorem [7.1]
and the fact that the following morphism is injective for p = 3 and ¢ = —1,

(3.18) ExtD ) (gye (Sa(M), Sa (X N)) — Ext% po (F, F),

T +— a-x-b.
We show that it is injective for p > 0 and ¢ < 0. Indeed, this morphism decomposes
as

. a— _.b
Ext?h 1o (Sa(M), Sa(S/N)) 5 Ext?S) o (Sa(M), F) =3 Ext?

a.D(R)® (F,F).
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The kernel of the first arrow is the image of a morphism from

Extl % o (Sa(M), Sa(M)) = hinf’*l Ext%(My, M) = 0,

which vanishes since ¢ < 0. The kernel of the second arrow is the image of a
morphism from the middle term of the following exact sequence

Extl i o (Sa(57N), Sa(S7N))
!

Extgjgv(‘;{)a (So(2IN), F)
!

EtiiL (SQ(EJN)aSOL(M))

q
a,D(R)™
which vanishes since
Ext! 5% o (Sa(XIN), Sa(SIN)) = Extl 54 . (Sa(N), Sa(N))
= li/r\np_l Ext%L(Ny, N) =0,
Ext? 5% o (Sa(X/N), Sa(M)) = Extl 3% (Sa(N), Sa(E77M))
= 1i§\np_1 Ext% 7 (Ny, M) = 0.

Here we use that ¢ <0 < J. O

As a consequence, we obtain a sufficient condition for the existence of non-
representable cohomological functors in Mod,, (D(R)®).

Proposition 3.19. Let R be an «-coherent ring. If there is an R-module N with
injective dimension < 1 but PExty p(M, N) # 0 for some R-module M and some
n > 3, then ARO,, fails for D(R).

Proof. If n > 3 we can take an a-pure short exact sequence M’ — P — M with
a-pure projective P, so PExt;, p(M, N) = PEthfB} (M’,N), hence we may assume
that n = 3.

By LemaBITit is enough to show that dy: Ey" — ES" is non-trivial. The target
is non-trivial F3° = PExtiyR(M, N) # 0. By degree reasons, there are no non-
trivial differentials out of E3°, hence Ej* surjects onto E%0 ¢ Ext(M, N) = 0.
Therefore, all elements in Eg’ % must be in the image of an incoming differential.
Since Eg’2 = lim, Ext? (Px,N) =0, then Eg’Q = 0 and the only possibly non-trivial
incoming differential is da: E21 1 ES’O, which must be surjective. O

We finally prove Theorem

Proof of Theorem[3.3. The first part of the statement follows from Corollary [.3]
and Proposition 315 If R is hereditary, any complex X splits as a direct sum of its
shifted homologies X = @, ., X" H,(X). Therefore, on the one hand, (2) follows
from Corollary 2.5l and Proposition[B.18] and on the other hand (1) is an immediate
consequence of Corollaries and and Proposition O
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4. ON N;-ADAMS REPRESENTABILITY FOR OBJECTS AND THE CONTINUUM
HYPOTHESIS

We already know by Corollary 2.14] that if .7 is an Nj-compactly generated
triangulated category with card 7% = Ny, then 7 satisfies AROyx,. We have
applied this result to derived categories of rings (Proposition B7). In this section,
we give further examples assuming the continuum hypothesis.

4.1. Stable homotopy category of spectra. The stable homotopy category of
spectra .7 = Ho(Sp) is Rg-compactly generated and Ho(Sp)¥ < Ry < N;. Then
Ho(Sp)®* = R; by Corollary B35

4.2. Homotopy category of projectives modules. Let 7 = K(Proj-R) be
the homotopy category of complexes of projective (right) modules over a ring R of
card R < W;. This category is often not Np-compactly generated, but it is always

N -compactly generated, cf. [NeeO§].
Proposition 4.1. Under the continuum hypothesis card K (Proj- R)® < ;.

Proof. By [NeeO8, Theorem 5.9], a complex of projective R-modules is Rj-compact
in K(Proj-R) if and only if it is isomorphic in K(R-Proj) to a complex of free
R-modules with < R; generators. Since we are assuming the continuum hypothesis
and card R < Ny, we can proceed exactly as in the proof of Proposition B.7 0

4.3. Homotopy category of injectives modules. Let R be a right noetherian
ring of card R < ®y. The homotopy category .7 = K (Inj- R) of injective (right)
R-modules is RNp-compactly generated [Kra05].

Proposition 4.2. Under the continuum hypothesis card K (Inj- R)® < Ny.

Proof. By [Kra05], K (Inj-R)®° is equivalent to the derived category D®(mod(R))
of bounded complexes of finitely presentable R-modules. Since R is right noether-
ian, D’(mod(R)) is equivalent to the full subcategory of K (Proj-R)® spanned
by bounded below complexes of finitely presentable projective R-modules with
bounded cohomology. Now proceed as in the proof of Proposition [3.7 O

4.4. Derived category of sheaves on a non-compact manifold. Let M be a
connected paracompact manifold and D(Sh/M) the derived category of the abelian
category Sh/M of sheaves of abelian groups over M. Neeman [NeeOla] proved that
if M is non-compact, connected and dim M > 1, then D(Sh/M) has no non-zero
compact object, so it cannot be Ng-compactly generated.

Proposition 4.3. The category D(Sh/M) is Wy-compactly generated and, under
the continuum hypothesis, card D(Sh/M)®t < ;.

Proof. Since M is paracompact, we can take a countable basis {U;};c; of open
sets of M such that U; N U; is contractible for all ,j € I, e.g. put a Riemannian
metric on M and take a countable basis of geodesically convex balls. By [Gro57,
Section 1.9], a set of generators of Sh/M is given by {Zy, }icr, where Zy, is the
extension by zero of the constant sheaf Z on U;. Let Z be the full subcategory of
Sh/M spanned by these sheaves. It has countably many objects. Moreover, since
each Uj is connected, the monomorphisms Zy, — Zy; show that Hom(Zy,, Zy,) =
Zy,(U;) C Zy(U;) = {locally constant maps U; — Z} = Z is countable for all
1,5 € 1.
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The countable category Z can be regarded as a ring with several objects. The
derived category D(Sh/M) is a Bousfield localization D(Sh/M) = D(Z)/ZLsn/m
[AJS00, Proposition 5.1]. Since card Z < ¥, the many object version of [Murlil
Theorem 20] proves that the generators of the localizing subcategory Lgp/as de-
scribed in the proof of [AJS00, Proposition 5.1] are Rj-compact. Hence D(Sh/M)
is Nj-compactly generated by [NeeO1Db, Theorem 4.4.9], and the subcategory of
N;-compact objects is D(Sh/M)®1 = D(%)Nl/fsﬁﬁ/M.

Now, let us assume the continuum hypothesis. The many objects version of
Proposition 3.7 shows that card D(%2)™ < N;, and the explicit description of the
Verdier quotient D(Sh/M)®t = D(%)Nl/fsNhl/M proves that card D(Sh/M)™ < Ny
too. (]

4.5. Stable motivic homotopy category. Let S be a noetherian scheme of fi-
nite Krull dimension. The stable motivic homotopy category SH(S) of Morel and
Voevodsky is a compactly generated triangulated category which intuitively models
a homotopy theory of schemes over S where the affine line A' plays the role of the
unit interval in classical homotopy theory. In practice, we start with the category
Sm/S of smooth schemes of finite type over S endowed with the Nisnevich topology.
We perform two left Bousfield localizations on the category of simplicial presheaves
on Sm/S, one to turn homotopy sheaves into weak equivalences and another one to
contract the affine line A'. Then we consider spectra with respect to the suspension
functor defined by smashing with the projective line P* ~ S* A (A! — 0) pointed at
0o. This yields a stable model category whose homotopy category is SH(S).

It was stated in [Voe98, Proposition 5.5] and proved in [NS11, Theorem 13] that if
S can be covered by spectra of countable rings, then card SH(S)™0 < Xy < Ry, hence
under the continuum hypothesis card SH(S)®1 < Ny, see Corollary B5l The results
in [NS11] extend straightforwardly to show that, if S can be converted by spectra
of rings of cardinal < Ry, then card SH(S)® < X;. Therefore card SH(S)™ < &,
under the continuum hypothesis, again by Corollary B0

5. NEEMAN’S CONJECTURE ON ROSICKY FUNCTORS

The following definition is due to Neeman [Nee09, Definition 1.19].

Definition 5.1. Let 7 be a triangulated category with (co)products. A Rosicky
functor is a functor H: . — & to an abelian category with (co)products which
takes exact triangles to exact sequences, is full, reflects isomorphisms, preserves
(co)products, and there is a small full subcategory &2 C .7 closed under (de)susp-
ensions, formed by a-small objects in .77, and such that {H(P) | P € Ob 2}

is a set of projective generators of & and H induces a bijection .7 (P, X) =
&/ (H(P),H(X)) whenever P is in Z.

Under the standing assumptions of Section [Il the restricted Yoneda functor S,
satisfies all properties of a Rosicky functor except for being full, the subcategory ¢
consists of representable functors. Moreover, if € = .7, S, is a Rosicky functor if
and only if ARM,, holds.

Neeman conjectured that a triangulated category has a Rosicky functor if and
only if it is well generated. It is easy to see that, if 7 has a Rosicky functor, then
it is well generated, we give a proof, first discovered by Rosicky, in this section.
Neeman’s conjecture is still open in the other direction. A consequence of Corollary
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[B.3lis that it is enough to look for Rosicky functors of the form S, for an appropriate
%. Example [3.4] shows that we cannot always take ¢ = 7¢ for some «, which was
the experts’ first guess. Nevertheless, it is still an open question whether categories
such as D(k[[x,y]]) possess a Rosicky functor.

Proposition 5.2. Let 7 be a triangulated category with coproducts. If there exists
H: 7 — o be a Rosicky functor, then the category 7 is well generated. More-
over, if € is the completion of & by coproducts of < « objects, then € satisfies
assumptions (1-3) in Section[dl and S, factors as

Sa: T s o -5 Mod, (6),
where 1 is fully faithful and exact.

Proof. Let us first show that 7 is well generated. This fact was first discovered
by Rosicky (unpublised). We follow Krause’s criterion saying that a triangulated
category is well generated if and only if it satisfies conditions (G1-G3), cf. [Kra01].
The set of objects of & clearly satisfies (G1) and (G3). We now check (G2). Let
{fi: X; = Yi}ier be a set of morphisms in Z such that 7 (P, f;) is an epimorphism
for all ¢ € I and P in &. Since J(P,f;) = «/(H(P),H(f;)) and the objects
H(P) form a set of projective generators, H(f;) is an epimorphism in 7 for all
i € I. In an abelian category, a coproduct of epimorphisms is an epimorphism.
Since H preserves coproducts we deduce that H(]],.; fi) is an epimorphism, hence,
T (P, er fi) = ' (H(P), H(II,c; fi)) is surjective for all P in &2. This proves
(G2). By Krause’s criterion we also know that &2 C 7, therefore ¢ satisfies (1-3)
in Section [1

The functor i is defined by ¢(A) = &/ (H(—), A). This ¥-module is a-continuous
since H preserves coproducts. The properties of Rosicky functors show that H
induces an equivalence between % and its full image in «/. Hence {H(C) | C €
Ob %’} is also a set of projective generators of o and i is fully faithful. The
composite ¢ H is naturally isomorphic to S, since for any X in .7 and any coproduct
[;c; P with P; in & and card I < a,

SaO)(I1 2 = 7L P X) = [ 7P ) = [ (1 (), H (X))

el el el el
— (@ HP),H(X)) = o/ (H]] P), HEX)) = i (X)([ ] P).
el el el

O

Corollary 5.3. A triangulated category 7 admits a Rosicky functor if and only if
it is well generated and Sy, is full for some € C T satisfying (1-3) in Section [l

Recall that Corollary 2.4 gives us a criterion for the restricted Yoneda functor
S to be full.

Remark 5.4. Let @ be a quiver without oriented cycles, k£ an uncountable field,
kQ its path algebra over k, which is hereditary, and « any regular cardinal. As we
showed in Example B4l for 7 = D(kQ) and ¢ = 7 the functor S, is never a
Rosicky functor. Nevertheless, if R is any hereditary ring, the homology functor
H.: D(R) — Mod(R)Z to the category of Z-graded R-modules is a Rosicky functor
for & the full subcategory spanned by {¥" R}, cz, here o = Ny.
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These are only known Rosicky functors different from the restricted Yoneda func-
tor S, with ¢ = 7 for 7 a category satisfying ARM,,. Triangulated categories
possessing a Rosicky functor satisfy further properties of interest, e.g. the Brown
representability theorem for the dual, see [Nee09]. Hence it would be interesting to
know if there are more kinds of Rosicky functors.

6. OBSTRUCTION THEORY IN TRIANGULATED CATEGORIES

Recall that we are under the standing assumptions of Section Il In diagrams,
the degree of a homogeneous morphism in .7 or Mod, (%) is indicated by a label
in the arrow, e.g.

x 1y
+n
is a morphism f: X — X"Y. We mostly consider homogeneous morphisms. We do
not explicitly indicate the degree when it is 0, when it is understood, or when it is
irrelevant. Hence an exact triangle X — Y — Z — XX in .7 looks like

x—71 .y

6.1. Phantom maps and cellular objects.

Definition 6.1. A morphism f: X — Y in 7 is a phantom map if So(f) = 0.
Moreover, f is an n-phantom map if it decomposes as a product of n ordinary
phantom maps, i.e. f = f1--- f, with f; phantom, 1 < i <n. An oco-phantom map
is a morphism f which is an n-phantom map for all n > 0.

The following result is a consequence of the fact that S, takes exact triangles to
exact sequences.

Lemma 6.2. In an exact triangle

x—71 .y

N

where we deliberately do not specify which morphism is of degree +1, the following
statements are equivalent:

e f is a phantom map.

e S, (i) is a monomorphism.

e S.(q) is an epimorphism.

Sa (1) Sa(a) .
o So(Y) <= Sa(Z) — So(X) is a short exact sequence.

Remark 6.3. Phantom maps form an ideal .# C 7 and n-phantom maps form

its n'™ power ideal, .#" = .# .". # C 7. Moreover, co-phantom maps are the
intersection ideal

g =s"cT.

n>0
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Definition 6.4. A 0-cellular object is a trivial object in 7. Moreover, X is
n-cellular for n > 0 if it is a retract of an object X’ fitting into an exact triangle

P——Y

N

where Y is (n — 1)-cellular and P is in Add (%).

Proposition 6.5. Let 1 <n < oco. A morphism f: X =Y in T is an n-phantom
map if and only if for any morphism g: Z — X from an n-cellular object Z we
have fg = 0. Moreover, Z is an n-cellular object if and only if for any morphism
g: Z — X and any n-phantom map f: X —Y we have fg = 0.

Since ¥ is essentially small, (Add (%), .#) is a projective class by [Chr98, Lemma
3.2], hence Proposition [G.H follows from [Chr98, Theorem 3.5].

6.2. Adams and Postnikov resolutions. Adams resolutions go back to Adams’
construction of the spectral sequence that bears his name. The definition below is
due to Christensen, cf. [Chr98§].

Definition 6.6. An Adams resolution (X, W,, P.) of an object X in 7 is a count-
able sequence of exact triangles

X Jo W Ji W, J2 W, J3 Wi
’\ o \ ry ’\ ro \ r3 o
90 / 1o / 192 / 1 ogs / 1

Py P Py Ps

such j,, is a phantom map and P, is in Add (%), n > 0.

Remark 6.7. An Adams resolution of X can be easily constructed by induction.
We start with an epimorphism from a projective object So(Py) = So(X), i.e. Py is
in Add (%¢). This morphism is represented by a unique go: Py — X. If we extend
go to an exact triangle we obtain ry and jo, which is a phantom map by Lemma
If we have constructed the first n triangles we take an epimorphism from a
projective object Sy (P,) = Sq(W,,_1) and proceed in the same way.

By Lemma [62] for any Adams resolution (X, W, P,) the restricted Yoneda
functor S, maps
+1
rTog1

0+— X Py

g0

Py

192
to a projective resolution of S, (X) in Mod, ().

Postnikov resolutions are an enrichment of Benson—Krause—Schwede’s Postnikov
systems that we recall in Definition [6.28 below, cf. [BKS04].

Definition 6.8. A Postnikov resolution (X, X., Pi) of an object X in 7 is a
diagram

X
T 41 Po 1 p1 1 D2 Iy p3 -
0 © Xo —2 X, = X, ' X
\ 0 ’\ q1 '\ q2 \ q3 L
fo /I f1 /1 f2 /1 f3 /I
Py Py P3

a
Py
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consisting of a countable sequence of exact triangles and commutative triangles,
DPn = Pn+t1in+1, n > 0, such that S, maps

6.9 0+— X Poe—" P pe T p ...
(6.9) pogy 0 o LR 2t 3

to a projective resolution of S, (X). In particular X,, is (n + 1)-cellular.
We will denote the structure morphisms by f:X, i, ¢X, and pX when we need
to distinguish between different Postnikov resolutions.

Lemma 6.10. Given an object X in 7 and an Adams resolution (X, W, P.), there
exists a Postnikov resolution (X, X., Py) ﬁttmg in octahedra as follows, n > 0,

Wn 1 Wn

mﬂn/

X+1 .

¢7171

P P, \pn

/\

anl Xn

Here, for n = 0 we use the convention X_1 =0, W_1 =X, and X — W_q the
identity morphism. Conversely, if a Postnikov resolution (X, X, Py) is given, then
there exists an Adams resolution (X, W,, P.) fitting in octahedra as above.

Proof. The Postnikov resolution together with the octahedra are constructed in-
ductively. The step n = 0 is essentially given in the statement. We just need to
choose a degree +1 isomorphism qq, e.g. Xo = £ Py and qo the identity. In the n'"
step, we first complete f, = ¢,—19, to an exact triangle, this yields i, and g,.
Then we obtain ¢,, and p, by applying the octahedral axiom.

Let us tackle the converse. The Adams resolution together with the octahedra are
also defined by induction. For the step n = 0, we just need to complete gy = poq, !
to an exact triangle. This yields jo, ro and ¢ = g Lro. Notice that jo is a phantom
map since S, (po) is an epimorphism in Mod, (7).

In the n'" step, we first complete p,, to an exact triangle, this yields ¢,, and the
morphism X — W,,, which a fortiori will be j, - - jo (so far we do not have a j,).
We also obtain 7, = ¢n¢,. We then apply the octahedral axiom. This produces
gn and j,. We must check that j, is a phantom, or equivalently that S, (g,) is an
epimorphism.

For n = 1, we have an exact sequence

Salpogy ) Sa(qof1)

00— S, (X) —

So(Po) So(Pr).

Since qp is an isomorphism, Im S, (f1) = Ker S, (py) and the triangle

X(—Xo

DA

Wo
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implies that Ker S, (po) = Im S, (¢o). Since jo is phantom S, (¢) is a monomor-
phism. Hence, S,(g1) must an epimorphism since f; = ¢og1 and Im S, (f1) =

Im Sa (¢0)
Let n > 1. By induction hypothesis, for 0 < k < n, j is a phantom and the
sequences

0 Su(Wi1) €2 5, (P D8, (W) — 0

are short exact. Moreover, in the following diagram

o(@n—2fn-1) o(@n—1fn)

Sm) Ml) \) %

the horizontal row is also an exact sequence. Hence, Sa(Wn,l) =Im S, (gn-2fn-1)
and therefore S, (g,) must be an epimorphism. O

Corollary 6.11. Any object X in 7 has a Postnikov resolution.

This follows from Lemma [6.10 and the fact that any object in .7 has an Adams
resolution, see Remark [6.7]

6.3. Postnikov resolutions and oo-phantom maps. In this section we define
a homotopy category of Postnikov resolutions. This is one of the key ingredients of
our obstruction theory.

Definition 6.12. A morphism of Postnikov resolutions
(6.13) (hythes o)+ (X, X, Po) — (V) Y5, Q)

is given by morphisms h: X =Y, ¢, : X, = Y, pn: Py — Q, in 7, n >0, such
that the obvious triangles and squares commute,

X
AN
O Xo X1 X2
h \P / \P / \P /

Yo Yo ©1 1 @2 P2
Y+—|— -
o—|—Yy—|—Y] —|———Y)
\Q / )\Q / )\Q /
0 1 2

A pair of morphisms of Postnikov resolutions

are homotopic (h,1/1*,<p*) ~ ( ,1/1*,@*) 1f, for all n > 0, the following equivalent
conditions hold:

()1/’711 1/’71%7
() 1/)71 1_7’ 1/}77. 1,
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(3) b — 1, factors through ¢ : X,, — P,

(4) Yn_1 — n_1 factors through fY: Q, — Y, 1.
This natural equivalence relation is additive: two morphisms are homotopic iff
their difference (h — h, 1. — s, P« — @.) is nullhomotopic, i.e. homotopic to the
trivial map. We denote Pres., the category of Postnikov resolutions and Pres>
its homotopy category. Both of them are additive.

The following theorem is the main result of this section. It establishes the ex-
istence of a functor with a certain property. Usually, when defining a functor, the
complicated part is to show that composition is preserved. In this case the com-
plicated part is the definition of the functor on morphisms, once this is achieved
compatibility with composition is obvious.

Theorem 6.14. There exists an essentially unique functor
U: 7 — Pres_

sending an object X to a Postnikov resolution ¥(X) of X and a map h: X —'Y
to the homotopy class W(h) of a morphism with first coordinate h. This functor is
additive, full and essentially surjective. Moreover, the kernel of W is the ideal 7> of
oo-phantom maps, hence ¥ induces an equivalence of categories T | > ~ Pres=,.

We prove Theorem at the end of this section.

Lemma 6.15. Given a Postnikov resolution (X, X., Py), the following sequence is
exact for n >0,

Sa(fn+1) Sa(pn)

Su(Poii) Sa(X) ——2 s S0 (X).

Moreover, Sq(pn) splits for n > 0.

Proof. For n = 0 it holds by definition since gg is an isomorphism. For n > 0,
consider an associated Adams resolution via Lemma [6.10l Since jy, - - jo and jn11
are phantoms

Sa n Sa n
S (W) 0 80 (Xi) —25 Sa(X)
Sa(’l‘n 1) Sa( n 1)
Sa(Wn+1)c+—l+> Sa(PnJrl) o Sa(Wn)

are short exact by Lemma [62] and f,11 = ¢ngni1, hence the sequence in the
statement is exact.
Now let n > 0. Recall that the sequence

Sa(poay ") Sa(qof1)

04— So(X) 0 1 5. (Py) - Sa(Py).

is exact. The map S (iy, - - -ilqal): So(Fo) = S (X,) factors uniquely through
Sa(poqo_l)l SQ(P()) —» SQ(X) since (Zn e ilqo_l)(qul) = Zn e ilfl = O The fac—
torization S, (X) = Su(X,) composed with S, (p,) is the identity in S, (X) since
P (i - - ~i1q51) = poqgl, hence we are done. O

Proposition 6.16. Given a morphism h: X — Y in .7 and Postnikov resolutions
(X, X, Py) and (Y,Y., Q) there exists a morphism of Postnikov resolutions as in

(©13) extending h.
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Proof. We proceed by induction. The morphisms g and (1 can be constructed by
completing the following diagram of exact rows

alqoJ1 Sa(po (;1
Sa(Py) ), g () 2 ) g (x)
lsa(h)
Sa ( 0f1) a(Pogy )
Sa(Qr) 220, g, (o) = Sa(Y)

to commutative squares, and o = (¢ )~ poqs .
Assume we have constructed up to the following diagram of solid arrows

X
h N / |
P, '
wn 2 Pn—1 wn 1 :ﬂ’;
Y —_= |
4
Yn
n—1

for some n > 0. We extend ¢, and ¢, to a morphism of exact triangles. In

general,
X
Y

does not commute, but precomposing with iX : X,, 1 — X,

(6.17)

b
3

—>

=
%

p’!l
—

=

PrUnin = Pr iy Yne1 = Py _1¥n-1 = hpy_y = hpyi
Hence, hpX — pY 4! factors as

X
X, 2P, oy

The composite

splitting in
the proof of
Sa(B) c Lemma [G.15]
Su(Py) Su(Y)

1 Sa (Yn)v

is the image by S, of a unique v: P, — Y, since Sq(P,) is projective. This
morphism satisfies p) v = 3 and ¢) v = 0. The first equation holds by the splitting
condition. For the second equation it is enough to check that S,(gY~) = 0, and
this holds since the splitting of S, (py,) in Lemmal6.15]is induced by S (i, - - - ilq(jl)
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and ¢¥iY = 0. Hence, the morphism 1, = ¥/, + v¢:* still extends v,,_1 and ¢, to
a HlOI‘phlSHl of exact triangles since

Yi/fn*qnw + @ vay = enay +0g) = @ngy,
Unin = nin + Y@ i =in thn +70 =i} .

Moreover, the square ([G.I7) commutes if we replace 1/, with 1, since

P tbn = Do U + Do G = Do U + Bay = py oy + hpy — py by, = hp;y -
In order to conclude the induction step we must take ¢,41: Pry1 — Qni1
completing

n+1 Pn
Popr —— X, ——= X

!

Y
jn+1 P,

to a commutative square This can be done. Actually, by Lemma [6.15] it is enough
to notice that that pY ¥, fiX 1 = hppy 1 fo 1 = h0 = 0. O

Proposition 6.18. If (X, X., P.) is a Postnikov resolution, then h: X =Y is an
n-phantom map, n > 0, if and only if hp,—1 = 0. In particular, h is an co-phantom
map if and only if hp, =0 for all n > 0.

Proof. Since X,,_1 is n-cellular, if h is an n-phantom map, then hp,_1 = 0, see
Proposition Conversely, by Lemma the morphism p,_1 fits in an exact
triangle

Pn—1

Xn-1 X

+1

m i%"'jo

Wn—l

with j,_1 - - jo an n-phantom map. Therefore, if hp,_1 = 0 then h factors through
Jn—1-""Jo, 80 h is an n-phantom map too. 1

Proposition 6.19. A morphisms of Postnikov resolutions as in ([GI3) s nullho-
motopic if and only if h is an oco-phantom map.

Proof. Tf we assume that (h, 1., @.) is nullhomotopic, then 1), factors through f
for all n > 0. By Lemma [GI5, p} fY., = 0 and then, hpX = p} 1, = 0. Hence, h
is an co-phantom map by Corollary [G.18l

Assume now that h is an co-phantom map. We construct by induction on n > 0
a map fBp: P, = Qni1 such that the following square commutes
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For n = 0, the following diagram with exact rows

Sa(qof1) Sa(pogy ')

Sa(Pl) - Sa(PQ) —_— SQ(X)

lsa(#’l) lsa(#’o) lsa(h)_o
Sa(qof1

Sa(@1) 22, 5, (o)

Sa(pogy ™)
R

shows that we can take Bo: Py — Q1 with ¢o = ¢¢ f{ Bo. This choice of 8y works
since Yo = (¢ ) 'pogp -

Assume we have checked our claim up to n — 1. Choose an Adams resolution
(Y, W, Q.) associated to the Postnikov resolution (Y, Y,, Q.) in the sense of Lemma
We use the notation therein, exchanging X and P with Y and @, respectively.
Since h is an co-phantom map, by Corollary [6.18]

Py tn = hp; =0,
so 1, factors as X, 23 W ¢—"> Y,.. By induction hypothesis,
Gnyntn = Uniy =iy Yn—1 =iy fn Bn-16n—1 = 0Bn-1d;_1 = 0.

Since jy, - - - jo is an (n + 1)-phantom map and X,,_1, the source of iz, is n-cellular,
the homomorphism

y(Xn—lu¢n): y(Xn—hWn) — y(Xn—layn)
is injective, so the previous equation yields 7,ix = 0. Hence, v, factors as

X

In En

Furthermore, since j, 41 is a phantom map, Sa(gn+1): Sa(@n+1) = Sa(W,,) is an
epimorphism and we can factor ¢,, as

Bn In+1
Pn 1 QnJrl ? Wn

Finally, f7¥+1ﬁnqri{ = (bngn—i-lﬁnqr)f = (bngnqr)f = ¢nVn = VYn. O

Proof of Theorem[6.1]] Any object X in .7 has a Postnikov resolution ¥(X) by
Corollary [6.1T1 We choose one. Proposition proves that there are choices for
U(h) as in the statement. Moreover, the choice is unique in the homotopy category
by Proposition [6.19 By uniqueness, ¥ must be an additive functor. Propositions
and prove that any two Postnikov resolutions of X are isomorphic in
PresZ, hence V¥ is essentially surjective. Moreover, ¥ is full since the homotopy
class of an arbitrary morphism (h, ., ¢): U(X) — U(Y) is U(h). Finally, the
kernel of ¥ is .#>° by Proposition [G.19 O

6.4. Homotopy colimits and Postnikov resolutions. Recall that a homotopy
colimit [NeeO1bl Definition 1.6.4] of a sequence in a triangulated category with
countable coproducts .7

Xo o X1 2 Xo o X3




TRANSFINITE ADAMS REPRESENTABILITY

is an exact triangle

(6.20) IT x» G20 IT x»

n>0 , n>0
(Pn)n>0
5 +1

Hocolim X,

where the upper arrow is given by the following matrix
1 0 0 O

—ip 1 0 0
(6.21) 0 —i3 1 O
0 0 —ig 1

29

Usually, ¢’ is taken to be the degree +1 map, but the previous convention is more
convenient for our purposes. Moreover, Xy and i; are usually not neglected in
(620) and (G200, but the construction turns out to be equivalent, see [NeeQ1Dh)

Lemma 1.7.1].

Proposition 6.22. Given a Postnikov resolution (X, X, Px), there is a homotopy

colimit given by an exact triangle of the form

I X
(pn)n>0
N /1

n>0
X.

]_[X

In the proof of Proposition [6.22] we use the following lemma.

Lemma 6.23. Given morphisms

xLoy sz

such that if =0 and

Sa (i)

Sa ()2 5, (v) 2%, 5,(2)

is a short exact sequence, there is an exact triangle

va

Proof. Complete f to an exact triangle

X—)Y

N A
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Since if = 0, i factors as Y Y72 % 7. Since Sa(f) is a monomorphism, the
sequence

Sa(i’)

S ()2 g vy 2 g (2

is also short exact by Lemma Therefore, S, (¢) is an isomorphism. Finally,
since S, reflects isomorphisms, ¢ is an isomorphism and we can take g = ¢/¢~'. [

Proof of Proposition[6.22 Clearly, (pn)n>o0(@2I)) = 0 since p,, = prny1ing1, n > 0.
Using the splitting S (X,) =2 So(X) @& Im Sy (frnt1) given by Lemma BTH n >
0, and the fact that S, preserves coproducts, we can identify S, (621 with the
endomorphism of

(6.24) <EB SQ(X)> ® (@ Im Sa(fnJrl))

n>0 n>0

which decomposes as the identity on the second factor, since i, f, = 0, and the
endomorphism defined by the matrix

(6.25)

_—_o o
— o o o

0
1
-1
0

OO ==

on the first factor.
The endomorphism (6.25), and hence S, ([G.21)), is a split monomorphism. The
matrix

0o -1 -1 -1
0 0 -1 -1
0 0 0 -1
0 0 0 0

defines a retraction of (6.28). The cokernel of (625) [Jid is S, (X). The natural
projection is 0 on the second factor of (6:24)) and

(1111 )

on the first factor. This morphism identifies with S, (pn)n>0 via the direct sum
decomposition, since p, fr,+1 = 0 by Lemma [6.15 Therefore, Lemma [6.23] applies.
O

The following corollary is a new result. It should be compared to the fact that,
if Ng-Adams representability holds then the ideal of phantom maps is a square zero
ideal, cf. [Nee97]. Actually, one can check along the same lines that this is also true
under a-Adams representability.

Corollary 6.26. The ideal Z°° of infinite phantom maps is a square zero ideal
(F°)2=0,i.e ifh: X =Y and k: Y — Z are co-phantom maps, then kh = 0.
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Proof. Consider a homotopy colimit as in the statement of Proposition [6.22] Since
h is an oo-phantom, 0 = (hp,)n>0 = h(pn)n>0 by Proposition [6.I8 hence h factors
as

X5 [[x Sy

n>0
Since k is an oo-phantom map and each X,, is n-cellular, n > 0, kb’ = 0 by
Proposition [6.5 Finally, kh = kh'6 = 06 = 0. O

Remark 6.27. Theorem and Corollary show that

v ~
I — T — Pres_,

is a weak linear extension [Bau91, Definition I1.1.7], therefore the .7 bimodule .#>
is actually a Pres_-bimodule and the weak linear extension is classified up to
equivalence by a class in cohomology of categories

{7} € H*(PresZ,, 7).

This can be compared to the fact, under Rg-Adams representability (and also under
a-Adams representability replacing Ry with «, as one can easily deduce from the
results of this paper) .7 is a linear extension of the full subcategory of No-flat

objects in Mody, (7™) by .#, cf. [CS98, §5].

6.5. Postnikov systems. Postnikov systems were introduced in [BKS04]. In this
section we make them the objects of a certain category where we define a natural
homotopy relation. The main result of this section establishes an equivalence be-
tween the homotopy category of Postnikov resolutions, defined in Section [6.3] and
the homotopy category of Postnikov systems.

Definition 6.28. A Postnikov system (X, P.) is a countable sequence of exact
triangles

X1

0 io X, i1 io X, i3 X,

\ q0 q1 q2 a3

DN VLN LN TN
Py o) P, Py

such that S, maps

+1 +1 +1

P P P
0 qof1 ! q1 f2 2 q2f3

Py— .

to an exact sequence of projective objects in Mod,(%). In particular, X,, is (n +
1)-cellular. We will denote the structure morphisms by f:X, i and ¢X when we
need to distinguish between different Postnikov systems.

A morphism of Potsnikov systems

(1/}*;90*): (X*vp*) — (Y*aQ*)
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is a sequence of exact triangle morphisms as follows
Xo

0 X3
)\PO % ‘/wyo\Pl % ‘/wyl\Pg %

0 —ro—> Yo —rl—> Y1 —rz—> Yo —rs—> Ys
A O Y PN

Qo Q1 Q2 Qs

Composition of morphisms of Postnikov systems is defined in the obvious way.
A pair of morphisms

(s 02), (s, @)1 (X, P) — (Ya, Q))

are homotopic (s, 0x) ~ (s, @«) if the four equivalent conditions (1-4) in Defini-
tion [6.12 are satisfied. This natural equivalence relation is additive: two morphisms
are homotopic iff their difference (1. — 1., ¢« — @.) is nullhomotopic. We denote
Post ., the category of Postnikov systems and Post>, its homotopy category. Both
of them are additive.

X

[\ %T;S

o Ps

Theorem 6.29. The forgetful functor
®: Presy, — Posty,, &¢(X,X,,P.) = (X.,P.),
is an equivalence of categories surjective on objects.
This theorem is proved after the following lemma.

Lemma 6.30. In a Postnikov system (X.,P,), Sa(irqy") induces a degree —1
isomorphism HpSe(Py) = Tm Sy (i1), and Su(in) induces a degree 0 isomorphism
Im Sy (in) 2 Im Sq(int1), n > 0. In particular, So(X,) = HoSa (Ps)®Ker S (in+1)
forn > 0.

Proof. The functor S, takes exact triangles to exact sequences, therefore

Sa(ix)
(+1,0)
(~1,0) Sa(gs)

Salf2) ©.+1)
Sa(Px)

SQ(X*)

SO((X*)

is an exact couple. Here the first degree corresponds to the subscript *, and the
second degree is the internal degree in the graded abelian category Mod, (%).
Since S, (Ps) is exact in degrees # 0, the derived exact couple is

Im S, (ix) o Im Sy (44)
(0,0)
0 141
HoSo(Py)

with HoSa(Ps) concentrated in degree 0. Indeed, since Im S, (i.) is concentrated
in degrees > 0, the map HyS,(Py) — Im Sy (ix) is the trivial morphism, hence the
lemma follows. g
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Proof of Theorem[6.29. Let (X, Py) be a Postnikov system. Take a homotopy
colimit as in ([620). We claim that (Hocolim,, X,,, X, P.) is a Postnikov resolution.
Actually, it is only left to check that S, (Hocolim, X,,) = HySs(P:). By Lemma
630, S, @2I) can be identified with the endomorphism of

(6.31) (@ HOSQ(P*)> ® (@ Ker Sa(z'nﬂ))

n>0 n>0

which decomposes as the identity on the second factor and (6.25]) on the first factor,
compare the proof of Proposition[5.22] Proceeding as in that proof, we deduce that
the cokernel of S, (@2I)) is HoSo(Ps). This cokernel can also be identified with
So(Hocolim,, X,,) by Lemma[6.2] This proves the claim and that ® is surjective on
objects.

Let (X, X,, P.) and (Y, Y, Q.) be Postnikov resolutions and (1., ¢.): (X, Py) —
(Yi, Q«) a morphism of Postnikov systems. We choose exact triangles defining ho-
motopy colimits as in Proposition [6.221 The following commutative square of solid
arrows can be extended to a triangle morphism

1%

[T x.
n>0 (Pr)n>0 n>0
/ 1
(

(wn)n>0 wn)n>0

X
I
: h
[ 1 IR8
n>0 n>0
|
\L (pn)n>0
Y

Hence, (h, ¥, ps): (X, X, P.) — (Y,Y.,Q.) is a morphism of Postnikov resolu-
tions. This shows that & is full.

The functor @ is faithful since two morphisms of Postnikov resolutions are ho-
motopic if and only if the underlying morphisms of Postnikov systems are. O

Remark 6.32. By Theorem [6.29] and Remark [6.27]
=g Post-,

is a weak linear extension, the 7 bimodule .#* is actually a Post,-bimodule and
the weak linear extension is classified up to equivalence by a class in cohomology
of categories

{7} € H*(PostZ, 7).

It is interesting to notice that Post, only depends of the full subcategory of cellular
objects in .7, and that there are no non-trivial co-phantom maps between two
cellular objects. Hence, the previous linear extension is a way of breaking .7 into
an oco-phantom part and an co-phantomless part.
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6.6. Truncated Postnikov systems and obstructions. Our notion of trun-
cated Potsnikov system enriches that considered in [BKS04] in a way which is
suitable to develop an obstruction theory. We also define homotopy categories of
truncated Potsnikov systems.

Definition 6.33. An n-truncated Postnikov system (X<p, Pi), n > 0, is a diagram
in 7

n1—>X

0 “— Xo — X1 f
;b\ . *%0 fyl\ ., *%1 ...... f;\ ‘An r\nﬂ .
0 1

n+1 % Pn+2 <~
where the first n + 1 triangles are exact, the cocycle condition

fn+1 dn+2 =0
is satisfied, and the restricted Yoneda functor maps

PO%PN— ~~~~~~ — P, <f7Pn+1<7Pn+2<—
qoJ1 qnJn+1

to an exact sequence of projective objects. For 0 < k < n we denote

dr+1 = Qi frt1-

Notice that Xy is (n 4 1)-cellular, 0 < k < n. We will denote the structure
morphisms by f&, 0<k<n+1,i¥, ¢, 0 < k <n, and dX, k > 0, if we need to
distinguish between different n-truncated Postnikov systems.

A morphism of n-truncated Potsnikov systems

(¢<n;§0*) (X<'n,;P)—> (an;Q*)

is a diagram

Xpo1 —— X,

0)\ Xo X1
N AN
‘ PO / on Pl / le ...... an 1 P / an Pn+1 — Pn+2 -

®o P1 Pn
0 —J—> Yo —J—> Y Yo —J—> Y, JWI me

’\Qo/ \Ql/ <

Qni1 ¢— Qny2 ¢ -
where all squares commute. Composition is defined in the obvious way.
A pair of morphisms of n-truncated Postnikov systems

(wﬁna(P*) (¢<n7%) (X<n7P ) — (YSWQ*)

are homotopic (Y<n, @x) ~ (1/}Sn, @.) if ¢y, — ¢y factors through fri1: Qrr1 — Ya
for 0 < k < n. This condition can be characterized in different ways for k < n, see
Definition 612 (1-4).

The homotopy natural equivalence relation is additive: two morphisms are ho-
motopic iff their difference (¢<, — @Sn,cp* — @x) is nullhomotopic. We denote
Post,, the category of n-truncated Postnikov systems and Post, its homotopy
category. Both categories are additive and the natural projection Post,, — Post_;
is an additive functor.
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The homology functor
Post,, — Mod, (%),
(X<n, P:) — HpSy(Py) = Coker Sy (d1),
factors through the homotopy category,
Post,, — Mod,(%).

This factorization is an equivalence for n = 0.
The n-truncation functor, n > 0,

tn—1: Post,, — Post,,_

is the functor t,_1(X<n, Px) = (X<n_1, Px) defined by forgetting X,,, fn+1, in,
and ¢, but not d,, 11 = fn4+1¢n. This functor is additive and compatible with the
homotopy relation, hence it induces an additive functor

_1: Post;, — Post;

Lemma 6.34. Given an n-truncated Postnikov system (X<p, Py):
e S, (i1qy ") induces a degree —1 isomorphism HySe(Py) = Tm S, (i1),
o S, (ix+1) induces a degree 0 isomorphism Im Sy, (i) = Im Sy (ig+1) for 0 <
k<n,
e the natural projection So(Xy) — Coker S, (frt1) restricts to a degree 0
isomorphism Im S, (i) = Coker S (fr+1), for 0 < k < n.

In particular, for 0 <k <mn, So(Xy) = HoSo(Py) ®Im So(frs1)-
Proof. Extend fn41 to an exact triangle,

Zn+1

n14>X *****Xnﬂ

/
n frnia / In+1
n+1

Consider the following exact couple in Mod, (%),
Sa (i)

(+1,0)
(=1,0) (0,+1)

Sa(f*) Sa(q*)
S (P.).

Sa(Xy) Sa(X.)

Here for kK > n+ 1 we set X = X411, Pr = 0 and i = idx The E?-term of

the induced spectral sequence is

E3 = Coker S, (d1) = HoSa(P.), E?. | =Ker So(dpt1),

n+1°

and E? = 0 otherwise. The derived exact couple is

-/
2

Im Sy (i) —————— Tm Sa (is)

(+1,0)

(0,0) (=1,+1)
1! q

E2.

*
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Since Im S, (i) is concentrated in degrees k > 0, ¢, contains an isomorphism
Im S, (i1) = E2 = HySa(P.) whose inverse is induced by S, (i1¢y *). By the sparsity
of E2, i/, contains isomorphisms Im Sy, (ix) = Im S, (ix+1) induced by Se (ig41) for

0 < k < n. This finishes the proof since Ker S, (ix) = Im S, (fi) and hence S, (ix)
induces an isomorphism Coker Sq (fr) = Im S (ix), 0 < k <n+ 1. O

Remark 6.35. Let (X<y, P.) be an n-truncated Postnikov system. The following
inclusion defined by Lemma [6.34] 0 < k < n + 1, which splits for 0 < k < n, has
degree —1,

HySo(Py) c So(Xk).

Notice that X, 1 is not part of the n-truncated Postnikov system, it is simply a
mapping cone of fy, 1.

Definition 6.36. Let (X<,,, P.) be an n-truncated Postnikov system. Extend f,, 11
to an exact triangle

7An«#l

X 1—>X Xy
\ fn+2
dn fn+1 / q”+1 \\ .
Pra Pria ¢ Poyg— -+
dny2 n+3

By the cocycle condition f,41d,+2 = 0 there exists fn+2 with dy19 = qn+1fn+2.
This construction does not yield an (n + 1)-truncated Postnikov system since
fn+2dn+3 # 0 in general. However, qn+1fn+2dn+3 = dy4odyy3 = 0, and then
So(frr2dnys) factors through Ker So(gni1) = Coker So(fni1) =2 HoSo(P.), see
Lemma [6.34] as

Sa(frradnis): Sa(Pays) % HySo(P;) c So(Xni1),
The morphism & satisfies £S5, (d,14) = 0 since f,42dy13dn s = 0.
The obstruction of an n-truncated Postnikov system (X<, Py) is the element
K(X<n, P) € Bxt 27 " (HoSa(Py), HoSa(P))
represented by a morphism & constructed as in the previous paragraph.
This obstruction class is natural in the following sense.
Proposition 6.37. Given a morphism of n-truncated Postnikov systems,
(Y, 04): (X<n, Pe) — (Y<n, Q4),
the following equation holds in ExtrhLS T H S (Py), HoSw (Q4)),
HoSa(ox) - £(X<n, Po) = £(Y<n, Q«) - HoSa(px).

Proof. Assume we have made choices for the definition of the two obstructions.
Take 1,41 extending 1, and ¢,4+1 to a triangle morphism,

X 1—>X ————— 2 X

| ﬁ\
I
\ \ n+1 | Pn+2 Pn+3<_"'
Vn—1 P ¢¢n+1
Y, 1 Y Y Y YnJrl P42 Pn+3
,\ k// I

Qn Qn+1 Qni2 Qniz <+
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The square containing ,,4+1 and ¢, 2 need not commute. However,
Y X X FX  _ X
q>n,+l¢n+1fn+2 - <Pn+1qn+lfn+2 - @n+1dn+2
— gy _ Y FY
- dn+29071+2 - QH+1fn+290n+27

hence S, (1/)n+1f7§+2 - f,fwgpnﬂ) factors as

3 [
Sa(7/}n+1f§+2 - f7}1/+2<%7n+2)3 Sa(PnJrQ) T HOsa(Q*) - Sa(YnJrl)-

Moreover, since
(1/)n+1f_1i(+2 - fr{+2<ﬂn+2)d§+3 = 7/}n+1 f_fi(+2d§+3 - f?1/+2dz+390n+3
we deduce that
¢Sa(d§+3) = HOsa(‘P*)’%X - ’%Ysa(@n+3)v
hence we are done. O

A consequence of Proposition is that the construction of x(X<,, Py) in
Definition [6.30] is independent of choices.

Proposition 6.38. For an n-truncated Postnikov system (X<p, Pi), £(X<n, Py) =
0 if an only if there exists an (n+1)-truncated Postnikov system (X<pn+1, Py) whose
n-truncation is (X<p, Py).

Proof. 1f (X<n11, P.) exists we can take f, 12 = fn12, hence the cocycle condition
fnt2dn+s = 0 implies that & =0, so kK(X<,, Py) = 0.

Assume now that x(X<,,P.) = 0. Suppose that we have made the necessary
choices for the construction of &. Since k(X<y, Py) = 0 there exists a degree +1
morphism (: Sy (P t2) = HoSa(Py) such that & = {d,+3. The composite

Sa(Pn+2) é HOSa(P*) g Sa(Xn—i-l)

is the image by_Sa of aunique ¢: P42 — X, 4+1. The equation & = (d, 43 translates

into ¢dn+3 = fn+2dn+3- Hence in+1, n+1 and fnJrQ = f_n+2 — ¢ extend (Xgn, P*)
to an (n + 1)-truncated Postnikov system. O

Definition 6.39. Consider a couple of n-truncated Postnikov systems (X<, Px)
and (Y<p,Q«), n > 0, and a morphism between their (n — 1)-truncations,

(<n—1,04): (Xan—1,Ps) — (Y<n—1,Qx).
Take ¢, extending ¥, —1 and ¢,, to an exact triangle morphism
v Xy —— X,
AN AN
wnll Pn/ Iy, Pn+1<—Pn+2<_"'
Pn +
Y1 —|—Y, Pn+1 Pnt2
RN
Qn Qni1 ¢ Qni2 -

The square containing !, and ¢,4+1 need not commute, however

Y D'e X pX X Y Y fY
an 1/};Lfn+l = ¥nqyp fn+1 = Sﬁndnﬂ = dn+1<ﬂn+1 =4y fn+1%0n+1-
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Hence, by Lemma B34 So (¢, i1 — fYi1¢n+1) factors through Ker Su(qy) =
Im S, (i, ) = HoSa(Qx),

6
(1/} n+1 f7}1/+1<%7n+1)3 Sa(Pn1) T HoSa(Qx) S Sa(Yn).
The following equations show that 6.5, (dX 12) =0,

(w n+1 f7¥+1<Pn+1) n+2 — 2/anJrldnH f31/+190n+1d§+2

n+1 dn+2 Pn42 = 0.

Here we use the cocycle condition for both n-truncated Postnikov systems.
The obstruction of the morphism (<n—1,x) relative to the initial n-truncated
Postnikov systems is the element

o(XSnxP*)v(Y§n7Q (1/}<n 1, w*) € Eth+1 (HOSQ(P*)’ HOSO‘(Q*))

represented by a morphism 6 constructed as above. We often omit the subscript of
# so as not to overload the notation. Notice that this obstruction is additive in the
morphism,

O(<n—1+ P<n—1, 0 + @u) = 0(0<n—1,0x) + 0(P<n—1,Ps).
The following lemma allows to speak of the obstruction of a homotopy class.

Lemma 6.40. Given two n-truncated Postnikov systems (X<n, Py) and (Y<n, @),
n > 0, and two homotopic morphisms between their (n — 1)-truncations

(1/19171,80*) (1/)<n 17<P*) (X<n 17P ) — (Y§n717Q*)7
their obstructions coincide 0(Y<n_1,9s) = 0(h<n_1, D).

Proof. Tt is enough to check that the obstruction of a nullhomotopic morphism
(Y<n—1, p«) = 0 vanishes. Since it is nullhomotopic 0 = ¥ 9,1 = /i, so we can
factor ¢}, = ¢q;; . Moreover, ¢, is nullhomotopic, S0 pni1 = hpt1diy 1 +dy ohni2

for certain hyy1 and hy,4o,
- Xna —)X
P
\\ ¢

N
P \\ >‘ \L Prtl N hnge
Yn 1 N N Pn+t2
/ ’\ “

hpt1 =5 QnJrl — Qn+2 — -

wn Pn-l—l%Pn-l-Q(_"'

Using the direct sum decomposition in Lemma [6.34] we obtain

<§;> ((b fn+lhn+1) Sa(Pn) — Sa(Yn) = H()SQ(Q*) P Im Sa(frx;rl)'

Then 6 = £15a(dX, ) since
(6 = frvihni)dniy = 8diyy = Faabniidiin = fiiadiiohng
= 00 fa1 = g1 (hnr1diy + dyyoligo)
= 7/’;Lfr)f+1 - f’r}7,/+190n+1'
Here we use the cocycle condition fY,  d},, = 0. Therefore 6(¢p<,_1,p.) =0. O
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As consequence of Lemma [6.40] the obstruction of a morphism does not depend
on choices.

Proposition 6.41. With the notation in Definition [6.39,

9(X§n7P*))(YSn)Q*)(¢§n717 <P*) = O

if an only if there exists a morphism ¥y : X,, — Y, extending (<n—1,p«) to a
morphism (Y<n, ©x): (X<n, P) = (Y<n, Q) of n-truncated Postnikov systems.

Proof. If ()<n,¢«) extends the given morphism we can take !, = 1y, hence 6 =
wnf,ﬁl — f{+1<pn+1 = 0 and the obstruction vanishes.

Conversely, if the obstruction vanishes take £: So(P,) — HySa(Q,) with 6§ =
€Sa(d:,1). The composite

Sa(Prs1) — HoSa(Q4) C SalYn)

is the image by S, of a unique ¢: P, = Y,,, which must satisfy the two following
equations

G d=0,  bdn =V — Y Pt
We can take 1, = ¥/, — ¢q:X, since
Unipy = (P, — dgp )in, = Win =iy o1,
Oy U =y (U}, — ¢diy ) = @) U, = gy

1/}nfri(+1 = (7/1; - ¢q;§)f§+1 = ¢;f§+1 - ¢d§+1

I X 1 X Y Y
= wn n+1 — (djn n+1 — fn-i—l(pn-l‘l) = fn+1§0n+1'

O

The following result shows that the obstruction € in Definition [6.39]is a deriva-
tion.

Proposition 6.42. Given three n-truncated Postnikov systems (X<n, Py), (Y<n, Q+),
and (Z<n, Ry), and two composable morphisms between their (n — 1)-truncations,

(w n— 750*) (IZ n— )@*)
(Xcn 1, P) ——0 (Y1, Qu) — "5 (Z<n_1, Ry,

the following equation holds in Eth?;,}’*"(HOSQ(P*), HyS.(R.)),

O((V<n—1,Px) (W<n—1,0s)) = 0(<n—1,8x) - HoSa(px) + HoSa (@) - 0(th<n—1,¢4).
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Proof. Assume we have chosen ¢/, and 1/, to define the morphisms 6% and 6v
representing the obstructions of the two given morphisms,

Xpog ——m X,

g / RN
Yn—1 P, I, Pn+1<—Pn+2<—"'
on v
Yn—l —_— Yn Pn+1 Pn+2
N4 TN
Pn—1 Qn 19, Quit & Qni2 -+
4
L1 —|—— 2y Brt1 Brt2
NIZEN
R, Ryi1— R0 ¢ -

We can take ¥/, |11/, to define the morphism %% representing the obstruction of
the composition. With this choice, the equation already holds for representatives,

07 = 07 Sa(ns1) + HoSa(2:)8",
since
(P fois = 21 @na1)Png1 + On (U frs — Fog1Pns1)
= 1%1][7)1/-{-190714-1 - ff+1¢7n+1<Pn+1 + Yn, 15(+1 - @;fz;ﬂpnﬂ
= (nn) fosr — i (Bng1ont)-

Proposition 6.43. For any n-truncated Postnikov system (X<y, Py) and any
¢ € Bxt ' " (HoSa(P.), HoSa(Py))

there exists another n-truncated Postnikov system (Y<p, Q) with the same (n — 1)-
truncation (X<n—1, Py) = (Y<n—1, Q) such that

G(Xgnvp*)7(Y§n)Q*)(id(Xgnflvp*)) = C
Proof. We define the n-truncated Postnikov system (Y<,, Q) as follows, X = Yy,
=il =i af =a) 0<k<n Po=Qu k>0,dY =df, k>n+2. Tt
is only left to define f, ;.
Choose a morphism C: So(Ppny1) > HoSa(P.) representing ¢. The composite

Sa(Pn+1> %) HOSQ(Q*) S Sa(Xn)

is the image by S, of a unique ¢: P11 — X,,, which must satisfy ¢X¢ = 0 and
¢dny2 = 0, since (Sq(dynq2) = 0. The morphism fY,; = fX,; — ¢ yields an
n-truncated Postnikov system (Y<,,, @.) since the cocycle condition holds,

Foirlnio = (faig — @)dnsa = fri1dnio — ¢dpnyo =0—0=0.
To show that its (n — 1)-truncation is (X<p,—_1, Ps), it is enough to notice that
A= = (5 =) =g [y — 0=d,,. In order to compute the
obstruction of id(x_, , p,) we can take P! =1idx,, so § = ¢ and the obstruction
is C. - O
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Definition 6.44. Given a pair of n-truncated Postnikov systems (X<, P,) and
(Y<n, Qx), n > 0, any degree 0 morphism (: Sy (P,) — HoSa(Q.) with (S, (dY, ;) =
0 gives rise to a morphism

5(5): (XSmP*) — (YSnaQ*)

whose only non-trivial component is ggqff X = Yy,

Xpog— X,

AN
l /ngn Pn+1 — Pn+2 — -

Y“_Oygc/&lxl l

Qny1 ¢ Qni2 -

Here g5 P, =Y, is the morphism whose image by S, is

SalPa) < HoS4(Q.) € Sa(Ya),
This construction defines a natural homomorphism
7: Ker Homy, o (Sa(dyy 1), HoSa(Qx)) — Post, (X<n, P.), (Y<n, Qu)).
Proposition 6.45. The natural homomorphism @ factors as

vt Ext 5" (HoSa(P.), HoSa(Q4)) — Post,((X<u, P.), (Yen, Q).

Proof. Tt is enough to notice that if ¢ factors through S, (dX) then 7(¢) = 0. This

follows from dX X = ¢X 1iXqX = ¢X ,0=0. g

The kernel of » = 4 x_, p.),(v.,,0.) and of its composition with the natural pro-
jection onto the homotopy category Post;, can be computed by means of spectral
sequences associated to the Postnikov system (X<, P.). We omit the details to
avoid further technicalities, compare [Bau89, page 340 and VI1.5.16].

Proposition 6.46. Given a morphism of n-truncated Postnikov systems

(1/}<n7</7*) (X<n7P ) — (YSan*)v

its (n — 1)-truncation (Y<n—1,psx) is nullhomotopic if and only if (V<n,s) is ho-
motopic to a morphism in the image of v in Proposition [6.47]

Proof. The truncation of a morphism in the image of ¢ is trivial. Conversely, if
(Y<n—1, p«) is nullhomotopic then 0 = ¥ 1, 1 = iz, so we can factor 1, = ¢q;\ .
Moreover, ¢, is nullhomotopic, S0 @,+1 = hannXH + dz+2hn+2 for certain h,41
and hn+2,

Xy —— X,
~ / N
Yn—1 P, Y Ppy1—— Ppyo -

X \ N
$n \ >L Pn41 N hpgo
AN Pn+2
/ \ N
N

hnit =2 Qpyt —— Qug2 ¢+

Yoo
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If we denote v = ¢ — fY, 1 hy41 we have that vdi, ; = 0, since
¢d§+1 = ¢q;)f 1¥+1 = Q/Jnfrﬁl = f1§/+190n+1
= 7}z/+1(hn+1an+1 + dZ+2hn+2) = f§+1hn+ldnx+1-

Here we use the cocycle condition fY  dY, , = 0.
Using the direct sum decomposition in Lemma [6.34],

(£1) = 50+ Sa(P) — 5000 = Ho84(Q) & 1 (L)
Since yd;,; = 0 we have &Sa(dX,;) = 0, k = 1,2. Let us check that 2(&) is
homotopic to (1)<n,s). Notice that, since (¢p<p_1, ¢«) is nullhomotopic, we only
have to check that 1, — g¢,¢X = (¢ — ge,)q;x factors through f);rl: Qni1 — Yo
where g¢, is the morphism whose image by S, is & . This is obvious since by
construction the image of Sa(¢ — ge,) = Sa(@) — & lies on Im S, (f), ) in the
previous direct sum decomposition. O

6.7. The obstruction of a module. In this short section we analyze the most
basic of the obstructions in Section [6.6l
Definition 6.47. The obstruction of an a-continuous € -module M is the obstruc-
tion of a 0-truncated Postnikov system (Xy, P.) with homology HS,(Py) = M,
k(M) = (X, P,) € Ext> ' (M, M).
The following characterization of this obstruction extends [BKS04, Theorem 3.7].

Proposition 6.48. Given an a-continuous € -module M, k(M) = 0 if an only if
M is a retract of a restricted representable functor Sy (X).

Proof. If k(M) = 0 we can extend (Xo, P.) to a l-truncated Postnikov system
(X<1, P.) by Proposition [6:38, and Lemma shows that M is a direct sum-
mand of S, (X1). Conversely, we always have x(S4(X)) = 0 from the existence of
Postnikov resolutions, see Corollary [6.11] and Proposition [6.381 Moreover, if

M = S.(X) ri = idy

is a retraction, then, by Proposition [6.37],
O

Corollary 6.49. If S, is full, then an a-continuous €-module M is isomorphic to
a restricted representable functor, M = S, (X), if and only if k(M) = 0.

Proof. If M is a restricted representable functor, then «(M) = 0 by Proposition
Conversely, if k(M) = 0, then we have a retraction

M = 8, (X) ri =idy .
Since S, is full ir: So(X) — So(X) is the image by S, of some f: X — X. One
can check, as in the proof of Theorem [6.29 that M is isomorphic to the image by
S, of

Hocolim(X -1 x L5 x L5 ...
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6.8. Connection with the Adams spectral sequence. Given a pair of objects
X and Y in 7, the Adams spectral sequence is a conditionally convergent cohomo-
logical spectral sequence abutting to 7*(X,Y) with Ea-term

EP? = Ext} % (S4(X), Sa(Y)),
cf. [Chr98, Section 4]. It is defined by the exact couple

T (§+,Y)
(—1,0)
(+1,0) (0,-1)

T(g«,Y) T (r«,Y)
T(P..Y)

T(W,,Y) T(W.,Y)

associated to an Adams resolution (X, W, P,) of X. Here we set W_; = X. The
induced decreasing filtration of 7*(X,Y") is the filtration by powers of the ideal .&
of phantom maps.

The following result relates the obstruction to the lifting of morphisms along
tn—1 in Definition with the differentials of the Adams spectral sequence.

Proposition 6.50. Given Postnikov resolutions (X, X, P.) and (Y,Y., Q) and
a morphism of (n — 1)-truncated Postnikov systems (Y<n—1,9s+): (X<pn—1,Ps) —
(Y<n—1,Qx), n > 0, the differentials of the previous Adams spectral sequence satisfy

0 if2<k<n

dk(HoSa(px): Sa(X) — Sa(Y)) = )

Oxcn,P),(Ven, @) Wsn-1,04)  fk=n+1
In particular, if f: So(X) — So(Y) is a morphism satisfying di(f) = 0 for 1 <
k < n, then there exists a morphism of (n—1)-truncated Postnikov systems as above
with f = HySa(¢x)-

Proof. The second part of the statement follows from the first part and Proposition
Let us deal with the first part.

Take an Adams resolution (X, W,, P,) adapted to (X, X, Pi) in the sense of
Lemma [6.T00 The morphisms ¢,, and idp,, n > 0, define a morphism between the
previous exact couple and the exact couple

T (is,Y)

T(X.,Y) Guck T(X.,Y)
(+1,0) (0,—1)
T(fuY) %)
7(P.,Y)

associated to the Postnikov system (X, P.). This morphism is the identity on
E'-terms, and hence on E*-terms for all & > 1. We can therefore compute the
differentials of the Adams spectral sequence by using this second exact couple.
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Let n = 1. Since HoS4(p«) is represented by pé/(qg/)*lgpoqo , using the second
exact couple it is clear that da(HoS,(p«)) is represented by pY o f5<.

X x

’\/’\/

Xl f2

:Tl’ w2
—_— Y |
\ i \ ;f\pl¢
Kflr\ Kf;\

0 1

Moreover, S, (pfd)i 55 = 6 by Lemma [6.15 since

Py (WASS = fy p2) =piWifs —pl f2 2 = pivnfs — Ope =pl Wi f5
If n > 1 then ¢} = ¢ and pY ¥ f5X = p¥ f3 2 = 02 = 0 by Lemma G158 In
this way, by induction dy(HoSa(px)) = 0 for 1 < k < n and dpi1(HoSa(p *)) is
represented by pY v/, an Moreover, So (pX ¢!, fX. 1) = 6 by Lemma[6.I5 since

2% (1/} n+1 f2 @nJrl) pn1/} n+1 pr}:—i-l(/)nJrl
_pnw fn+1 _090714-1 _pnw n+1

7. THE FIRST OBSTRUCTION OF AN EXTENSION OF REPRESENTABLES

A triangulated category is said to be algebraic if it is a full triangulated subcate-
gory of the homotopy category K (<7) of some additive category <, cf. [KraO7, §7.5].

Theorem 7.1. Let 7 be an algebraic triangulated category. Suppose F' is a
% -module fitting into a short exact sequence

Sa(Y) <% F 5 §,(X)

classified by
er € Exty”(Sa(X), Sa(Y)).

Then the obstruction of F' is
#(F) =a-ds(er)- b€ Exte ' (F, F),

where dy is the second differential of the Adams spectral sequence in Section
abutting to T7*(X,Y).

This result is a paradigmatic example of a statement which makes sense for any
triangulated category but which requires the use of models in its proof. The proof
uses maps and homotopies in the category of complexes in &7, actually homotopy
classes of homotopies suffice, but we will not get into such technicalities. Never-
theless, this suggests that it should be enough to assume that .7 is the homotopy
category of a triangulated track category [BMOS| [BM09]. This includes topological
triangulated categories, i.e. full triangulated subcategories of stable model cate-
gories. The proof in the non-additive setting is however more complicated. This is
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why we restrict to algebraic triangulated categories here. The proof is at the end
of this section.

Definition 7.2. Let C(&/) be the category of chain complexes in an additive
category 7. Differentials of chain complexes in & are denoted by 0 and have
degree —1. We add a superscript 9 if we need to specify the complex A. A type
0 standard exact triangle starting at A is a diagram in C(<7)

A—1 B

+1
N
Cy
such that Cy is the mapping cone of f,

c -9, 0
(Of)n =A,1® By, anf = < fn—ll 67113 ) ,

and ¢ and ¢ are given by

in=(7) 4n=(1,0)
—_

B, ——— (Cf)n =A,_19 B, A,_1.

The type 1 standard exact triangle starting at XA and the type 2 standard ezxact
triangle starting at A are

$A—- B A—L B
N N
Ct E‘le

respectively. Notice that, in all cases, ¢gi = 0 in C(&7).

Remark 7.3. Recall that a chain map (Z) D — Cf is the same as a chain map
g: D — ¥ A, given by morphisms g,,: D,, — A,_1 with 97 g, + gn_10F =0, to-
gether with a nullhomotopy h: (Xf)g = 0, i.e. a sequence of morphisms h,,: D,, —
B,, with f,_ 19, + 02h, = h,_10P. Similarly, a chain map (h,g): Cy — D is
simply a map g: B — D together with a nullhomotopy h: gf = 0.

Suppose for the rest of this section that .7 is algebraic, and fix an embedding
J C K (<) which allows us to work with complexes in 7. The following lemma
shows how to compute x(F) by means of chain homotopies.

Lemma 7.4. Let F' be an a-continuous € -module and
---—>Rmd—m>Rm_1—>---—>R0

a sequence of morphisms in C(2/) whose homotopy classes lie in 7 and map by
Sa to a resolution of F in Modo(%). Let hy: d,,d,, .1 = 0 be nullhomotopies,
m=1,2,
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The degree +2 chain morphism Rs — Ry defined by the morphisms
hin-1ds,, —dy ,_1hon: R3n — Ron—2, n€EZ,
represents k(F).

Proof. The nullhomotopies consist of morphisms hy, n: Rmt1,n — Rm—1,n—1 in &,
n € Z, with

Q1@ = On T e+ B 1 OF 1.
Take Zy = ¥Ry, f; = dy, and extend this morphism to a standard exact triangle
of type 0 starting at R;. For the definition of k(F') we can take f) = (Z?) : Ry —

Z1 = Cy, as in the following diagram

ds
dso +1

R3

Then f}ds is given by the following morphisms in &7, n € Z:

(dz,n1)d _ (d2,n1d3,n) _ (‘fjllh?,n + h27n—la§3)'
hin—1 3,m hl,nfldg)n hl,n71d37n
We can deform this representative of the composite fids in 7 by using the mor-

phisms (hzo”‘): R3, = Rin—1 @ Ropn, n € Z, obtaining a chain morphism in the
same homotopy class defined by the following morphisms in <7, n € Z:

dz 1 han—1 R Ca. (hon
;M d _ ’ 8 3 __ 871 1 ’
(hz,n—1> o ( 0 > " 0

() = (= () ()
h1,n-1ds,, 0 " dy oy 070 0

0
- (hl,n—lds,n - dl,n1h27n) ’
hence we are done. g
Lemma 7.5. Let (X, X., Pi) be a Postnikov resolution whose underlying Postnikov

system consists of type 2 standard triangles starting at X,;m—1, m > 0, where X_1 =
0,

0 © Xo “ X, = X, ' X5
'\ % @ a2 as

AN AN AN AN
P Py Py Py

Given e € Extif%(SQ(X),Sa(Y)) = E3" represented by a chain map é: Ps — Y
of degree s +t, if l: édfﬂ = 0 is a nullhomotopy, then the image of e by the

Adams spectral sequence’s second differential dz(e) € Extifé’t_l(SQ(X), Sa(Y)) =

E§+2’t_1 is represented by the chain map Psyo — Y of degree s +t+ 1 defined by

the following morphisms, n € Z:

X
_ln71d5+27n: Ps+2,n — Ynfsftfl-
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Proof. The nullhomotopy [ is given by morphisms l,,: P41, — Y,_s_¢ in & sat-
isfying én_1d,,, = 0}l + ln_104*"*, n € Z. This nullhomotopy and éqX
define a degree s + t + 1 morphism (I, é¢X): C’fx+l — Y. Since the extact triangles

of (X, P,) are standard of type 2, Ps;1 is the the desuspension of the mapping
cone of i, 1, and C’fx+l is given by

. -0 0 0
20 . Xot1
(Cf)il)n - Xs,nfl S¥ Xerl,n ® Xs,ny an = ls+1,n 871 0
1 0 |oxX
The inclusion of the middle direct summands
0
1 : Xerl,n — (Ofs)ﬂrl)n = Xs,nfl @Xerl,n @Xs,n
0

yield a homotopy equivalence X, 1 — C X, such that the triangle

G541

Xs —>XS+1

~
inclusion into

mapping cone Cf)il
s

anticommutes up to the homotopy given by the morphisms

1
0 : Xs,n — (Cfs)il)nJrl - Xs,n S Xerl,nJrl S Xs,nJrl-
0
Hence —da(e) is represented by
Ie ~ (L.eal)
Pyio Xst1 Cfs)fH T TE— Y.

This composite is defined by the morphisms ln_ld:ﬁrln, n € 7, hence we are done.
O

Remark 7.6. It is always possible to represent a Postnikov system by type 2 stan-
dard triangles as in the statement of Lemma Moreover, in the conditions of
that statement, if &: Py — Y represents an element in Ext>", (S (X), So(Y)) there

must exist a nullhomotopy I: édz, ; = 0 since éd; =0 in 7.

Proof of Theorem[7.1] Take a Postnikov resolution (X, X., P,) whose underlying
Postnikov system (X, P.) consists of type 2 standard triangles starting at X,,_1,
m > 0, and an Adams resolution (Y, W, Q.) consisting of type 2 standard triangles
starting at Y and W,,,, m > 0. By elementary homological algebra, there are degree
41 chain maps Sy, : Pmn — Qm—1, m > 0, such that the morphisms

Z d;/m Sm,
dm: 0 dX :Qm@PmHmel@mela

map to a projective resolution of F' in Mod,(%¢"). The element e is represented by

—S.(s1). Since these matrices define differentials in .7, dﬁdﬁwl =0, d};d};H =0,

and dY, sm41 + Smday 1 = 0. The first two equations also hold at the level of chain
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maps by the properties of standard triangles. For the third equation, we choose
an arbitrary nullhomotopy kp,: d¥,sm+41 + Smdiy,; = 0, defined by morphisms
kmnt Pmyin = Qm-1,n-1, N € Z, satisfying

(7.7) Y, o 1Smrin F Smano1da i1 = 0 K+ ki1 051

We take hy,: dZ,dZ ., = 0, m = 1,2, to be defined by

0 km,n
hm,n_<0 0 ), n € 7.

By Lemma [l the following morphisms define a chain morphism representing & (F),

( 0 kin-1dg, —d}, 1kon

0 0 ) 1 Q30 D P3n — Qon—2® Pon—2-

This shows that if z € Ext‘z’;gl(Sa(X), So(Y)) is the element represented by the
chain map defined by the following morphisms, n € Z,

X y X X
go.n—2(k1n-1d3,, —di , 1k2.n) = gon—2k1,n-1d3,, — 0k n = go.n—2k1n—1d3,,

then
K(F)=a-xz-b.
We now identify this  with daz(ep).
Take
&P =5Q0 Y, ln=gon-1kin, nEL

We must check that [ defined in this way is a homotopy. Indeed, since gq is a chain
map

O il 4 1n1052 = 0} _1gon—1k1.n + Gon—2k1,n-105"
= 90,n—23§31k1,n + go.n—2k1,n—10%"
= gon—2(072 k1 m + k1n105?)
= go,n—2(d) ,_152,n + S1,n-1d3,,) by (D)
= 0s2,p, + 90,n7281,n71d§,n
= En_1ds .

Hence da(ep) = x by Lemma [Z.3] O

8. A CHARACTERIZATION OF -COMPACT OBJECTS

The following theorem is used in Sections [8land [ to prove that some categories
satisfy AROy, .

Theorem 8.1. Let a be a regular cardinal. Suppose that § is a cardinal satisfying
one of the following hypotheses:

(1) B = (y<%)* for some vy > card 7 and some regular cardinal § > a.
(2) B> card T* is inaccessible.

Then TP is the full subcategory of objects Z such that T (Y,Z) < B for any Y
in .
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One can easily produce cardinals satisfying (1), however the existence of cardinals
as in (2) depends on large cardinal principles. Theorem [R] recovers Krause’s
[Kra02, Theorem C] by taking 8 = (y<°)* as in (1) for v = card 7 and 6§ = o,
ie. 8 = ((card 7%)*)*. Notice that the smallest cardinal 3 we can take as in (1)
is B = ((card 7*)<*)*, which is smaller than Krause’s choice.

Lemma 8.2. Let 8 be as in the statement of Theorem [81 Given a set I of
cardI < 8 and objects X;,Y in 7%, i € I, then card 7 (Y, [[;; Xi) < B.

Proof. Notice that 8 > card ¢ in both cases. Since Y is a-small,
T, || X;) = li TYUY, | | X5).
(v, ][ %) = colim v JTx)

i€l card J<a i€l
The cardinal of this set is bounded above by (card I)<® - card 7%, so it is enough
to check that (card I)<® < f. If 3 satisfies condition (2), the result follows from
the strong limit property. Otherwise, (card I)<® < (y<°)<® = 4<% < 3 by [AR94]
Lemma 2.10]. O

The following lemma is obvious.

Lemma 8.3. Let S be a class of objects in 7 closed under (de)suspensions, 3.5 =
S, and B an infinite cardinal. The full subcategory of objects Z such that 7 (Y, Z) <
B for allY € S is triangulated.

We are now ready to prove Theorem R11

Proof of Theorem [81l. Denote .¥ the full subcategory of .7 spanned by the objects
Z such that (Y, Z) < 8 for any Y in 7% This subcategory is triangulated
by Lemma We claim that Z is in .7 if and only if there is an morphism
go: Po = [l;c; Xi — Z with X; in 7% and cardl < 3, such that S,(go) is an
epimorphism. If such a morphism exists, then for any Y in 7%, card 7 (Y, Z) <
card 7 (Y, ][;c; Xi) < B by Lemma B2 so Z is in .. Conversely, if Z is in .7,
consider the evaluation morphism

g:P=J[ v —2
Y in ¢
T(Y,Z)
The coproduct is indexed by a set of cardinality < > 5. card 7 (Y,Z) < f,
since S is regular, and S, (g) is clearly an epimorphism.

We now prove that . = 7. Given an object Z in ., we can construct, as
in Remark 6.7 an Adams resolution (Z, W,, P.) where each P, is a direct sum of
< f objects in .7« C TP, so each P, is in .T°. Let (Z, Z., P.) be an associated
Postnikov resolution, as in Lemma [6.10} It can be seen by induction that each 7,
is in .77 since we have exact triangles P, — Z,-1 — Z, — XP,. Hence Z =
Hocolim,, Z, is also in .77 because, since 3 > Rg, .77 has countable coproducts.
This proves . C .75,

Since .77 is the smallest -localizing subcategory containing a set of a-compact
generators, in order to show .77 C .7 it is enough to see that . is S-localizing,
i.e. closed under coproduct of < 3 objects. Let {Z;};cs be a set of objects in .&
with card J < . By the first part of the proof there are morphisms g;: P; — Z;
such that P; is a coproduct of < f objects in .7* and S,(g;) is an epimorphism for

all i € J. Hence, the source of [[;.;g;: [1;c; P — [l;c; Z; is also a coproduct



50 FERNANDO MURO AND ORIOL RAVENTOS

of < B objects in 7. Moreover, So(g;) is an epimorphism by [Kra0I, Theorem
A, therefore [[, ; Z; is in .77 O

Proposition 8.4. Let 7 be an a-compactly generated triangulated category and
Kk > a be reqular cardinal such that either k is strongly inaccessible or 2* = A\t for
every A < k. If card 7% < Kk, then card 7" = k.

Proof. Our assumptions on x and [Jec03| Theorem 5.20] show that k<% = k. Taking
B = kT in Theorem BI] we deduce that the size of morphism sets in 7% is < &+,
i.e. < k. Hence the same is true for 7" C Tt

By the proof of [NeeOTb, Lemma 3.2.4 and Proposition 3.2.5], the set of objects
S, of " can be constructed as a continuous increasing union S, = Uu < Sy
starting with the set Sy of objects of 7*. The set S,11 is defined from S, by
adding coproducts of < & objects in S, and mapping cones of all possible morphisms
between such coproducts. Assume that card S, < x. Adding coproducts of < &
objects increases the cardinal at most to (card S,,)<" < k<" = k. Adding mapping
cones neither increases the cardinal of S, since the size of morphism sets in 7"
is < k. (]

Corollary 8.5. Let 7 be an Wy-compactly generated triangulated category. As-
suming the continuum hypothesis, if card FR0 < Ry, then card TRt = Ry,
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