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TRANSFINITE ADAMS REPRESENTABILITY

FERNANDO MURO AND ORIOL RAVENTÓS

Abstract. We consider the following problems in a well generated triangu-
lated category T . Let α be a regular cardinal and T α ⊂ T the full sub-
category of α-compact objects. Is every functor H : (T α)op → Ab that pre-
serves products of < α objects and takes exact triangles to exact sequences of
the form H ∼= T (−, X)|T α for some X in T ? Is every natural transforma-

tion τ : T (−, X)|T α → T (−, Y )|T α of the form τ = T (−, f)|T α for some
f : X → Y in T ? If the answer to both questions is positive we say that
T satisfies α-Adams representability. A classical result going back to Brown
and Adams shows that the stable homotopy category satisfies ℵ0-Adams rep-
resentability. The case α = ℵ0 is well understood thanks to the work of
Christensen, Keller and Neeman. In this paper we develop an obstruction
theory to decide when T satisfies α-Adams representability. We derive neces-
sary and sufficient conditions of homological nature, and we compute several
examples. In particular, we show that, for all α ≥ ℵ0, there are rings whose
derived category satisfies α-Adams representability and also rings for which
the answer to the second question is no.
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6.3. Postnikov resolutions and ∞-phantom maps 24
6.4. Homotopy colimits and Postnikov resolutions 28
6.5. Postnikov systems 31
6.6. Truncated Postnikov systems and obstructions 34
6.7. The obstruction of a module 42
6.8. Connection with the Adams spectral sequence 43
7. The first obstruction of an extension of representables 44
8. A characterization of α-compact objects 48
References 50

Introduction

There are two classical representability theorems in the stable homotopy cate-
gory T . Any spectrum X gives rise to a cohomology theory T (−, X) : T op → Ab.
The Brown representability theorem, [Bro62], says that any cohomology theory
H : T op → Ab is of the form H ∼= T (−, X) for some spectrum X . The Adams
representability theorem, [Ada71], is a kind of analog for cohomology theories de-
fined only on the full subcategory of compact spectra T c ⊂ T . It asserts that any
cohomology theory H : (T c)op → Ab is of the form H = T (−, X)|T c for some X ,
and, moreover, any natural transformation

τ : T (−, X)|T c −→ T (−, Y )|T c

is induced by a map f : X → Y , τ = T (−, f)|T c . By Yoneda’s lemma, the rep-
resenting spectrum in Brown’s theorem is unique and any natural transformation
between cohomology theories on T comes from a unique map between the repre-
senting spectra. In Adams’ theorem the spectrum X is still unique, but there may
be different maps f representing a given natural transformation τ . Maps represent-
ing the trivial natural transformation are called phantoms. Brown proved Adams’
theorem under the restrictive hypothesis that the cohomology theory H takes val-
ues in countable abelian groups. Adams’ theorem allows to extend cohomology
theories which are, in principle, only defined for compact spectra like topological
K-theory defined in terms of vector bundles. Adams’ theorem is stronger than
Brown’s, cf. [Ada71], and it also implies the representability of homology theories
via the Spanier–Whitehead duality.

The analog of Brown’s representability theorem is satisfied by a wide class of tri-
angulated categories T including the well generated ones, i.e. if T is well generated
any functor H : T op → Ab preserving products and taking exact triangles to exact
sequences is of the form H = T (−, X) for some X in T [Nee01b, Theorem 8.3.3].
The simplest examples of well generated categories are the compactly generated
ones. An object C in T is compact if the functor T (C,−) preserves direct sums,
and T is compactly generated if it has coproducts and the full subcategory of com-
pact objects T c is essentially small and generates T , i.e. an object X in T is
trivial if and only if T (C,X) = 0 for all C in T c. A compactly generated category
T satisfies Adams representability if any additive functor H : (T c)op → Ab taking
exact triangles to exact sequences is of the form H = T (−, X)|T c for some X in
T , and any natural transformation as τ above is induced by a map f : X → Y ,
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τ = T (−, f)|T c . Despite the category of compact objects contains much infor-
mation about the whole category, Adams representability is seldom satisfied. It
is satisfied, for instance, when T c is essentially countable [Nee97]. This covers
the stable homotopy category, but not the derived category D(R) of a ring R un-
less R is countable. Adams representability is thoroughly studied in [Bel00] and
[CKN01], with emphasis on derived categories of rings. It turns out to be strongly
related to the pure global dimension of the ring R, a homological invariant con-
nected to set theory, e.g. the first part of Adams representability for the derived
category D(C〈x, y〉) of a non-commutative polynomial ring on two variables over
the complex numbers is equivalent to the continuum hypothesis.

Many well generated triangulated categories have not enough compact objects
to generate, e.g. the homotopy categoryK(Proj-R) of complexes of projective right
R-modules over a ring R which is not right coherent [Nee08, Example 7.16]. There
are even some well generated categories with no non-trivial compact objects at all,
e.g. the derived category D(Sh/M) of sheaves of abelian groups on a connected
non-compact paracompact manifold M of dimM ≥ 1 [Nee01a]. Therefore, in these
contexts, Adams representability does not make much sense as considered above.
In such cases, the role of compact objects is played by α-compact objects for a
regular cardinal α. In a well generated category, for a large enough cardinal α, the
category T α of α-compact objects is essentially small, closed under coproducts of
< α objects, and generates T . In this paper, we consider the following transfinite
analog of Adams representability in T .

Definition. Let α be a regular cardinal and T a well generated triangulated
category. A functor H : (T α)op → Ab is cohomological if it takes exact triangles to
exact sequences. We say that T satisfies α-Adams representability if the following
two properties are satisfied:

AROα Any cohomological functor H : (T α)op → Ab that preserves products of
< α objects is isomorphic to T (−, X)|T α for some X in T .

ARMα Any natural transformation τ : T (−, X)|T α → T (−, Y )|T α is induced by
a morphism f : X → Y in T , τ = T (−, f)|T α .

The only case where these properties hold by obvious reasons for all α is the
derived category D(k) of a field k. Observe that if T is compactly generated
ℵ0-Adams representability is the same as Adams representability as considered
above. Since AROℵ0 and ARMℵ0 fail so often, it is also natural to consider AROα
and ARMα for α > ℵ0 in compactly generated categories.

For T a well generated triangulated category with models, Rosický stated in
[Ros05] that AROα and ARMα were satisfied for a proper class of regular cardinals
α. Unfortunately, his proof contains a gap acknowledged in [Ros08] and [Ros09].
Nevertheless, this statement is a fairly natural question. Heuristically, since any
well generated category is an increasing union of the subcategories of α-compact
objects T = ∪αT α by [Nee01b, Proposition 8.4.2], Brown representability can be
regarded as the limit of AROα and ARMα as α runs over all cardinals, and this
question suggests that the limit statement is satisfied because it is satisfied in a
‘cofinal’ sequence.

Neeman obtained in [Nee09] striking consequences of Rosický’s statement. One
of them is that any covariant functor on a well generated triangulated category
H : T → Ab preserving coproducts and taking exact triangles to exact sequences
would be representable H ∼= T (X,−). This is Brown representability for the dual
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T op. This result cannot be deduced from the Brown representability theorem for
well generated categories since the opposite of a well generated category is never
well generated. It was known for compactly generated triangulated categories,
cf. [Nee98] and [Kra02], and it is a major open problem in the field for well generated
categories.

In this paper, we show that some well generated triangulated categories do not
satisfy α-Adams representability. For instance, we prove that D(Z) satisfies ARMα

if and only if α = ℵ0. This uses the fact that the α-pure global dimension of Z is
pgdα(Z) > 1 for α > ℵ0, cf. [BG12]. The α-pure global dimension of a ring R is
the smallest n such that, for each right R-module M , there is a sequence

0 → Pn → · · · → P1 →M → 0

where each Pi is a retract of a direct sum of right R-modules with < α generators
and relations and

0 → HomR(Q,Pn) → · · · → HomR(Q,P1) → HomR(Q,M) → 0

is exact for any right R-module Q with < α generators and relations, cf. [JL89,
Chapter 7].

A ring R is α-coherent if any right R-module with < α generators has a pre-
sentation with < α generators and relations. Rings of cardR < α are α-coherent,
cf. [Mur11, Lemma 19]. We prove that, if R is α-coherent for some α > ℵ0 and
D(R) satisfies ARMα, then pgdα(R) ≤ 1.

A ring R is hereditary if it has global dimension ≤ 1, e.g. R = Z and path
algebras of quivers over a field. Hereditary rings are α-coherent for all α ≥ ℵ0.
For hereditary rings, we prove that AROα is equivalent to pgdα(R) ≤ 2 and that
ARMα is equivalent to pgdα(R) ≤ 1, α > ℵ0. The case α = ℵ0 was shown in
[CKN01]. As we already mentioned, pgdα(Z) > 1 for all α > ℵ0, but nothing else is
known about pgdα(Z) without set-theoretical assumptions. Under the continuum
hypothesis, we prove that pgdℵ1

(Z) = 2, which implies AROℵ1 for D(Z), and more

generally, if 2ℵn−1 = ℵn, then pgdℵn
(Z) ≤ n+1. Computing pgdα(Z) becomes now

a relevant problem since pgdα(Z) = 2 is equivalent to AROα for D(Z). The first
examples of rings with pgdα(R) > 1 for all α ≥ ℵ0 have been obtained in [BŠ13],
e.g. R = k[[x, y]] for k a field. As in the case of Z, we do not know better bounds
for pgdα(R) without set-theoretical hypotheses. These rings do not satisfy ARMα

for any α ≥ ℵ0.
Concerning positive results, we show that the derived category D(R) of a hered-

itary right pure-semisimple ring, e.g. the path algebra of a Dynkin quiver over a
field, satisfies AROα and ARMα for all α. Under the continuum hypothesis, we
prove AROℵ1 for the following categories, where R denotes a ring of cardR ≤ ℵ1:
the stable homotopy category, the derived category D(R) of right R-modules, the
homotopy category K(Proj-R) of complexes of projective right R-modules, the ho-
motopy category K(Inj-R) of complexes of injective right R-modules if R is right
noetherian, the derived category D(Sh/M) of sheaves of abelian groups on a con-
nected paracompact manifold, and the stable motivic homotopy category over a
noetherian scheme of finite Krull dimension that can be covered by spectra of rings
of cardinal ≤ ℵ1. We believe that set-theoretical assumptions are really necessary
in these examples, as they are in order for D(C〈x, y〉) to satisfy AROℵ0 . These
results obtained under the continuum hypothesis suggest that for any specific coho-
mological functor H : (T ℵ1)op → Ab preserving countable products there are many
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chances to find an object X with H = T (−, X)|
T

ℵ1
, for if such an object did not

exist the continuum hypothesis would be false.
We tackle AROα and ARMα by means of a fairly general obstruction theory

for triangulated categories. We consider a well generated triangulated category T

and a full subcategory C ⊂ T α closed under (de)suspensions and coproducts of
< α objects which generates T . We do not require C to be triangulated, although
in this paper the main example is C = T α. We consider the restricted Yoneda
functor,

Sα : T −→ Modα(C ), Sα(X) = T (−, X)|C ,

where Modα(C ) is the abelian category of α-continuous (right) C -modules, i.e. func-
tors C op → Ab preserving products of < α objects. Morphisms in the kernel of Sα
are called phantom maps. We interpolate the functor Sα by an inverse sequence of
categories

T → · · · → Post≃n+1
tn−→ Post≃n → · · · → Post≃0

∼
−→ Modα(C ).

For each step tn : Post
≃
n+1 → Post≃n , we define obstructions to the lifting of objects

and morphisms along tn. Obstructions take values in Ext groups in Modα(C ). The
obstructions for the lifting of objects were first considered in [BKS04] for α = ℵ0.
In addition, we prove that the induced functor

t : T −→ Post≃∞ = lim
n

Post≃n

is full and essentially surjective. We also analyze the kernel of tn and, moreover,
we show that the kernel of the functor t is the ideal of ∞-phantom maps, i.e. maps
f : X → Y in T which decompose as a product f = fn · · · f1 of n phantom maps
fi, 1 ≤ i ≤ n, for all n ≥ 1. Furthermore, we prove that ∞-phantom maps form
a square-zero ideal, i.e. the composition of two ∞-phantom maps is always zero.
This is a new result even for a compactly generated triangulated category T and
C = T c.

Acknowledgements. This piece of research started as a result of conversations
with Amnon Neeman on Rosicky’s [Ros05], we thank him for driving us to these
problems. We are grateful to Carles Casacuberta for many useful suggestions on
preliminary versions of this article. We would also like to acknowledge fruitful
conversations an exchange of ideas with Javier Gutiérrez, Henning Krause, Jǐri
Rosický, Markus Spitzweck and Jan Šťov́ıček.

1. The restricted Yoneda functor

For the basic notions and properties of triangulated categories used in this section
we refer the reader to [Nee01b], [Kra00] and [Kra10].

Throughout this paper α is a regular cardinal, T is a well generated triangu-
lated category with suspension functor Σ, and C ⊂ T α is an essentially small full
subcategory such that:

(1) it is closed under (de)suspensions,
(2) it has coproducts of less than α objects, and
(3) it generates T , i.e. an object X in T is zero if and only if T (C,X) = 0

for all C in C .
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In particular, T is α-compactly generated in the sense of Neeman [Nee01b] and has
products and coproducts. We do not require C to be triangulated. If it were, then
necessarily C = T α. In order to avoid absurd situations, we assume that both C

and T are non-trivial, i.e. C contains at least one object X 6= 0.
Let Modα(C ) be the abelian category of functors C op → Ab preserving products

of less than α objects. Such functors are called α-continuous (right) C -modules.
This category is locally α-presentable, α-filtered colimits are exact, and repre-
sentable functors form a set of α-presentable projective generators. Moreover,
α-filtered colimits in Modα(C ) are computed pointwise, i.e. if Λ is an α-filtering
category, Λ → Modα(C ) : λ 7→ Fλ is a diagram of α-continuous C -modules, and C
is an object in C , then

(colim
λ∈Λ

Fλ)(C) = colim
λ∈Λ

(Fλ(C)),

where the first colimit is taken in Modα(C ) and the second one is in the category
Ab of abelian groups.

The restricted Yoneda functor,

Sα : T −→ Modα(C ), Sα(X) = T (−, X)|C ,

preserves products and coproducts, takes exact triangles to exact sequences, and
reflects isomorphisms. If Add (C ) ⊂ T denotes the smallest subcategory closed un-
der coproducts and retracts containing C , then Sα induces an equivalence between
Add (C ) and the full subcategory of projective objets in Modα(C ). Moreover, if P
is in Add (C ) and X is in T , then Sα induces an isomorphism

T (P,X) ∼= Homα,C (Sα(P ), Sα(X)),

where Homα,C denotes the morphism sets in Modα(C ).
Notice that properties AROα and ARMα, defined in the introduction, translate

as follows for C = T α:

AROα The essential image of Sα is the class of cohomological functors in Modα(C ).
ARMα The functor Sα is full.

Denote pd(A) the projective dimension of an object A in an abelian category A .

Proposition 1.1. If Sα is full, then pd(Sα(X)) ≤ 1 for all X in T .

The proof of this proposition is essentially the same as the proof of [Nee97,
Lemma 4.1]. We will use the following elementary lemma.

Lemma 1.2. If X
f
→ Y → Z → ΣX is an exact triangle and f decomposes as

f =
(

f ′

0

)

: X → Y ′ ⊕ Y ′′ = Y , then this exact triangle is the direct sum of an exact
triangle

X
f ′

−→ Y ′ −→ Z ′ −→ ΣX

and 0 → Y ′′ 1
→ Y ′′ → 0. In particular Z ∼= Z ′ ⊕ Y ′′.

Proof of Proposition 1.1. Choose a projective presentation of Sα(X),

Sα(P1) −→ Sα(P0) ։ Sα(X).
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It comes from unique morphisms P1
p1
−→ P0

p0
−→ X with p0p1 = 0, therefore p0

factors through the mapping cone of p1 in an exact triangle

P1
p1 // P0

i //

p0

��

Y
q

//

p′
~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

ΣP1

X.

The universal property of a cokernel shows that Sα(i) factors through Sα(p0),

Sα(P1)
Sα(p1)

// Sα(P0)
Sα(i)

//

Sα(p0)
����

Sα(Y )
Sα(q)

//
::

φ, � ✉✉
✉✉
✉✉
✉✉
✉

Sα(ΣP1)

Sα(X).

Since Sα(p0) is an epimorphism and

Sα(p
′)φSα(p0) = Sα(p

′)Sα(i) = Sα(p
′i) = Sα(p0),

we deduce that Sα(p
′)φ = 1Sα(X). Using that the functor Sα is full, we can take

a morphism i′ : X → Y with φ = Sα(i
′). Hence, Sα(p

′)φ = Sα(p
′i′) = 1Sα(X) and,

since Sα reflects isomorphisms, p′i′ is an automorphism of X , so Y decomposes as
(i′, i′′) : X ⊕ Z ∼= Y for some Z and i′′. On the other hand, since the morphism
Sα(i) factors as Sα(i

′)Sα(p) and Sα(P0) is projective, i itself factors as i = i′p0,
i.e. i decomposes as i =

(

p0
0

)

: P0 → X ⊕ Z ∼= Y . Now, Lemma 1.2 shows that

P1
∼= P ′

1 ⊕ Σ−1Z and that there is an exact triangle

P ′
1 −→ P0

p0
−→ X −→ ΣP ′

1.

In particular, Sα(P
′
1) is projective. Since Sα(p0) is an epimorphism, the image

under Sα of the previous exact triangle produces a length 1 projective resolution
of Sα(X),

Sα(P
′
1) →֒ Sα(P0) ։ Sα(X).

�

We derive the following necessary condition for ARMα.

Corollary 1.3. If T satisfies ARMα, then pd(Sα(X)) ≤ 1 for all X in T .

2. An obstruction theory for the restricted Yoneda functor

In this section, we describe the formal properties of the obstruction theory devel-
oped in Section 6. We derive a sufficient condition for AROα (Corollary 2.13) and
necessary and sufficient conditions for ARMα (Corollary 2.5) and for the α-Adams
representability theorem (Corollary 2.15).

The following notion of exact sequence of categories generalizes [Bau89, Defini-
tion IV.4.10] by incorporating an obstruction κ to the lifting of objects.

Definition 2.1. Given an additive category B, a B-bimodule M is a biadditive
functor M : Bop × B → Ab. The canonical example is the bimodule defined by
morphism sets, that we denote B = B(−,−). As usual, we can change coefficients
along additive functors A → B, so B-bimodules become A -bimodules.
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An exact sequence of categories

M0

M2
ı // A

t // B
θ //

κ

OO

M1

consists of an additive functor t, three B-bimodules Mi, i = 0, 1, 2, an exact se-
quence

M2(t(X), t(Y ))
ıX,Y

// A (X,Y )
t // B(t(X), t(Y ))

θX,Y
// M1(t(X), t(Y ))

for any two objects X and Y in A , and an element

κ(B) ∈M0(B,B)

for any object B in B. The following conditions must be satisfied:

(1) For any morphism f : B → C in B,

f · κ(B) = κ(C) · f ∈M0(B,C).

(2) κ(B) = 0 if and only if there exists an object A in A with t(A) = B.

(3) Given objects X,Y, Z in A and morphisms t(X)
f
→ t(Y )

g
→ t(Z) in B,

θX,Z(gf) = θY,Z(g) · f + g · θX,Y (f) ∈M1(X,Z).

(4) For any object X in A and any e ∈M1(t(X), t(X)) there exists an object
X ′ = X + e in A with t(X) = t(X ′) and θX,X′(idt(X)) = e.

(5) ı is a morphism of A -bimodules.

We sometimes omit the subscripts from ı and θ so as not to overload notation.

In an exact sequence of categories, κ is a 0-dimensional element in Baues–
Wirsching cohomology of categories H0(B,M0), cf. [BW85]. Moreover, the rest
of the exact sequence is determined by a 1-dimensional and a 2-dimensional coho-
mology class, compare [Bau89, Chapter IV].

A triangulated category T is regarded as a graded category with graded mor-
phism sets

T
∗(X,Y ) =

⊕

n∈Z

T (X,ΣnY ).

Since C is closed under (de)suspensions, Σ admits an essentially unique exact exten-
sion to Modα(C ) compatible with the restricted Yoneda functor, i.e. the following
diagram commutes up to natural isomorphism:

T
Σ
∼

//

Sα

��

T

Sα

��

Modα(C )
Σ
∼

// Modα(C ).

The functor Σ endows Modα(C ) with the structure of a graded abelian category.
Graded morphism sets in Modα(C ) are defined as in T ,

Hom∗
α,C (M,N) =

⊕

n∈Z

Homα,C (M,ΣnN).

In a graded abelian category we also have graded Ext functors that we denote
Extp,qα,C , where p indicates the length of the extension, i.e. the pth derived functor
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of Homα,C , and q is the internal degree coming from the graded Hom∗
α,C . Notice

that Extp,qα,C is a Modα(C )-bimodule. We refer to [Str68] for additive and abelian
category theory in the graded setting.

The following theorem summarizes the main results of Section 6.

Theorem 2.2. There is a sequence of exact sequences of categories, n ≥ 0,

Extn+3,−1−n
α,C

Extn+1,−1−n
α,C

ın // Post≃n+1

tn // Post≃n
θn //

κn

OO

Extn+2,−1−n
α,C

with Post≃0 ≃ Modα(C ) and a full and essentially surjective functor

T −→ Post≃∞ = lim
n

Post≃n

such that the composite T → Post≃∞ → Post≃0 ≃ Modα(C ) is naturally isomorphic
to the restricted Yoneda functor Sα.

In Section 6 we omit the subscript n from ı, θ and κ. Under the hypotheses of
the following corollary all obstructions vanish since the recipient bimodules vanish.

Corollary 2.3. Under the standing assumptions:

(1) If F is an α-continuous C -module with pd(F ) ≤ 2, then F ∼= Sα(X) for
some X in T .

(2) If pd(Sα(X)) ≤ 1, then any morphism τ : Sα(X) → Sα(Y ) is τ = Sα(f)
for some f : X → Y in T .

Combining Corollary 2.3 with Proposition 1.1 we obtain the following results.

Corollary 2.4. The functor Sα is full if and only if its essential image consists of
the α-continuous C -modules F with pd(F ) ≤ 1.

Corollary 2.5. The category T satisfies ARMα if and only if pd(Sα(X)) ≤ 1 for
all X in T .

Remark 2.6. A different approach to the lifting of morphisms along the restricted
Yonead functor for α = ℵ0 is developed in [BK03].

We now list some examples of T and C 6= T α were it would be interesting to
apply the obstruction theory summarized in Theorem 2.2. In all cases α = ℵ0:

• T the stable module category of the group ring kG of a finite group G over
a field k and C the full subcategory of finite-dimensional k-vector spaces
with the trivial action of G. In this case, Modℵ0(C ) is equivalent to the
category ofH∗(G, k)-modules, whereH∗(G, k) is the Tate cohomology ring,
and the restricted Yoneda functor identifies with M 7→ H∗(G,M).

• T the homotopy category of modules over a ring spectrum R and C the
full subcategory spanned by free R-modules, i.e. finite coproducts of sus-
pensions of R. In this case, Modℵ0(C ) is the category of π∗(R)-modules
and the restricted Yoneda functor corresponds to M 7→ π∗(M).

• T the derived category of a differential graded algebra A and C the full
subcategory of free A-modules, i.e. finite coproducts of shifts of A. Here
Modℵ0(C ) is the category of H∗(A)-modules and the restricted Yoneda
functor identifies with M 7→ H∗(M)
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The first obstruction κ0 to the realizability of an object has been considered with
detail in these three cases, see [BKS04, Sag08, GH08] respectively. Indeed, [BKS04]
is where the obstructions κn to the realizability of objects were first treated sys-
tematically.

We now consider α-flat objects and their connection with α-Adams represen-
tability.

Definition 2.7. Let A be a cocomplete abelian category. An α-flat object A in A

is an α-filtered colimit of α-presentable projective objects A = colimλ∈Λ Pλ. The
α-flat global dimension of A is

fgdα(A ) = sup{pd(A) | A is α-flat}.

Remark 2.8. An α-flat object A = colimλ∈Λ Pλ has a canonical projective resolution
of the form

· · · →
⊕

λ→µ→ν∈Λ

Pλ −→
⊕

λ→µ∈Λ

Pλ −→
⊕

λ∈Λ

Pλ ։ A.

These direct sums are indexed by the simplices of the nerve NΛ of the category Λ
indexing the colimit, i.e. for each n, NnΛ = {chains of n composable maps in Λ}.
In particular, for any other object B in A the higher Ext’s

ExtnA (A,B) = lim
λ∈Λ

nHomA (Pλ, B)

are the derived functors of the inverse limit.

Remark 2.9. In Modα(T
α), the α-flat objects coincide with the cohomological

functors, cf. [Nee01b, Section 7.2].

The α-flat global dimension of C can be bounded above if the cardinal of C is
not too large.

Definition 2.10. The cardinal of a small category C is

cardC = card
∐

x,y∈S

C (x, y),

where S is a set of isomorphism classes of objects in C .

Lemma 2.11. If C is a non-trivial additive category with coproducts of less than
α objects, then cardC ≥ α.

Proof. If X 6= 0 the identity in X is non-trivial, so cardC (X,X) ≥ 2. For β < α,

C (
∐

β

X,X) =
∏

β

C (X,X), card
∏

β

C (X,X) ≥ 2β.

Hence, cardC ≥ supβ<α 2
β . We now distinguish two cases, if α = γ+ is a successor,

then supβ<α 2
β = 2γ ≥ γ+ = α, and, if α is a limit cardinal, then supβ<α 2

β ≥
supβ<α β = α. �

In Section 8 we show, under the generalized continuum hypothesis, that there is
always a large enough cardinal α such that cardT α = α.

By Lemma 2.11, the hypothesis of the following proposition can only be satisfied
if α ≤ ℵn.

Proposition 2.12. If cardC ≤ ℵn, then fgdα(Modα(C )) ≤ n+ 1.
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Proof. The full inclusion Modα(C ) ⊂ Modℵ0(C ) preserves α-filtered colimits. The
α-presentable projective objects in Modα(C ) are the retracts of the representable
functors C (−, X), which also coincide with the ℵ0-presentable objects in Modℵ0(C ).
Therefore α-flat objects in Modα(C ) are also α-flat in Modℵ0(C ), in particular
ℵ0-flat. Moreover, by Remark 2.8, if F is an α-continuous C -module and H =
colimλ∈Λ Pλ is an α-flat α-continuous C -module, then

Extnα,C (H,F ) = lim
λ∈Λ

nHomα,C (Pλ, F ) = lim
λ∈Λ

nHomℵ0,C (Pλ, F ) = Extnℵ0,C (H,F ).

This is proven in [Nee01b, Proposition 7.5.5] assuming that C is triangulated, but
this hypothesis is not really used. If cardC ≤ ℵn, then any ℵ0-flat ℵ0-continuous
C -module has projective dimension ≤ n + 1 in Modℵ0(C ), see [Sim77, Corollary
3.13]. Hence the proposition follows from the previous equation. �

We now concentrate in the case C = T α. The following sufficient condition for
AROα follows from Corollary 2.3 and Remark 2.9.

Corollary 2.13. If fgdα(Modα(T
α)) ≤ 2 , then T satisfies AROα.

For the following corollary we also use Proposition 2.12. The restrictions on the
cardinal α are imposed by Lemma 2.11.

Corollary 2.14. Let α be ℵ0 or ℵ1. If cardT α ≤ ℵ1, then T satisfies AROα.

The following homological characterization of α-Adams representability is a con-
sequence of Corollaries 2.4 and 2.13 and Remark 2.9.

Corollary 2.15. A triangulated category T satisfies α-Adams representability if
and only if fgdα(Modα(T

α)) ≤ 1.

Using Proposition 2.12, we obtain Neeman’s sufficient condition for ℵ0-Adams
representability, cf. [Nee97].

Corollary 2.16. If cardT ℵ0 ≤ ℵ0, then T satisfies ℵ0-Adams representability.

Remark 2.17. In the case α = ℵ0, Beligiannis proves in [Bel00, Theorem 11.8] that
T satisfies ARMℵ0 if and only if fgdℵ0

(Modℵ0(T
ℵ0)) ≤ 1. Thus, by Corollary 2.15,

ARMℵ0 implies AROℵ0 .
A crucial step in his proof if that, since Modℵ0(T

ℵ0) is a Grothendieck cate-
gory, it follows from [Sim77, Theorem 2.7] that fgdℵ0

(Modℵ0(T
ℵ0)) = sup{pd(A) |

A is α-flat and pd(A) <∞}.
The fact that Modℵ0(T

ℵ0) is Grothendieck is used in order to apply (in each step
of an inductive argument) the Auslander Lemma: If X =

⋃

i∈I Xi, where {Xi}i∈I
well ordered by inclusion, and pd(Xi+1/Xi) ≤ k, then pd(X) ≤ k. However, for
α > ℵ0, Modα(T

α) need not be a Grothendieck category because filtered colimits
need not be exact, only α-filtered colimits are exact. In fact, Modα(T

α) can fail
to have enough injectives, cf. [Nee01b, Section C.4]. The authors have proved an
analog of the Auslander Lemma that applies to Modℵn

(T ℵn) (to be published
elsewhere). However, it does not help in extending Beligiannis’ result for larger
cardinals, since, in the analog hypotheses of the Auslander Lemma above, we obtain
pd(X) ≤ k + n, which hampers the inductive argument.

Using a completely different approach, we will extend Beligiannis’ result to the
case T = D(R) for a hereditary ring R and any α, see Theorem 3.3 and Corollary
3.16.
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3. Transfinite Adams representability in the derived category of a
ring

In this section we consider AROα and ARMα for the derived category D(R) of
an α-coherent ring R. The main result is Theorem 3.3, which gives a necessary
condition for ARMα, and also necessary and sufficient conditions for both AROα
and ARMα if R is hereditary. We also prove AROℵ1 for rings of cardinality ≤ ℵ1

under the continuum hypothesis (Proposition 3.7). All modules considered in this
section are right modules.

Definition 3.1. Let R be a ring and α a regular cardinal. An R-module is
α-generated if it has a set of generators of cardinal < α, it is α-presentable if
it is the quotient of two α-generated modules. The ring R is α-coherent if all
α-generated modules are α-presentable. It is enough to check this condition on
ideals, cf. [JL89, Chapter 7].

Remark 3.2. Alternatively, an R-module P is α-presentable if it admits a free
presentation

⊕

J

R −→
⊕

I

R ։ P

with card I, cardJ < α. Any α-presentable R-module is α-generated. The converse
is true for projective R-modules.

If cardR < α, then R is α-coherent, cf. [Mur11, Lemma 19]. Moreover, heredi-
tary rings are α-coherent for all α since ideals are projective.

We now state the main result of this section. We make use of the α-pure global
dimension of a ring pgdα(R) as it was defined in the introduction, cf. [JL89, Chap-
ter 7], although below we give a more general definition for abelian categories.

Theorem 3.3. Let R be an α-coherent ring, α > ℵ0. If D(R) satisfies ARMα,
then pgdα(R) ≤ 1. Moreover, if R is hereditary, then

(1) AROα for D(R) ⇔ pgdα(R) ≤ 2, and
(2) ARMα for D(R) ⇔ pgdα(R) ≤ 1.

We prove Theorem 3.3 at the end of this section. The version for α = ℵ0, proved
in [CKN01, Theorem 2.13], also requires that finitely presented R-modules have
finite projective dimension, which is of course true for R hereditary.

Example 3.4. A consequence of Theorem 3.3 is that ARMα is not satisfied for the
derived category of α-coherent rings R such that pgdα(R) > 1. Hence we can use
computations of lower bounds to α-pure projective dimensions in [BL82], [BG12],
and [BŠ13] to show that ARMα is not satisfied for rings R and regular cardinals α
as indicated.

(1) R = Z for α > ℵ0.
(2) Let k be an uncountable field and α any regular cardinal or k a countable

field and α > ℵ0.
(a) R = k[x, y].
(b) R the path algebra of a finite quiver without oriented cycles which is

not a Dynkin quiver.
(3) R = k[[x, y]] for any field k and any regular cardinal α.
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Remark 3.5. It is well known that a ring R has pgdα(R) = 0 for some α if and
only if pgdℵ0

(R) = 0, see [JL89, Theorem 8.4]. These rings are called (right) pure-
semisimple. Rings of finite representation type are (two-sided) pure-semisimple
[JL89, Theorem 8.8]. If R is hereditary and pure-semisimple, e.g. the path algebra
of a Dynkin quiver, then D(R) satisifes ARMα for all α ≥ ℵ0. So far we do not
know of any ring R with pgdα(R) = 1 for some α > ℵ0.

Remark 3.6. The most important open problem concerning α-Adams representabil-
ity for derived categories of rings is the following:

• Is there any ring R and any α > ℵ0 for which D(R) does not satisfy AROα?

Our feeling is that the situation should be similar to ARMα, i.e. there should be
rings which do not satisfy AROα for any α > ℵ0, even for any α. By Theorem 3.3,
it would be enough to find a hereditary ring with pgdα(R) > 2. So far, there are no
known computations of pgdα(R) for uncountable α, except from what is mentioned
in Example 3.4 and in the Remark 3.5. We now obtain upper bounds under the
(generalized) continuum hypothesis.

The following result proves AROℵ1 for rings of cardinality ≤ ℵ1 under the con-
tinuum hypothesis. The proof is given after some preliminary considerations.

Proposition 3.7. Let α be an inaccessible cardinal or α = β+ = 2β. If R is a ring
of cardR ≤ α, then cardD(R)α ≤ α. In particular, if cardR ≤ ℵn = 2ℵn−1 then
pgdℵn

(R) ≤ n. Moreover, if cardR ≤ ℵ1 and the continuum hypothesis holds then
pgdℵ1

(R) ≤ 1 and D(R) satisfies AROℵ1 .

Remark 3.8. Recall from Example 3.4 that for the following rings R, pgdℵ1
(R) > 1.

(1) R = Z.
(2) Let k be a field of cardk ≤ ℵ1.

(a) R = k[x, y].
(b) R the path algebra of a finite quiver without oriented cycles which is

not a Dynkin quiver.
(3) R = k[[x, y]] for a countable field k and any regular cardinal α.

The las part of Proposition 3.7 applies to these rings, therefore, under the continuum
hypothesis, pgdℵ1

(R) = 2 and D(R) satisfies AROℵ1 .

Moreover, 1 < pgdℵn
(R) ≤ n + 1 if 2ℵn−1 = ℵn, but the explicit computation

of pgdα(R) for α > ℵ1 remains an open problem. It is not known if there is a
lower bound better than > 1 or if one can compute pgdℵn

(R) without assumptions
related to the (generalized) continuum hypothesis.

Definition 3.9. Let α be a regular cardinal and A a locally α-presentable abelian
category with exact α-filtered colimits and a set of α-presentable projective gener-
ators. A short exact sequence A →֒ B ։ C is α-pure if

A (P,A) →֒ A (P,B) ։ A (P,C)

is shot exact for any α-presentable object P , or equivalently, if it is an α-filtered
colimit of split short exact sequences.

A sequence · · · → An+1 → An
dn→ An−1 → · · · in A is α-pure exact if it is exact

and Ker dn →֒ An ։ Im dn is α-pure for all n ∈ Z.
An object Q in A is α-pure projective if HomR(Q,−) takes α-pure exact se-

quences to exact sequences, this is equivalent to say that Q is a retract of a direct
sum of α-presentables.
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The notions of α-pure projective resolution, α-pure projective dimension ppdα(A)
of an object A in A , etc. are defined in the obvious way. The α-pure global dimen-
sion of A is denoted by

pgdα(A ) = sup{ppdα(A) | A in A }.

If A = Mod(R) is the category of modules over a ring R we abbreviate pgdα(R) =
pgdα(Mod(R)).

Given A and B in A , the α-pure extension groups

PExtnα,A (A,B)

are defined as the cohomology of an α-pure projective resolution of A with coeffi-
cients in B.

Remark 3.10. Any object A in A is an α-filtered colimit of α-presentable objects
A = colimλ∈Λ Pλ, hence the construction in Remark 2.8 yields an α-pure projective
resolution of A, in particular

PExtnα,A (A,B) = lim
λ∈Λ

nHomA (Pλ, B).

If A is α-flat we can take Pλ projective for all λ ∈ Λ and the projective resolution
of A in Remark 2.8 is also α-pure, so PExtnα,A (A,B) = ExtnA (A,B) in this case.
This proves that

fgdα(A ) ≤ pgdα(A ).

For an arbitrary object A, the spectral sequence for the composition of functors
HomA (A,B) = HomA (colimλ∈Λ Pλ, B) = limλ∈Λ HomA (Pλ, B) is of the form

Ep,q2 = lim
λ∈Λ

p Extq
A
(Pλ, B) =⇒ Extp+q

A
(A,B).

The comparison homomorphism between α-pure and ordinary extensions groups is
part of this spectral sequence,

PExtnα,A (A,B) = En,02 ։ En,0∞ ⊂ ExtnA (A,B).

Lemma 3.11. Any short exact sequence A →֒ B ։ C where C is α-flat is α-pure.

Proof. Since C = colimλ∈Λ Pλ is an α-filtered colimit of α-presentable projective
objects, taking pullback along the canonical morphisms Pλ → C

A � � // Qλ // //

��

pull

Pλ

��

A � � // B // // C

we can express the short exact sequence below as an α-filtered colimit

colim
λ∈Λ

(A →֒ Qλ ։ Pλ)

of short exact sequences which split since Pλ is projective. �

The following lemma admits the same proof than [Mur11, Theorem 20]. There,
it is assumed that R is right noetherian or cardR < α but actually only α-coherence
is used.

Lemma 3.12. Let R be an α-coherent ring for some α > ℵ0. A complex X in
D(R) is α-compact if and only if Hn(X) is an α-generated R-module for all n ∈ Z.

Lemma 3.13. Let R be an α-coherent ring, α > ℵ0.
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(1) The functor H0 : Modα(D(R)α) → Mod(R) defined as H0(F ) = F (R) takes
projective objects to α-pure projective R-modules and preserves α-filtered
colimits and α-pure exact sequences.

(2) The functor y : Mod(R) ⊂ D(R)
Sα−→ Modα(D(R)α) takes α-pure projective

R-modules to projective objects and preserves α-filtered colimits and α-pure
exact sequences.

Proof. If X is in D(R)α, then H0Sα(X) = Sα(X)(R) = D(X)(R,X) = H0(R),
which is α-presentable by the Lemma 3.13, hence H0 takes projective objects to
α-pure projective R-modules. In Modα(D(R)α), α-filtered colimits are computed
pointwise hence H0 preserves these colimits. Since H0 preserves split short exact
sequences and α-filtered colimits, we deduce that it also preserves α-pure short
(exact) sequences. This finishes the proof of (1).

If M is an α-presentable R-module, then M is α-compact in D(R) by Lemma
3.12, so Sα(M) is projective in Modα(D(R)α). It follows that y takes α-pure
projective R-modules to projective objects.

Let M = colimλ∈ΛMλ be an α-filtered colimit of R-modules. Denote S ⊂ T

the full subcategory of objects X such that the natural morphism

(colim
λ∈Λ

Sα(Mλ))(X) = colim
λ∈Λ

T (X,Mλ) −→ T (X, colim
λ∈Λ

Mλ) = (Sα(M))(X)

is an isomorphism. The category S contains ΣnR, n ∈ Z. Indeed, for n 6= 0 this
morphism is 0 → 0 and for n = 0 it is the identity colimλ∈ΛMλ → colimλ∈ΛMλ.
The category of abelian groups is locally finitely presentable, hence α-filtered col-
imits commute with products of less than α objects. This shows that S is closed
under coproducts of less than α objects. The category S is also closed under exact
triangles by the five lemma. Therefore S = D(R)α and hence y preserves α-filtered
colimits.

Any α-pure short exact sequence of R-modules is an α-filtered colimit of split
ones. Since y preserves split short exact sequences and α-filtered colimits we deduce
that y preserves α-pure (short) exact sequences. This concludes the proof of (2). �

Corollary 3.14. Given an α-coherent ring R, α > ℵ0, and an R-module M =
colimλ Pλ expressed as an α-filtered colimit of α-presentable R-modules Pλ,

Extnα,C (Sα(M), F ) = lim
λ∈Λ

nF (Pλ).

In particular, for F = Sα(Σ
jN), j ∈ Z,

Extnα,C (Sα(M), Sα(Σ
jN)) = lim

λ∈Λ

n ExtjR(Pλ, N).

Proof. Take the α-pure projective resolution ofM in Remark 3.10. Applying Sα we
obtain a projective resolution of Sα(M) by Lemma 3.13 (2). Using this resolution
to compute Extnα,C (Sα(M), F ) we obtain the equation in the statement. �

Proposition 3.15. Given an α-coherent ring R, α > ℵ0, if H is a cohomolog-
ical functor in Modα(D(R)α), then ppdα(H(R)) ≤ pd(H). Moreover, for any
R-module M , ppdα(M) = pd(Sα(M)).

Proof. By Remark 2.9 and Lemma 3.11, any projective resolution of H is also an
α-pure projective resolution, hence Lemma 3.13 (1) proves the first part. Since
Sα(M)(R) = M , this also proves ppdα(M) ≤ pd(Sα(M)). The other inequality
follows from Lemma 3.13 (2). �
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Corollary 3.16. If R is an α-coherent ring, then α > ℵ0, then

pgdα(R) ≤ fgdα(Modα(D(R)α)).

Moreover, if R is hereditary and fgdα(Modα(D(R)α)) ≤ 2, then the equality holds
fgdα(Modα(D(R)α)) = pgdα(R).

Proof. The first part follows directly from Proposition 3.15. By Corollary 2.13, if
fgdα(Modα(D(R)α)) ≤ 2, then every α-flat object is representable and the result
follows from Proposition 3.15 and the fact that, if R is hereditary, then any complex
X splits as X ∼=

⊕

n∈Z
ΣnHn(X). �

We can now prove Proposition 3.7.

Proof of Proposition 3.7. Let S be the set of K-projective complexes formed by
free R-modules of the form

⊕

i∈I R with card I < α. By [Mur11, Theorem 15], any
α-compact complex in D(R) is isomorphic to an object in S. The morphism set
between two of those free R-modules

HomR(
⊕

i∈I

R,
⊕

j∈J

R) ∼=
∏

i∈I

HomR(R,
⊕

j∈J

R) ∼=
∏

i∈I

⊕

j∈J

HomR(R,R) ∼=
∏

i∈I

⊕

j∈J

R

has cardinal ≤ αcard I , and, under our assumptions, αcard I ≤ α, compare [Jec03,
Theorem 5.20]. This shows that cardS ≤ α, and moreover that the set of chain
maps between two objects X and Y in S has cardinal ≤ α. Since D(R)(X,Y ) is
the quotient of the set of chain maps by the homotopy relation, we deduce that
cardD(R)α ≤ α.

For the last part of the statement we use Proposition 2.12 and Corollaries 2.14
and 3.16. �

The following result gives a necessary condition for the representability of co-
homological functors in Modα(D(R)α) which fit into an extension of restricted
representables.

Lemma 3.17. Let M and N be R-modules and Sα(Σ
jN)

a
→֒ F

b
։ Sα(M) an

extension in Modα(D(R)α), j > 0, classified by an element

eF ∈ Ext1α,D(R)α(Sα(M), Sα(Σ
jN)) = lim

λ

1 ExtjR(Pλ, N) = E1,j
2 .

Here M = colimλ∈Λ Pλ is an α-filtered colimit of α-presentable R-modules. If
F = Sα(X) for some X in D(R), then the second differential of the spectral sequence
in Remark 3.10 maps eF to zero,

d2 : E
1,j
2 −→ E3,j−1

2 , d2(eF ) = 0.

Proof. The spectral sequence in Remark 3.10 identifies with the Adams spectral
sequence in Section 6.8 below abutting to D(R)(M,ΣjN) = ExtjR(M,N) via the
second equation in Corollary 3.14. Hence, the statement follows from Theorem 7.1
and the fact that the following morphism is injective for p = 3 and q = −1,

Extp,qα,D(R)α(Sα(M), Sα(Σ
jN)) −→ Extp,qα,D(R)α(F, F ),(3.18)

x 7→ a · x · b.

We show that it is injective for p ≥ 0 and q < 0. Indeed, this morphism decomposes
as

Extp,qα,D(R)α(Sα(M), Sα(Σ
jN))

a·−
−→ Extp,qα,D(R)α(Sα(M), F )

−·b
−→ Extp,qα,D(R)α(F, F ).
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The kernel of the first arrow is the image of a morphism from

Extp−1,q
α,D(R)α(Sα(M), Sα(M)) = lim

λ

p−1 ExtqR(Mλ,M) = 0,

which vanishes since q < 0. The kernel of the second arrow is the image of a
morphism from the middle term of the following exact sequence

Extp−1,q
α,D(R)α(Sα(Σ

jN), Sα(Σ
jN))

↓

Extp−1,q
α,D(R)α(Sα(Σ

jN), F )

↓

Extp−1,q
α,D(R)α(Sα(Σ

jN), Sα(M))

which vanishes since

Extp−1,q
α,D(R)α(Sα(Σ

jN), Sα(Σ
jN)) = Extp−1,q

α,D(R)α(Sα(N), Sα(N))

= lim
λ

p−1 ExtqR(Nλ, N) = 0,

Extp−1,q
α,D(R)α(Sα(Σ

jN), Sα(M)) = Extp−1,q
α,D(R)α(Sα(N), Sα(Σ

−jM))

= lim
λ

p−1 Extq−jR (Nλ,M) = 0.

Here we use that q < 0 < J . �

As a consequence, we obtain a sufficient condition for the existence of non-
representable cohomological functors in Modα(D(R)α).

Proposition 3.19. Let R be an α-coherent ring. If there is an R-module N with
injective dimension ≤ 1 but PExtnα,R(M,N) 6= 0 for some R-module M and some
n ≥ 3, then AROα fails for D(R).

Proof. If n > 3 we can take an α-pure short exact sequence M ′ →֒ P ։ M with
α-pure projective P , so PExtnα,R(M,N) ∼= PExtn−1

α,R (M ′, N), hence we may assume
that n = 3.

By Lema 3.17 it is enough to show that d2 : E
1,1
2 → E3,0

2 is non-trivial. The target

is non-trivial E3,0
2 = PExt3α,R(M,N) 6= 0. By degree reasons, there are no non-

trivial differentials out of E3,0
n , hence E3,0

2 surjects onto E3,0
∞ ⊂ Ext3R(M,N) = 0.

Therefore, all elements in E3,0
2 must be in the image of an incoming differential.

Since E0,2
2 = limλ Ext

2(Pλ, N) = 0, then E0,2
3 = 0 and the only possibly non-trivial

incoming differential is d2 : E
1,1
2 → E3,0

2 , which must be surjective. �

We finally prove Theorem 3.3.

Proof of Theorem 3.3. The first part of the statement follows from Corollary 1.3
and Proposition 3.15. If R is hereditary, any complex X splits as a direct sum of its
shifted homologies X ∼=

⊕

n∈Z
ΣnHn(X). Therefore, on the one hand, (2) follows

from Corollary 2.5 and Proposition 3.15, and on the other hand (1) is an immediate
consequence of Corollaries 2.13 and 3.16 and Proposition 3.19. �
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4. On ℵ1-Adams representability for objects and the continuum
hypothesis

We already know by Corollary 2.14 that if T is an ℵ1-compactly generated
triangulated category with cardT ℵ1 = ℵ1, then T satisfies AROℵ1 . We have
applied this result to derived categories of rings (Proposition 3.7). In this section,
we give further examples assuming the continuum hypothesis.

4.1. Stable homotopy category of spectra. The stable homotopy category of
spectra T = Ho(Sp) is ℵ0-compactly generated and Ho(Sp)ℵ0 ≤ ℵ0 < ℵ1. Then
Ho(Sp)ℵ1 = ℵ1 by Corollary 8.5.

4.2. Homotopy category of projectives modules. Let T = K(Proj-R) be
the homotopy category of complexes of projective (right) modules over a ring R of
cardR ≤ ℵ1. This category is often not ℵ0-compactly generated, but it is always
ℵ1-compactly generated, cf. [Nee08].

Proposition 4.1. Under the continuum hypothesis cardK(Proj-R)ℵ1 ≤ ℵ1.

Proof. By [Nee08, Theorem 5.9], a complex of projective R-modules is ℵ1-compact
in K(Proj-R) if and only if it is isomorphic in K(R-Proj) to a complex of free
R-modules with < ℵ1 generators. Since we are assuming the continuum hypothesis
and cardR ≤ ℵ1, we can proceed exactly as in the proof of Proposition 3.7. �

4.3. Homotopy category of injectives modules. Let R be a right noetherian
ring of cardR ≤ ℵ1. The homotopy category T = K(Inj-R) of injective (right)
R-modules is ℵ0-compactly generated [Kra05].

Proposition 4.2. Under the continuum hypothesis cardK(Inj-R)ℵ0 ≤ ℵ1.

Proof. By [Kra05], K(Inj-R)ℵ0 is equivalent to the derived category Db(mod(R))
of bounded complexes of finitely presentable R-modules. Since R is right noether-
ian, Db(mod(R)) is equivalent to the full subcategory of K(Proj-R)ℵ0 spanned
by bounded below complexes of finitely presentable projective R-modules with
bounded cohomology. Now proceed as in the proof of Proposition 3.7. �

4.4. Derived category of sheaves on a non-compact manifold. Let M be a
connected paracompact manifold and D(Sh/M) the derived category of the abelian
category Sh/M of sheaves of abelian groups overM . Neeman [Nee01a] proved that
if M is non-compact, connected and dimM ≥ 1, then D(Sh/M) has no non-zero
compact object, so it cannot be ℵ0-compactly generated.

Proposition 4.3. The category D(Sh/M) is ℵ1-compactly generated and, under
the continuum hypothesis, cardD(Sh/M)ℵ1 ≤ ℵ1.

Proof. Since M is paracompact, we can take a countable basis {Ui}i∈I of open
sets of M such that Ui ∩ Uj is contractible for all i, j ∈ I, e.g. put a Riemannian
metric on M and take a countable basis of geodesically convex balls. By [Gro57,
Section 1.9], a set of generators of Sh/M is given by {ZUi

}i∈I , where ZUi
is the

extension by zero of the constant sheaf Z on Ui. Let R be the full subcategory of
Sh/M spanned by these sheaves. It has countably many objects. Moreover, since
each Uj is connected, the monomorphisms ZUi

→ ZM show that Hom(ZUj
,ZUi

) =
ZUi

(Uj) ⊂ ZM (Uj) = {locally constant maps Uj → Z} = Z is countable for all
i, j ∈ I.
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The countable category R can be regarded as a ring with several objects. The
derived category D(Sh/M) is a Bousfield localization D(Sh/M) = D(R)/LSh/M

[AJS00, Proposition 5.1]. Since cardR < ℵ1, the many object version of [Mur11,
Theorem 20] proves that the generators of the localizing subcategory LSh/M de-
scribed in the proof of [AJS00, Proposition 5.1] are ℵ1-compact. Hence D(Sh/M)
is ℵ1-compactly generated by [Nee01b, Theorem 4.4.9], and the subcategory of

ℵ1-compact objects is D(Sh/M)ℵ1 = D(R)ℵ1/L ℵ1

Sh/M .

Now, let us assume the continuum hypothesis. The many objects version of
Proposition 3.7 shows that cardD(R)ℵ1 ≤ ℵ1, and the explicit description of the

Verdier quotient D(Sh/M)ℵ1 = D(R)ℵ1/L ℵ1

Sh/M proves that cardD(Sh/M)ℵ1 ≤ ℵ1

too. �

4.5. Stable motivic homotopy category. Let S be a noetherian scheme of fi-
nite Krull dimension. The stable motivic homotopy category SH(S) of Morel and
Voevodsky is a compactly generated triangulated category which intuitively models
a homotopy theory of schemes over S where the affine line A1 plays the role of the
unit interval in classical homotopy theory. In practice, we start with the category
Sm/S of smooth schemes of finite type over S endowed with the Nisnevich topology.
We perform two left Bousfield localizations on the category of simplicial presheaves
on Sm/S, one to turn homotopy sheaves into weak equivalences and another one to
contract the affine line A1. Then we consider spectra with respect to the suspension
functor defined by smashing with the projective line P1 ≃ S1 ∧ (A1 − 0) pointed at
∞. This yields a stable model category whose homotopy category is SH(S).

It was stated in [Voe98, Proposition 5.5] and proved in [NS11, Theorem 13] that if
S can be covered by spectra of countable rings, then cardSH(S)ℵ0 ≤ ℵ0 < ℵ1, hence
under the continuum hypothesis cardSH(S)ℵ1 ≤ ℵ1, see Corollary 8.5. The results
in [NS11] extend straightforwardly to show that, if S can be converted by spectra
of rings of cardinal ≤ ℵ1, then cardSH(S)ℵ0 ≤ ℵ1. Therefore cardSH(S)ℵ1 ≤ ℵ1

under the continuum hypothesis, again by Corollary 8.5.

5. Neeman’s conjecture on Rosický functors

The following definition is due to Neeman [Nee09, Definition 1.19].

Definition 5.1. Let T be a triangulated category with (co)products. A Rosický
functor is a functor H : T → A to an abelian category with (co)products which
takes exact triangles to exact sequences, is full, reflects isomorphisms, preserves
(co)products, and there is a small full subcategory P ⊂ T closed under (de)susp-
ensions, formed by α-small objects in T , and such that {H(P ) | P ∈ ObP}
is a set of projective generators of A and H induces a bijection T (P,X) ∼=
A (H(P ), H(X)) whenever P is in P.

Under the standing assumptions of Section 1, the restricted Yoneda functor Sα
satisfies all properties of a Rosický functor except for being full, the subcategory C

consists of representable functors. Moreover, if C = T α, Sα is a Rosický functor if
and only if ARMα holds.

Neeman conjectured that a triangulated category has a Rosický functor if and
only if it is well generated. It is easy to see that, if T has a Rosický functor, then
it is well generated, we give a proof, first discovered by Rosický, in this section.
Neeman’s conjecture is still open in the other direction. A consequence of Corollary
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5.3 is that it is enough to look for Rosický functors of the form Sα for an appropriate
C . Example 3.4 shows that we cannot always take C = T α for some α, which was
the experts’ first guess. Nevertheless, it is still an open question whether categories
such as D(k[[x, y]]) possess a Rosický functor.

Proposition 5.2. Let T be a triangulated category with coproducts. If there exists
H : T → A be a Rosický functor, then the category T is well generated. More-
over, if C is the completion of P by coproducts of < α objects, then C satisfies
assumptions (1–3) in Section 1 and Sα factors as

Sα : T
H
−→ A

i
−→ Modα(C ),

where i is fully faithful and exact.

Proof. Let us first show that T is well generated. This fact was first discovered
by Rosický (unpublised). We follow Krause’s criterion saying that a triangulated
category is well generated if and only if it satisfies conditions (G1–G3), cf. [Kra01].
The set of objects of P clearly satisfies (G1) and (G3). We now check (G2). Let
{fi : Xi → Yi}i∈I be a set of morphisms in T such that T (P, fi) is an epimorphism
for all i ∈ I and P in P. Since T (P, fi) = A (H(P ), H(fi)) and the objects
H(P ) form a set of projective generators, H(fi) is an epimorphism in A for all
i ∈ I. In an abelian category, a coproduct of epimorphisms is an epimorphism.
Since H preserves coproducts we deduce that H(

∐

i∈I fi) is an epimorphism, hence,
T (P,

∐

i∈I fi) = A (H(P ), H(
∐

i∈I fi)) is surjective for all P in P. This proves
(G2). By Krause’s criterion we also know that P ⊂ T α, therefore C satisfies (1–3)
in Section 1.

The functor i is defined by i(A) = A (H(−), A). This C -module is α-continuous
since H preserves coproducts. The properties of Rosický functors show that H
induces an equivalence between C and its full image in A . Hence {H(C) | C ∈
ObC } is also a set of projective generators of A and i is fully faithful. The
composite iH is naturally isomorphic to Sα since for anyX in T and any coproduct
∐

i∈I Pi with Pi in P and card I < α,

Sα(X)(
∐

i∈I

Pi) = T (
∐

i∈I

Pi, X) =
∏

i∈I

T (Pi, X)
H
∼=
∏

i∈I

A (H(Pi), H(X))

= A (
⊕

i∈I

H(Pi), H(X)) = A (H(
∐

i∈I

Pi), H(X)) = iH(X)(
∐

i∈I

Pi).

�

Corollary 5.3. A triangulated category T admits a Rosický functor if and only if
it is well generated and Sα is full for some C ⊂ T satisfying (1–3) in Section 1.

Recall that Corollary 2.4 gives us a criterion for the restricted Yoneda functor
Sα to be full.

Remark 5.4. Let Q be a quiver without oriented cycles, k an uncountable field,
kQ its path algebra over k, which is hereditary, and α any regular cardinal. As we
showed in Example 3.4, for T = D(kQ) and C = T α the functor Sα is never a
Rosický functor. Nevertheless, if R is any hereditary ring, the homology functor
H∗ : D(R) → Mod(R)Z to the category of Z-graded R-modules is a Rosický functor
for P the full subcategory spanned by {ΣnR}n∈Z, here α = ℵ0.
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These are only known Rosický functors different from the restricted Yoneda func-
tor Sα with C = T α for T a category satisfying ARMα. Triangulated categories
possessing a Rosický functor satisfy further properties of interest, e.g. the Brown
representability theorem for the dual, see [Nee09]. Hence it would be interesting to
know if there are more kinds of Rosický functors.

6. Obstruction theory in triangulated categories

Recall that we are under the standing assumptions of Section 1. In diagrams,
the degree of a homogeneous morphism in T or Modα(C ) is indicated by a label
in the arrow, e.g.

X
f

+n
// Y

is a morphism f : X → ΣnY . We mostly consider homogeneous morphisms. We do
not explicitly indicate the degree when it is 0, when it is understood, or when it is
irrelevant. Hence an exact triangle X → Y → Z → ΣX in T looks like

X
f

// Y

i��⑧⑧
⑧⑧
⑧

Z.
q

+1
__❄❄❄❄❄

6.1. Phantom maps and cellular objects.

Definition 6.1. A morphism f : X → Y in T is a phantom map if Sα(f) = 0.
Moreover, f is an n-phantom map if it decomposes as a product of n ordinary
phantom maps, i.e. f = f1 · · · fn with fi phantom, 1 ≤ i ≤ n. An ∞-phantom map
is a morphism f which is an n-phantom map for all n > 0.

The following result is a consequence of the fact that Sα takes exact triangles to
exact sequences.

Lemma 6.2. In an exact triangle

X
f

// Y

i��⑧⑧
⑧⑧
⑧

Z
q

__❄❄❄❄❄

where we deliberately do not specify which morphism is of degree +1, the following
statements are equivalent:

• f is a phantom map.
• Sα(i) is a monomorphism.
• Sα(q) is an epimorphism.

• Sα(Y )
Sα(i)
→֒ Sα(Z)

Sα(q)
։ Sα(X) is a short exact sequence.

Remark 6.3. Phantom maps form an ideal I ⊂ T and n-phantom maps form

its nth power ideal, I n = I
n
· · · I ⊂ T . Moreover, ∞-phantom maps are the

intersection ideal

I
∞ =

⋂

n>0

I
n ⊂ T .
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Definition 6.4. A 0-cellular object is a trivial object in T . Moreover, X is
n-cellular for n > 0 if it is a retract of an object X ′ fitting into an exact triangle

P // Y

��⑧⑧
⑧⑧
⑧

X ′
+1

__❄❄❄❄❄

where Y is (n− 1)-cellular and P is in Add (C ).

Proposition 6.5. Let 1 ≤ n ≤ ∞. A morphism f : X → Y in T is an n-phantom
map if and only if for any morphism g : Z → X from an n-cellular object Z we
have fg = 0. Moreover, Z is an n-cellular object if and only if for any morphism
g : Z → X and any n-phantom map f : X → Y we have fg = 0.

Since C is essentially small, (Add (C ),I ) is a projective class by [Chr98, Lemma
3.2], hence Proposition 6.5 follows from [Chr98, Theorem 3.5].

6.2. Adams and Postnikov resolutions. Adams resolutions go back to Adams’
construction of the spectral sequence that bears his name. The definition below is
due to Christensen, cf. [Chr98].

Definition 6.6. An Adams resolution (X,W∗, P∗) of an object X in T is a count-
able sequence of exact triangles

X
j0 // W0

+1

r0

��⑧⑧
⑧⑧
⑧

j1 // W1

+1

r1

��⑧⑧
⑧⑧
⑧

j2 // W2

+1

r2

��⑧⑧
⑧⑧
⑧

j3 // W3

+1

r3

��⑧⑧
⑧⑧
⑧

· · ·

P0

g0

__❄❄❄❄❄❄

P1

g1

__❄❄❄❄❄❄

P2

g2

__❄❄❄❄❄❄

P3

g3

__❄❄❄❄❄❄

such jn is a phantom map and Pn is in Add (C ), n ≥ 0.

Remark 6.7. An Adams resolution of X can be easily constructed by induction.
We start with an epimorphism from a projective object Sα(P0) ։ Sα(X), i.e. P0 is
in Add (C ). This morphism is represented by a unique g0 : P0 → X . If we extend
g0 to an exact triangle we obtain r0 and j0, which is a phantom map by Lemma
6.2. If we have constructed the first n triangles we take an epimorphism from a
projective object Sα(Pn) ։ Sα(Wn−1) and proceed in the same way.

By Lemma 6.2, for any Adams resolution (X,W∗, P∗) the restricted Yoneda
functor Sα maps

0 Xoo P0g0
oo oo

+1

r0g1
P1

oo
+1

r1g2
P2

oo
+1

r2g3
P3

oo · · ·

to a projective resolution of Sα(X) in Modα(C ).

Postnikov resolutions are an enrichment of Benson–Krause–Schwede’s Postnikov
systems that we recall in Definition 6.28 below, cf. [BKS04].

Definition 6.8. A Postnikov resolution (X,X∗, P∗) of an object X in T is a
diagram

X

0
i0 //

OO

X0

+1

q0

��⑧⑧
⑧⑧
⑧

i1 //

+1
p0

X1

+1

q1

��⑧⑧
⑧⑧
⑧

i2 //

+1
p1

X2

+1

q2

��⑧⑧
⑧⑧
⑧

i3 //

+1
p2

X3

+1

q3

��⑧⑧
⑧⑧
⑧

· · ·

· · ·+1
p3

oo

P0

f0

__❄❄❄❄❄❄

P1

f1

__❄❄❄❄❄❄

P2

f2

__❄❄❄❄❄❄

P3

f3

__❄❄❄❄❄❄
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consisting of a countable sequence of exact triangles and commutative triangles,
pn = pn+1in+1, n ≥ 0, such that Sα maps

(6.9) 0 Xoo P0
p0q

−1
0

oo oo
+1

q0f1
P1

oo
+1

q1f2
P2

oo
+1

q2f3
P3

oo · · ·

to a projective resolution of Sα(X). In particular Xn is (n+ 1)-cellular.
We will denote the structure morphisms by fXn , iXn , q

X
n , and pXn when we need

to distinguish between different Postnikov resolutions.

Lemma 6.10. Given an object X in T and an Adams resolution (X,W∗, P∗), there
exists a Postnikov resolution (X,X∗, P∗) fitting in octahedra as follows, n ≥ 0,

Wn−1
jn //

φn−1

��

Wn

φn

��

rn+1

��✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌

X

jn−1···j0
ggPPPPPPPPPPPPP

jn···j0
==④④④④④④④④

??

⑦⑦
⑦

pn−1
+1

⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦

XX
✶✶
✶

+1 pn

✶✶
✶✶
✶✶
✶✶
✶✶
✶

Pn

gn

``❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅❅

fnww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦

Xn−1
in

// Xn

+1

qn

aa❇❇❇❇❇❇❇❇

Here, for n = 0 we use the convention X−1 = 0, W−1 = X, and X → W−1 the
identity morphism. Conversely, if a Postnikov resolution (X,X∗, P∗) is given, then
there exists an Adams resolution (X,W∗, P∗) fitting in octahedra as above.

Proof. The Postnikov resolution together with the octahedra are constructed in-
ductively. The step n = 0 is essentially given in the statement. We just need to
choose a degree +1 isomorphism q0, e.g. X0 = ΣP0 and q0 the identity. In the nth

step, we first complete fn = φn−1gn to an exact triangle, this yields in and qn.
Then we obtain φn and pn by applying the octahedral axiom.

Let us tackle the converse. The Adams resolution together with the octahedra are
also defined by induction. For the step n = 0, we just need to complete g0 = p0q

−1
0

to an exact triangle. This yields j0, r0 and φ0 = q−1
0 r0. Notice that j0 is a phantom

map since Sα(p0) is an epimorphism in Modα(C ).
In the nth step, we first complete pn to an exact triangle, this yields φn and the

morphism X → Wn, which a fortiori will be jn · · · j0 (so far we do not have a jn).
We also obtain rn = qnφn. We then apply the octahedral axiom. This produces
gn and jn. We must check that jn is a phantom, or equivalently that Sα(gn) is an
epimorphism.

For n = 1, we have an exact sequence

0 Sα(X)oo Sα(P0)
Sα(p0q

−1
0 )

oo oo
+1

Sα(q0f1)
Sα(P1).

Since q0 is an isomorphism, ImSα(f1) = KerSα(p0) and the triangle

X

j0 ��
❄❄

❄❄
❄ X0p0

+1
oo

W0

φ0

??⑧⑧⑧⑧⑧
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implies that KerSα(p0) = ImSα(φ0). Since j0 is phantom Sα(φ0) is a monomor-
phism. Hence, Sα(g1) must an epimorphism since f1 = φ0g1 and ImSα(f1) =
ImSα(φ0).

Let n > 1. By induction hypothesis, for 0 ≤ k < n, jk is a phantom and the
sequences

0 Sα(Wk−1)oo Sα(Pk)
Sα(gk)
oooo Sα(Wk)? _

+1

Sα(rk)
oo 0oo

are short exact. Moreover, in the following diagram

Sα(Pn−2) Sα(Pn−1)+1

Sα(qn−2fn−1)
oo

Sα(gn−1)xxxx♣♣
♣♣
♣♣
♣♣
♣♣

Sα(Pn)+1

Sα(qn−1fn)
oo

Sα(gn)
xxrr
rr
rr
rr
rr

Sα(Wn−2)
4 T

+1

Sα(rn−2)

ff◆◆◆◆◆◆◆◆◆◆

Sα(Wn−1)
4 T

+1

Sα(rn−1)

ff◆◆◆◆◆◆◆◆◆◆

the horizontal row is also an exact sequence. Hence, Sα(Wn−1) = ImSα(qn−2fn−1)
and therefore Sα(gn) must be an epimorphism. �

Corollary 6.11. Any object X in T has a Postnikov resolution.

This follows from Lemma 6.10 and the fact that any object in T has an Adams
resolution, see Remark 6.7.

6.3. Postnikov resolutions and ∞-phantom maps. In this section we define
a homotopy category of Postnikov resolutions. This is one of the key ingredients of
our obstruction theory.

Definition 6.12. A morphism of Postnikov resolutions

(6.13) (h, ψ∗, ϕ∗) : (X,X∗, P∗) −→ (Y, Y∗, Q∗)

is given by morphisms h : X → Y , ψn : Xn → Yn, ϕn : Pn → Qn in T , n ≥ 0, such
that the obvious triangles and squares commute,

X

h

��

0

__❄❄❄❄
//

��

X0

oo

ww♦♦♦
♦♦♦

♦
//

ψ0

��

X1

ww♦♦♦
♦♦♦

♦
//

ψ1

��

X2

ww♦♦♦
♦♦♦

♦

ψ2

��

· · ·

P0

__❄❄❄❄

ϕ0

��

P1

__❄❄❄

ϕ1

��

P2

__❄❄❄

ϕ2

��

Y

0

__❄❄❄❄
// Y0

oo

ww♦♦♦
♦♦♦

♦
// Y1

ww♦♦♦
♦♦♦

♦
// Y2

ww♦♦♦
♦♦♦

♦ . . .

Q0

__❄❄❄❄

Q1

__❄❄❄

Q2

__❄❄❄

A pair of morphisms of Postnikov resolutions

(h, ψ∗, ϕ∗), (h̄, ψ̄∗, ϕ̄∗) : (X,X∗, P∗) −→ (Y, Y∗, Q∗)

are homotopic (h, ψ∗, ϕ∗) ≃ (h̄, ψ̄∗, ϕ̄∗) if, for all n > 0, the following equivalent
conditions hold:

(1) ψni
X
n = ψ̄ni

X
n ,

(2) iYnψn−1 = iYn ψ̄n−1,
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(3) ψn − ψ̄n factors through qXn : Xn → Pn,
(4) ψn−1 − ψ̄n−1 factors through fYn : Qn → Yn−1.

This natural equivalence relation is additive: two morphisms are homotopic iff
their difference (h − h̄, ψ∗ − ψ̄∗, ϕ∗ − ϕ̄∗) is nullhomotopic, i.e. homotopic to the
trivial map. We denote Pres∞ the category of Postnikov resolutions and Pres≃∞
its homotopy category. Both of them are additive.

The following theorem is the main result of this section. It establishes the ex-
istence of a functor with a certain property. Usually, when defining a functor, the
complicated part is to show that composition is preserved. In this case the com-
plicated part is the definition of the functor on morphisms, once this is achieved
compatibility with composition is obvious.

Theorem 6.14. There exists an essentially unique functor

Ψ: T −→ Pres≃∞

sending an object X to a Postnikov resolution Ψ(X) of X and a map h : X → Y
to the homotopy class Ψ(h) of a morphism with first coordinate h. This functor is
additive, full and essentially surjective. Moreover, the kernel of Ψ is the ideal I ∞ of
∞-phantom maps, hence Ψ induces an equivalence of categories T /I ∞ ≃ Pres≃∞.

We prove Theorem 6.14 at the end of this section.

Lemma 6.15. Given a Postnikov resolution (X,X∗, P∗), the following sequence is
exact for n ≥ 0,

Sα(Pn+1)
Sα(fn+1)

// Sα(Xn)
Sα(pn)

+1

// // Sα(X).

Moreover, Sα(pn) splits for n > 0.

Proof. For n = 0 it holds by definition since q0 is an isomorphism. For n > 0,
consider an associated Adams resolution via Lemma 6.10. Since jn · · · j0 and jn+1

are phantoms

Sα(Wn)
� � Sα(φn)

// Sα(Xn)
Sα(pn)

+1

// // Sα(X)

Sα(Wn+1)
� � Sα(rn+1)

+1

// Sα(Pn+1)
Sα(gn+1)

// // Sα(Wn)

are short exact by Lemma 6.2, and fn+1 = φngn+1, hence the sequence in the
statement is exact.

Now let n > 0. Recall that the sequence

0 Sα(X)oo Sα(P0)
Sα(p0q

−1
0 )

oo oo
+1

Sα(q0f1)
Sα(P1).

is exact. The map Sα(in · · · i1q
−1
0 ) : Sα(P0)

−1
→ Sα(Xn) factors uniquely through

Sα(p0q
−1
0 ) : Sα(P0) ։ Sα(X) since (in · · · i1q

−1
0 )(q0f1) = in · · · i1f1 = 0. The fac-

torization Sα(X)
−1
→ Sα(Xn) composed with Sα(pn) is the identity in Sα(X) since

pn(in · · · i1q
−1
0 ) = p0q

−1
0 , hence we are done. �

Proposition 6.16. Given a morphism h : X → Y in T and Postnikov resolutions
(X,X∗, P∗) and (Y, Y∗, Q∗) there exists a morphism of Postnikov resolutions as in
(6.13) extending h.
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Proof. We proceed by induction. The morphisms ϕ0 and ϕ1 can be constructed by
completing the following diagram of exact rows

Sα(P1) +1

Sα(q0f1)
// Sα(P0)

Sα(p0q
−1
0 )

// // Sα(X)

Sα(h)

��

Sα(Q1) +1

Sα(q0f1)
// Sα(Q0)

Sα(p0q
−1
0 )

// // Sα(Y )

to commutative squares, and ψ0 = (qY0 )−1ϕ0q
X
0 .

Assume we have constructed up to the following diagram of solid arrows

X

h

��

· · · Xn−2

oo

//

ψn−2

��

Xn−1

ww♦♦♦
♦♦

//

ψn−1

��

Xn

ψ′
n

��
✤
✤
✤
✤
✤
✤

ww♦♦♦
♦♦♦

♦
· · ·

Pn−1

__❄❄❄

ϕn−1

��

Pn

__❄❄❄

ϕn

��

Y

· · · Yn−2

oo

// Yn−1

ww♦♦♦
♦♦

// Yn

ww♦♦♦
♦♦♦

♦ · · ·

Qn−1

__❄❄❄

Qn

__❄❄❄

for some n > 0. We extend ψn−1 and ϕn to a morphism of exact triangles. In
general,

(6.17) Xn

pXn

+1

//

ψ′
n

��

X

h

��

Yn
pYn

+1

// Y

does not commute, but precomposing with iXn : Xn−1 → Xn,

pYnψ
′
ni
X
n = pYn i

Y
nψn−1 = pYn−1ψn−1 = hpXn−1 = hpXn i

X
n .

Hence, hpXn − pYnψ
′
n factors as

Xn +1

qXn // Pn
β

// Y.

The composite

Sα(Pn)
Sα(β)

// Sα(Y )
� �

−1

splitting in
the proof of
Lemma 6.15

// Sα(Yn),

is the image by Sα of a unique γ : Pn
−1
→ Yn since Sα(Pn) is projective. This

morphism satisfies pYn γ = β and qYn γ = 0. The first equation holds by the splitting
condition. For the second equation it is enough to check that Sα(q

Y
n γ) = 0, and

this holds since the splitting of Sα(pn) in Lemma 6.15 is induced by Sα(in · · · i1q
−1
0 )
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and qYn i
Y
n = 0. Hence, the morphism ψn = ψ′

n + γqXn still extends ψn−1 and ϕn to
a morphism of exact triangles since

qYn ψn = qYn ψ
′
n + qYn γq

X
n = ϕnq

X
n + 0qXn = ϕnq

X
n ,

ψni
X
n = ψ′

ni
X
n + γqXn i

X
n = iYnψn + γ0 = iYnψn.

Moreover, the square (6.17) commutes if we replace ψ′
n with ψn since

pYnψn = pYnψ
′
n + pYn γq

X
n = pYnψ

′
n + βqXn = pYnψ

′
n + hpXn − pYnψ

′
n = hpXn .

In order to conclude the induction step we must take ϕn+1 : Pn+1 → Qn+1

completing

Pn+1

fX
n+1

// Xn

ψn

��

pXn

+1

// X

h

��

Qn+1

fY
n+1

// Yn
pYn

+1

// Y

to a commutative square. This can be done. Actually, by Lemma 6.15, it is enough
to notice that that pYn ψnf

X
n+1 = hpXn+1f

X
n+1 = h0 = 0. �

Proposition 6.18. If (X,X∗, P∗) is a Postnikov resolution, then h : X → Y is an
n-phantom map, n > 0, if and only if hpn−1 = 0. In particular, h is an ∞-phantom
map if and only if hpn = 0 for all n ≥ 0.

Proof. Since Xn−1 is n-cellular, if h is an n-phantom map, then hpn−1 = 0, see
Proposition 6.5. Conversely, by Lemma 6.10 the morphism pn−1 fits in an exact
triangle

Xn−1

pn−1

+1

// X

jn−1···j0
||③③
③③
③③
③③
③

Wn−1

φn−1

dd❍❍❍❍❍❍❍❍❍

with jn−1 · · · j0 an n-phantom map. Therefore, if hpn−1 = 0 then h factors through
jn−1 · · · j0, so h is an n-phantom map too. �

Proposition 6.19. A morphisms of Postnikov resolutions as in (6.13) is nullho-
motopic if and only if h is an ∞-phantom map.

Proof. If we assume that (h, ψ∗, ϕ∗) is nullhomotopic, then ψn factors through fYn+1

for all n ≥ 0. By Lemma 6.15, pYn f
Y
n+1 = 0 and then, hpXn = pYn ψn = 0. Hence, h

is an ∞-phantom map by Corollary 6.18.
Assume now that h is an ∞-phantom map. We construct by induction on n ≥ 0

a map βn : Pn
−1
→ Qn+1 such that the following square commutes

Pn
qXn

+1

//

ψn

��

Xn

βn−1

��

Yn Qn+1.
fY
n+1

oo
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For n = 0, the following diagram with exact rows

Sα(P1) +1

Sα(q0f1)
//

Sα(ϕ1)

��

Sα(P0)
Sα(p0q

−1
0 )

// //

Sα(ϕ0)

��

Sα(X)

Sα(h)=0

��

Sα(Q1) +1

Sα(q0f1)
// Sα(Q0)

Sα(p0q
−1
0 )

// // Sα(Y )

shows that we can take β0 : P0 → Q1 with ϕ0 = qY0 f
Y
1 β0. This choice of β0 works

since ψ0 = (qY0 )−1ϕ0q
X
0 .

Assume we have checked our claim up to n − 1. Choose an Adams resolution
(Y,W∗, Q∗) associated to the Postnikov resolution (Y, Y∗, Q∗) in the sense of Lemma
6.10. We use the notation therein, exchanging X and P with Y and Q, respectively.
Since h is an ∞-phantom map, by Corollary 6.18,

pYn ψn = hpXn = 0,

so ψn factors as Xn
γn
→Wn

φn
→ Yn. By induction hypothesis,

φnγni
X
n = ψni

X
n = iYnψn−1 = iYn f

Y
n βn−1q

X
n−1 = 0βn−1q

X
n−1 = 0.

Since jn · · · j0 is an (n+1)-phantom map and Xn−1, the source of iXn , is n-cellular,
the homomorphism

T (Xn−1, φn) : T (Xn−1,Wn) −→ T (Xn−1, Yn)

is injective, so the previous equation yields γni
X
n = 0. Hence, γn factors as

Xn

qXn

+1

// Pn
εn

−1

// Wn.

Furthermore, since jn+1 is a phantom map, Sα(gn+1) : Sα(Qn+1) → Sα(Wn) is an
epimorphism and we can factor εn as

Pn
βn

−1

// Qn+1

gn+1
// Wn.

Finally, fYn+1βnq
X
n = φngn+1βnq

X
n = φnεnq

X
n = φnγn = ψn. �

Proof of Theorem 6.14. Any object X in T has a Postnikov resolution Ψ(X) by
Corollary 6.11. We choose one. Proposition 6.16 proves that there are choices for
Ψ(h) as in the statement. Moreover, the choice is unique in the homotopy category
by Proposition 6.19. By uniqueness, Ψ must be an additive functor. Propositions
6.16 and 6.19 prove that any two Postnikov resolutions of X are isomorphic in
Pres≃∞, hence Ψ is essentially surjective. Moreover, Ψ is full since the homotopy
class of an arbitrary morphism (h, ψ∗, ϕ∗) : Ψ(X) → Ψ(Y ) is Ψ(h). Finally, the
kernel of Ψ is I ∞ by Proposition 6.19. �

6.4. Homotopy colimits and Postnikov resolutions. Recall that a homotopy
colimit [Nee01b, Definition 1.6.4] of a sequence in a triangulated category with
countable coproducts T

X0
i1 // X1

i2 // X2
i3 // X3

// · · ·
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is an exact triangle

(6.20)
∐

n>0

Xn

(6.21)
//
∐

n>0

Xn

+1

(p′n)n>0

zz✉✉
✉✉
✉✉
✉✉
✉✉
✉

Hocolim
n

Xn

δ′

dd■■■■■■■■■■■

where the upper arrow is given by the following matrix

(6.21)















1 0 0 0 · · ·
−i2 1 0 0
0 −i3 1 0
0 0 −i4 1
...

. . .















.

Usually, δ′ is taken to be the degree +1 map, but the previous convention is more
convenient for our purposes. Moreover, X0 and i1 are usually not neglected in
(6.20) and (6.21), but the construction turns out to be equivalent, see [Nee01b,
Lemma 1.7.1].

Proposition 6.22. Given a Postnikov resolution (X,X∗, P∗), there is a homotopy
colimit given by an exact triangle of the form

∐

n>0

Xn

(6.21)
//
∐

n>0

Xn

+1

(pn)n>0

}}④④
④④
④④
④

X.

δ

aa❈❈❈❈❈❈❈

In the proof of Proposition 6.22 we use the following lemma.

Lemma 6.23. Given morphisms

X
f

// Y
i

+1

// Z

such that if = 0 and

Sα(X) �
�Sα(f)

// Sα(Y )
Sα(i)

+1

// // Sα(Z)

is a short exact sequence, there is an exact triangle

X
f

// Y

+1

i

~~⑥⑥
⑥⑥
⑥⑥
⑥

Z.

q

``❆❆❆❆❆❆❆❆

Proof. Complete f to an exact triangle

X
f

// Y

+1

i′

~~⑤⑤
⑤⑤
⑤⑤
⑤

Z ′.
q′

aa❇❇❇❇❇❇❇❇
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Since if = 0, i factors as Y
i′

→ Z ′ φ
→ Z. Since Sα(f) is a monomorphism, the

sequence

Sα(X) �
�Sα(f)

// Sα(Y )
Sα(i′)

+1

// // Sα(Z
′)

is also short exact by Lemma 6.2. Therefore, Sα(φ) is an isomorphism. Finally,
since Sα reflects isomorphisms, φ is an isomorphism and we can take q = q′φ−1. �

Proof of Proposition 6.22. Clearly, (pn)n>0(6.21) = 0 since pn = pn+1in+1, n > 0.
Using the splitting Sα(Xn) ∼= Sα(X) ⊕ ImSα(fn+1) given by Lemma 6.15, n >
0, and the fact that Sα preserves coproducts, we can identify Sα(6.21) with the
endomorphism of

(6.24)

(

⊕

n>0

Sα(X)

)

⊕

(

⊕

n>0

ImSα(fn+1)

)

which decomposes as the identity on the second factor, since infn = 0, and the
endomorphism defined by the matrix

(6.25)















1 0 0 0 · · ·
−1 1 0 0
0 −1 1 0
0 0 −1 1
...

. . .















on the first factor.
The endomorphism (6.25), and hence Sα(6.21), is a split monomorphism. The

matrix














0 −1 −1 −1 · · ·
0 0 −1 −1
0 0 0 −1
0 0 0 0
...

. . .















defines a retraction of (6.25). The cokernel of (6.25)
∐

id is Sα(X). The natural
projection is 0 on the second factor of (6.24) and

(

1 1 1 1 · · ·
)

on the first factor. This morphism identifies with Sα(pn)n>0 via the direct sum
decomposition, since pnfn+1 = 0 by Lemma 6.15. Therefore, Lemma 6.23 applies.

�

The following corollary is a new result. It should be compared to the fact that,
if ℵ0-Adams representability holds then the ideal of phantom maps is a square zero
ideal, cf. [Nee97]. Actually, one can check along the same lines that this is also true
under α-Adams representability.

Corollary 6.26. The ideal I ∞ of infinite phantom maps is a square zero ideal
(I ∞)2 = 0, i.e. if h : X → Y and k : Y → Z are ∞-phantom maps, then kh = 0.
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Proof. Consider a homotopy colimit as in the statement of Proposition 6.22. Since
h is an ∞-phantom, 0 = (hpn)n>0 = h(pn)n>0 by Proposition 6.18, hence h factors
as

X
δ

−→
∐

n>0

Xn
h′

−→ Y.

Since k is an ∞-phantom map and each Xn is n-cellular, n > 0, kh′ = 0 by
Proposition 6.5. Finally, kh = kh′δ = 0δ = 0. �

Remark 6.27. Theorem 6.14 and Corollary 6.26 show that

I
∞

 T
Ψ
։ Pres≃∞

is a weak linear extension [Bau91, Definition II.1.7], therefore the T bimodule I ∞

is actually a Pres≃∞-bimodule and the weak linear extension is classified up to
equivalence by a class in cohomology of categories

{T } ∈ H2(Pres≃∞,I
∞).

This can be compared to the fact, under ℵ0-Adams representability (and also under
α-Adams representability replacing ℵ0 with α, as one can easily deduce from the
results of this paper) T is a linear extension of the full subcategory of ℵ0-flat
objects in Modℵ0(T

ℵ0) by I , cf. [CS98, §5].

6.5. Postnikov systems. Postnikov systems were introduced in [BKS04]. In this
section we make them the objects of a certain category where we define a natural
homotopy relation. The main result of this section establishes an equivalence be-
tween the homotopy category of Postnikov resolutions, defined in Section 6.3, and
the homotopy category of Postnikov systems.

Definition 6.28. A Postnikov system (X∗, P∗) is a countable sequence of exact
triangles

0
i0 // X0

+1

q0

��⑧⑧
⑧⑧
⑧

i1 // X1

+1

q1

��⑧⑧
⑧⑧
⑧

i2 // X2

+1

q2

��⑧⑧
⑧⑧
⑧

i3 // X3

+1

q3

��⑧⑧
⑧⑧
⑧

· · ·

P0

f0

__❄❄❄❄❄❄

P1

f1

__❄❄❄❄❄❄

P2

f2

__❄❄❄❄❄❄

P3

f3

__❄❄❄❄❄❄

such that Sα maps

P0
oo

+1

q0f1
P1

oo
+1

q1f2
P2

oo
+1

q2f3
P3

oo · · · .

to an exact sequence of projective objects in Modα(C ). In particular, Xn is (n +
1)-cellular. We will denote the structure morphisms by fXn , iXn and qXn when we
need to distinguish between different Postnikov systems.

A morphism of Potsnikov systems

(ψ∗, ϕ∗) : (X∗, P∗) −→ (Y∗, Q∗)
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is a sequence of exact triangle morphisms as follows

0 //

��

X0

+1ww♦♦♦
♦♦♦

♦
//

ψ0

��

X1

+1ww♦♦♦
♦♦♦

♦
//

ψ1

��

X2

+1ww♦♦♦
♦♦♦

♦
//

ψ2

��

X3

+1ww♦♦♦
♦♦♦

♦

ψ3

��

P0

__❄❄❄❄

ϕ0

��

P1

__❄❄❄

ϕ1

��

P2

__❄❄❄

ϕ2

��

P3

__❄❄❄

ϕ3

��

· · ·

0 // Y0

+1ww♦♦♦
♦♦♦

♦
// Y1

+1ww♦♦♦
♦♦♦

♦
// Y2

+1ww♦♦♦
♦♦♦

♦
// Y3

+1ww♦♦♦
♦♦♦

♦

Q0

__❄❄❄❄

Q1

__❄❄❄

Q2

__❄❄❄

Q3

__❄❄❄

Composition of morphisms of Postnikov systems is defined in the obvious way.
A pair of morphisms

(ψ∗, ϕ∗), (ψ̄∗, ϕ̄∗) : (X∗, P∗) −→ (Y∗, Q∗)

are homotopic (ψ∗, ϕ∗) ≃ (ψ̄∗, ϕ̄∗) if the four equivalent conditions (1–4) in Defini-
tion 6.12 are satisfied. This natural equivalence relation is additive: two morphisms
are homotopic iff their difference (ψ∗ − ψ̄∗, ϕ∗ − ϕ̄∗) is nullhomotopic. We denote
Post∞ the category of Postnikov systems and Post≃∞ its homotopy category. Both
of them are additive.

Theorem 6.29. The forgetful functor

Φ: Pres≃∞ −→ Post≃∞, Φ(X,X∗, P∗) = (X∗, P∗),

is an equivalence of categories surjective on objects.

This theorem is proved after the following lemma.

Lemma 6.30. In a Postnikov system (X∗, P∗), Sα(i1q
−1
0 ) induces a degree −1

isomorphism H0Sα(P∗) ∼= ImSα(i1), and Sα(in) induces a degree 0 isomorphism
ImSα(in) ∼= ImSα(in+1), n > 0. In particular, Sα(Xn) ∼= H0Sα(P∗)⊕KerSα(in+1)
for n > 0.

Proof. The functor Sα takes exact triangles to exact sequences, therefore

Sα(X∗)
Sα(i∗)

(+1,0)

// Sα(X∗)

Sα(q∗)

(0,+1)
yytt
tt
tt
tt
t

Sα(P∗)

Sα(f∗)

(−1,0)

ee❏❏❏❏❏❏❏❏❏

is an exact couple. Here the first degree corresponds to the subscript ∗, and the
second degree is the internal degree in the graded abelian category Modα(C ).

Since Sα(P∗) is exact in degrees 6= 0, the derived exact couple is

ImSα(i∗)
(+1,0)

// ImSα(i∗)

(−1,+1)
xxqq
qq
qq
qq
qq

H0Sα(P∗)

(0,0)

0

ff▼▼▼▼▼▼▼▼▼▼

with H0Sα(P∗) concentrated in degree 0. Indeed, since ImSα(i∗) is concentrated
in degrees > 0, the map H0Sα(P∗) → ImSα(i∗) is the trivial morphism, hence the
lemma follows. �
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Proof of Theorem 6.29. Let (X∗, P∗) be a Postnikov system. Take a homotopy
colimit as in (6.20). We claim that (HocolimnXn, X∗, P∗) is a Postnikov resolution.
Actually, it is only left to check that Sα(HocolimnXn) = H0Sα(P∗). By Lemma
6.30, Sα(6.21) can be identified with the endomorphism of

(6.31)

(

⊕

n>0

H0Sα(P∗)

)

⊕

(

⊕

n>0

KerSα(in+1)

)

which decomposes as the identity on the second factor and (6.25) on the first factor,
compare the proof of Proposition 6.22. Proceeding as in that proof, we deduce that
the cokernel of Sα(6.21) is H0Sα(P∗). This cokernel can also be identified with
Sα(HocolimnXn) by Lemma 6.2. This proves the claim and that Φ is surjective on
objects.

Let (X,X∗, P∗) and (Y, Y∗, Q∗) be Postnikov resolutions and (ψ∗, ϕ∗) : (X∗, P∗) →
(Y∗, Q∗) a morphism of Postnikov systems. We choose exact triangles defining ho-
motopy colimits as in Proposition 6.22. The following commutative square of solid
arrows can be extended to a triangle morphism

∐

n>0

Xn

(6.21)
//

(ψn)n>0

��

∐

n>0

Xn

+1

(pn)n>0

~~⑤⑤
⑤⑤
⑤⑤
⑤

(ψn)n>0

��

X

ff▼▼▼▼▼▼▼▼▼▼▼▼▼

h

��
✤
✤
✤
✤
✤
✤
✤
✤

∐

n>0

Yn
(6.21)

//
∐

n>0

Yn

+1

(pn)n>0

~~⑤⑤
⑤⑤
⑤⑤
⑤

Y

ff▼▼▼▼▼▼▼▼▼▼▼▼▼

Hence, (h, ψ∗, ϕ∗) : (X,X∗, P∗) → (Y, Y∗, Q∗) is a morphism of Postnikov resolu-
tions. This shows that Φ is full.

The functor Φ is faithful since two morphisms of Postnikov resolutions are ho-
motopic if and only if the underlying morphisms of Postnikov systems are. �

Remark 6.32. By Theorem 6.29 and Remark 6.27,

I
∞

 T
ΦΨ
։ Post≃∞

is a weak linear extension, the T bimodule I ∞ is actually a Post≃∞-bimodule and
the weak linear extension is classified up to equivalence by a class in cohomology
of categories

{T } ∈ H2(Post≃∞,I
∞).

It is interesting to notice that Post≃∞ only depends of the full subcategory of cellular
objects in T , and that there are no non-trivial ∞-phantom maps between two
cellular objects. Hence, the previous linear extension is a way of breaking T into
an ∞-phantom part and an ∞-phantomless part.
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6.6. Truncated Postnikov systems and obstructions. Our notion of trun-
cated Potsnikov system enriches that considered in [BKS04] in a way which is
suitable to develop an obstruction theory. We also define homotopy categories of
truncated Potsnikov systems.

Definition 6.33. An n-truncated Postnikov system (X≤n, P∗), n ≥ 0, is a diagram
in T

0
i0 // X0

q0

+1

��⑧⑧
⑧⑧
⑧

i1 // X1

q1

+1

��⑧⑧
⑧⑧
⑧

· · · · · ·

Xn−1
in // Xn

qn

+1

��⑧⑧
⑧⑧
⑧

P0

f0

__❄❄❄❄❄

P1

f1

__❄❄❄❄❄

Pn
fn

__❄❄❄❄

Pn+1

fn+1
__❄❄❄❄❄

Pn+2

dn+2

+1

oo · · ·oo

where the first n+ 1 triangles are exact, the cocycle condition

fn+1dn+2 = 0

is satisfied, and the restricted Yoneda functor maps

P0
oo
q0f1

+1

P1
oo · · · · · · oo Pn oo

qnfn+1

+1

Pn+1
oo
dn+2

+1

Pn+2
oo · · ·

to an exact sequence of projective objects. For 0 ≤ k ≤ n we denote

dk+1 = qkfk+1.

Notice that Xk is (n + 1)-cellular, 0 ≤ k ≤ n. We will denote the structure
morphisms by fXk , 0 ≤ k ≤ n+ 1, iXk , q

X
k , 0 ≤ k ≤ n, and dXk , k > 0, if we need to

distinguish between different n-truncated Postnikov systems.
A morphism of n-truncated Potsnikov systems

(ψ≤n, ϕ∗) : (X≤n, P∗) −→ (Y≤n, Q∗)

is a diagram

0 //

��

X0

yysss
ss

//

ψ0

��

X1

· · · · · ·
yysss

ss

ψ1

��

Xn−1
//

ψn−1

��

Xn

yyrrr
rr

ψn

��

P0

^^❂❂❂

ϕ0

��

P1

aa❇❇❇

ϕ1

��

Pn

cc❍❍❍

ϕn

��

Pn+1

cc❍❍❍

ϕn+1

��

Pn+2
oo

ϕn+2

��

· · ·oo

0 // Y0

yyss
sss

// Y1

yyss
sss

Yn−1
// Yn

yyrrr
rr

Q0

^^❂❂❂

Q1

aa❇❇❇

Qn

cc❍❍❍

Qn+1

cc❍❍❍

Qn+2
oo · · ·oo

where all squares commute. Composition is defined in the obvious way.
A pair of morphisms of n-truncated Postnikov systems

(ψ≤n, ϕ∗), (ψ̄≤n, ϕ̄∗) : (X≤n, P∗) −→ (Y≤n, Q∗)

are homotopic (ψ≤n, ϕ∗) ≃ (ψ̄≤n, ϕ̄∗) if ψk − ψ̄k factors through fk+1 : Qk+1 → Yk
for 0 ≤ k ≤ n. This condition can be characterized in different ways for k < n, see
Definition 6.12 (1–4).

The homotopy natural equivalence relation is additive: two morphisms are ho-
motopic iff their difference (ψ≤n − ψ̄≤n, ϕ∗ − ϕ̄∗) is nullhomotopic. We denote
Postn the category of n-truncated Postnikov systems and Post≃n its homotopy
category. Both categories are additive and the natural projection Postn → Post≃n
is an additive functor.
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The homology functor

Postn −→ Modα(C ),

(X≤n, P∗) 7→ H0Sα(P∗) = CokerSα(d1),

factors through the homotopy category,

Post≃n −→ Modα(C ).

This factorization is an equivalence for n = 0.
The n-truncation functor, n > 0,

tn−1 : Postn −→ Postn−1

is the functor tn−1(X≤n, P∗) = (X≤n−1, P∗) defined by forgetting Xn, fn+1, in,
and qn, but not dn+1 = fn+1qn. This functor is additive and compatible with the
homotopy relation, hence it induces an additive functor

tn−1 : Post
≃
n −→ Post≃n−1.

Lemma 6.34. Given an n-truncated Postnikov system (X≤n, P∗):

• Sα(i1q
−1
0 ) induces a degree −1 isomorphism H0Sα(P∗) ∼= ImSα(i1),

• Sα(ik+1) induces a degree 0 isomorphism ImSα(ik) ∼= ImSα(ik+1) for 0 <
k < n,

• the natural projection Sα(Xk) ։ CokerSα(fk+1) restricts to a degree 0
isomorphism ImSα(ik) ∼= CokerSα(fk+1), for 0 < k ≤ n.

In particular, for 0 < k ≤ n, Sα(Xk) ∼= H0Sα(P∗)⊕ ImSα(fk+1).

Proof. Extend fn+1 to an exact triangle,

· · ·

Xn−1
in // Xn

qn

+1

��⑧⑧
⑧⑧
⑧⑧
⑧

in+1
//❴❴❴❴❴ Xn+1

qn+1

+1

��⑧
⑧
⑧
⑧

Pn

fn

__❄❄❄❄❄❄❄

Pn+1.

fn+1

__❄❄❄❄❄❄❄

Consider the following exact couple in Modα(C ),

Sα(X∗)
Sα(i∗)

(+1,0)

// Sα(X∗)

Sα(q∗)

(0,+1)

yyss
ss
ss
ss
s

Sα(P∗).

Sα(f∗)

(−1,0)

ee❑❑❑❑❑❑❑❑❑

Here for k > n + 1 we set Xk = Xn+1, Pk = 0 and ik = idXn+1 . The E2-term of
the induced spectral sequence is

E2
0 = CokerSα(d1) = H0Sα(P∗), E2

n+1 = KerSα(dn+1),

and E2
k = 0 otherwise. The derived exact couple is

ImSα(i∗)
(+1,0)

i′∗ // ImSα(i∗)

(−1,+1)

q′∗zz✉✉
✉✉
✉✉
✉✉
✉

E2
∗ .

(0,0)

f ′
∗

dd■■■■■■■■■
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Since ImSα(ik) is concentrated in degrees k > 0, q′∗ contains an isomorphism
ImSα(i1) ∼= E2

0 = H0Sα(P∗) whose inverse is induced by Sα(i1q
−1
0 ). By the sparsity

of E2
∗ , i

′
∗ contains isomorphisms ImSα(ik) ∼= ImSα(ik+1) induced by Sα(ik+1) for

0 < k ≤ n. This finishes the proof since KerSα(ik) = ImSα(fk) and hence Sα(ik)
induces an isomorphism CokerSα(fk) ∼= ImSα(ik), 0 < k ≤ n+ 1. �

Remark 6.35. Let (X≤n, P∗) be an n-truncated Postnikov system. The following
inclusion defined by Lemma 6.34, 0 < k ≤ n + 1, which splits for 0 < k ≤ n, has
degree −1,

H0Sα(P∗)⊂
−1

Sα(Xk).

Notice that Xn+1 is not part of the n-truncated Postnikov system, it is simply a
mapping cone of fn+1.

Definition 6.36. Let (X≤n, P∗) be an n-truncated Postnikov system. Extend fn+1

to an exact triangle

· · ·

Xn−1
in // Xn

qn

+1

��⑧⑧
⑧⑧
⑧⑧
⑧

in+1
//❴❴❴❴❴ Xn+1

qn+1

+1

��⑧
⑧
⑧
⑧

Pn

fn

__❄❄❄❄❄❄❄

Pn+1

fn+1

__❄❄❄❄❄❄❄

Pn+2
dn+2

+1
oo

f̄n+2

__❄
❄
❄
❄

Pn+3
dn+3

+1
oo · · ·oo

By the cocycle condition fn+1dn+2 = 0 there exists f̄n+2 with dn+2 = qn+1f̄n+2.
This construction does not yield an (n + 1)-truncated Postnikov system since
f̄n+2dn+3 6= 0 in general. However, qn+1f̄n+2dn+3 = dn+2dn+3 = 0, and then
Sα(f̄n+2dn+3) factors through KerSα(qn+1) ∼= CokerSα(fn+1) ∼= H0Sα(P∗), see
Lemma 6.34, as

Sα(f̄n+2dn+3) : Sα(Pn+3)
κ̃

−→
+2

H0Sα(P∗)⊂
−1

Sα(Xn+1),

The morphism κ̃ satisfies κ̃Sα(dn+4) = 0 since f̄n+2dn+3dn+4 = 0.
The obstruction of an n-truncated Postnikov system (X≤n, P∗) is the element

κ(X≤n, P∗) ∈ Extn+3,−1−n
α,C (H0Sα(P∗), H0Sα(P∗))

represented by a morphism κ̃ constructed as in the previous paragraph.

This obstruction class is natural in the following sense.

Proposition 6.37. Given a morphism of n-truncated Postnikov systems,

(ψ≤n, ϕ∗) : (X≤n, P∗) −→ (Y≤n, Q∗),

the following equation holds in Extn+3,−1−n
α,C (H0Sα(P∗), H0Sα(Q∗)),

H0Sα(ϕ∗) · κ(X≤n, P∗) = κ(Y≤n, Q∗) ·H0Sα(ϕ∗).

Proof. Assume we have made choices for the definition of the two obstructions.
Take ψn+1 extending ψn and ϕn+1 to a triangle morphism,

· · ·

Xn−1
//

ψn−1��

Xn

xxrrr
rr

//❴❴❴❴❴❴

ψn��

Xn+1

vv♥ ♥
♥

ψn+1

✤
✤

��
✤
✤Pn

cc❍❍❍

ϕn

��

Pn+1

cc❍❍❍

ϕn+1

��

Pn+2
oo

ee❑ ❑

ϕn+2

��

Pn+3
oo

ϕn+3

��

· · ·oo

Yn−1
// Yn

xxrrr
rr

❴❴ //❴❴❴❴ Yn+1

vv♥ ♥
♥

Qn

cc❍❍❍

Qn+1

cc❍❍❍

Qn+2

ee❑ ❑
oo Qn+3

oo · · ·oo
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The square containing ψn+1 and ϕn+2 need not commute. However,

qYn+1ψn+1f̄
X
n+2 = ϕn+1q

X
n+1f̄

X
n+2 = ϕn+1d

X
n+2

= dYn+2ϕn+2 = qYn+1f̄
Y
n+2ϕn+2,

hence Sα(ψn+1f̄
X
n+2 − f̄Yn+2ϕn+2) factors as

Sα(ψn+1f̄
X
n+2 − f̄Yn+2ϕn+2) : Sα(Pn+2)

φ
−→
+1

H0Sα(Q∗)⊂
−1

Sα(Yn+1).

Moreover, since

(ψn+1f̄
X
n+2 − f̄Yn+2ϕn+2)d

X
n+3 = ψn+1f̄

X
n+2d

X
n+3 − f̄Yn+2d

Y
n+3ϕn+3

we deduce that

φSα(d
X
n+3) = H0Sα(ϕ∗)κ̃

X − κ̃Y Sα(ϕn+3),

hence we are done. �

A consequence of Proposition 6.37 is that the construction of κ(X≤n, P∗) in
Definition 6.36 is independent of choices.

Proposition 6.38. For an n-truncated Postnikov system (X≤n, P∗), κ(X≤n, P∗) =
0 if an only if there exists an (n+1)-truncated Postnikov system (X≤n+1, P∗) whose
n-truncation is (X≤n, P∗).

Proof. If (X≤n+1, P∗) exists we can take f̄n+2 = fn+2, hence the cocycle condition
fn+2dn+3 = 0 implies that κ̃ = 0, so κ(X≤n, P∗) = 0.

Assume now that κ(X≤n, P∗) = 0. Suppose that we have made the necessary
choices for the construction of κ̃. Since κ(X≤n, P∗) = 0 there exists a degree +1
morphism ζ : Sα(Pn+2) → H0Sα(P∗) such that κ̃ = ζdn+3. The composite

Sα(Pn+2)
ζ

−→
+1

H0Sα(P∗)⊂
−1

Sα(Xn+1)

is the image by Sα of a unique φ : Pn+2 → Xn+1. The equation κ̃ = ζdn+3 translates
into φdn+3 = f̄n+2dn+3. Hence in+1, qn+1 and fn+2 = f̄n+2 − φ extend (X≤n, P∗)
to an (n+ 1)-truncated Postnikov system. �

Definition 6.39. Consider a couple of n-truncated Postnikov systems (X≤n, P∗)
and (Y≤n, Q∗), n > 0, and a morphism between their (n− 1)-truncations,

(ψ≤n−1, ϕ∗) : (X≤n−1, P∗) −→ (Y≤n−1, Q∗).

Take ψ′
n extending ψn−1 and ϕn to an exact triangle morphism

· · · Xn−1
//

ψn−1

��

Xn

xxrrr
rr

ψ′
n

��
✤

✤

✤

Pn

cc❍❍❍

ϕn

��

Pn+1

cc❍❍❍

ϕn+1

��

Pn+2
oo

ϕn+2

��

· · ·oo

· · · Yn−1
// Yn

xxrrr
rr

Qn

cc❍❍❍

Qn+1

cc❍❍❍

Qn+2
oo · · ·oo

The square containing ψ′
n and ϕn+1 need not commute, however

qYn ψ
′
nf

X
n+1 = ϕnq

X
n f

X
n+1 = ϕnd

X
n+1 = dYn+1ϕn+1 = qYn f

Y
n+1ϕn+1.
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Hence, by Lemma 6.34, Sα(ψ
′
nf

X
n+1 − fYn+1ϕn+1) factors through KerSα(q

Y
n ) =

ImSα(i
Y
n )

∼= H0Sα(Q∗),

Sα(ψ
′
nf

X
n+1 − fYn+1ϕn+1) : Sα(Pn+1)

θ̃
−→
+1

H0Sα(Q∗)⊂
−1

Sα(Yn).

The following equations show that θ̃Sα(d
X
n+2) = 0,

(ψ′
nf

X
n+1 − fYn+1ϕn+1)d

X
n+2 = ψ′

nf
X
n+1d

X
n+2 − fYn+1ϕn+1d

X
n+2

= −fYn+1d
Y
n+2ϕn+2 = 0.

Here we use the cocycle condition for both n-truncated Postnikov systems.
The obstruction of the morphism (ψ≤n−1, ϕ∗) relative to the initial n-truncated

Postnikov systems is the element

θ(X≤n,P∗),(Y≤n,Q∗)(ψ≤n−1, ϕ∗) ∈ Extn+1,−n
α,C (H0Sα(P∗), H0Sα(Q∗))

represented by a morphism θ̃ constructed as above. We often omit the subscript of
θ so as not to overload the notation. Notice that this obstruction is additive in the
morphism,

θ(ψ≤n−1 + ψ̄≤n−1, ϕ∗ + ϕ̄∗) = θ(ψ≤n−1, ϕ∗) + θ(ψ̄≤n−1, ϕ̄∗).

The following lemma allows to speak of the obstruction of a homotopy class.

Lemma 6.40. Given two n-truncated Postnikov systems (X≤n, P∗) and (Y≤n, Q∗),
n > 0, and two homotopic morphisms between their (n− 1)-truncations

(ψ≤n−1, ϕ∗) ≃ (ψ̄≤n−1, ϕ̄∗) : (X≤n−1, P∗) −→ (Y≤n−1, Q∗),

their obstructions coincide θ(ψ≤n−1, ϕ∗) = θ(ψ̄≤n−1, ϕ̄∗).

Proof. It is enough to check that the obstruction of a nullhomotopic morphism
(ψ≤n−1, ϕ∗) ≃ 0 vanishes. Since it is nullhomotopic 0 = iYnψn−1 = ψ′

ni
X
n , so we can

factor ψ′
n = φqXn . Moreover, ϕ∗ is nullhomotopic, so ϕn+1 = hn+1d

X
n+1 + dYn+2hn+2

for certain hn+1 and hn+2,

· · · Xn−1
//

ψn−1

��

Xn

xxqqq
qqq

ψ′
n

��
✤
✤
✤
✤

Pn

dd❍❍❍❍

ϕn

��
hn+1

,,

❂
❃
❆
❋
▼
❚

φ

&&▼
▼

▼ Pn+1

dd❍❍❍❍

ϕn+1

��

hn+2

!!❇
❇

❇
❇

❇
Pn+2

oo

ϕn+2

��

· · ·oo

· · · Yn−1
// Yn

xxqqq
qqq

Qn

dd❍❍❍

Qn+1

dd❍❍❍❍

Qn+2
oo · · ·oo

Using the direct sum decomposition in Lemma 6.34 we obtain
(

ξ1
ξ2

)

= Sα(φ− fYn+1hn+1) : Sα(Pn) −→ Sα(Yn) ∼= H0Sα(Q∗)⊕ ImSα(f
Y
n+1).

Then θ̃ = ξ1Sα(d
X
n+1) since

(φ− fYn+1hn+1)d
X
n+1 = φdXn+1 − fYn+1hn+1d

X
n+1 − fYn+1d

Y
n+2hn+2

= φqXn f
X
n+1 − fYn+1(hn+1d

X
n+1 + dYn+2hn+2)

= ψ′
nf

X
n+1 − fYn+1ϕn+1.

Here we use the cocycle condition fYn+1d
Y
n+2 = 0. Therefore θ(ψ≤n−1, ϕ∗) = 0. �
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As consequence of Lemma 6.40, the obstruction of a morphism does not depend
on choices.

Proposition 6.41. With the notation in Definition 6.39,

θ(X≤n,P∗),(Y≤n,Q∗)(ψ≤n−1, ϕ∗) = 0

if an only if there exists a morphism ψn : Xn → Yn extending (ψ≤n−1, ϕ∗) to a
morphism (ψ≤n, ϕ∗) : (X≤n, P∗) → (Y≤n, Q∗) of n-truncated Postnikov systems.

Proof. If (ψ≤n, ϕ∗) extends the given morphism we can take ψ′
n = ψn, hence θ̃ =

ψnf
X
n+1 − fYn+1ϕn+1 = 0 and the obstruction vanishes.

Conversely, if the obstruction vanishes take ξ : Sα(Pn) → H0Sα(Q∗) with θ̃ =
ξSα(d

X
n+1). The composite

Sα(Pn+1)
ξ

−→ H0Sα(Q∗)⊂
−1

Sα(Yn)

is the image by Sα of a unique φ : Pn
−1
→ Yn, which must satisfy the two following

equations

qYn φ = 0, φdXn+1 = ψ′
nf

X
n+1 − fYn+1ϕn+1.

We can take ψn = ψ′
n − φqXn , since

ψni
X
n = (ψ′

n − φqXn )iXn = ψ′
ni
X
n = iYnψn−1,

qYn ψn = qYn (ψ
′
n − φdXn ) = qYn ψ

′
n = ϕnq

X
n ,

ψnf
X
n+1 = (ψ′

n − φqXn )fXn+1 = ψ′
nf

X
n+1 − φdXn+1

= ψ′
nf

X
n+1 − (ψ′

nf
X
n+1 − fYn+1ϕn+1) = fYn+1ϕn+1.

�

The following result shows that the obstruction θ in Definition 6.39 is a deriva-
tion.

Proposition 6.42. Given three n-truncated Postnikov systems (X≤n, P∗), (Y≤n, Q∗),
and (Z≤n, R∗), and two composable morphisms between their (n− 1)-truncations,

(X≤n−1, P∗)
(ψ≤n−1,ϕ∗)

// (Y≤n−1, Q∗)
(ψ̄≤n−1,ϕ̄∗)

// (Z≤n−1, R∗),

the following equation holds in Extn+1,−n
α,C (H0Sα(P∗), H0Sα(R∗)),

θ((ψ̄≤n−1, ϕ̄∗)(ψ≤n−1, ϕ∗)) = θ(ψ̄≤n−1, ϕ̄∗) ·H0Sα(ϕ∗) +H0Sα(ϕ̄∗) · θ(ψ≤n−1, ϕ∗).
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Proof. Assume we have chosen ψ′
n and ψ̄′

n to define the morphisms θ̃ψ and θ̃ψ̄

representing the obstructions of the two given morphisms,

· · · Xn−1
//

ψn−1

��

Xn

xxrrr
rr

ψ′
n

��
✤

✤

✤

Pn

cc❍❍❍

ϕn

��

Pn+1

cc❍❍❍

ϕn+1

��

Pn+2
oo

ϕn+2

��

· · ·oo

· · · Yn−1
//

ψ̄n−1

��

Yn

xxrrr
rr

ψ̄′
n

��
✤

✤

✤

Qn

cc❍❍❍

ϕ̄n

��

Qn+1

cc❍❍❍

ϕ̄n+1

��

Qn+2
oo

ϕ̄n+2

��

· · ·oo

· · · Zn−1
// Zn

xxrrr
rr

Rn

cc❍❍❍

Rn+1

cc❍❍❍

Rn+2
oo · · ·oo

We can take ψ̄′
n+1ψ

′
n+1 to define the morphism θ̃ψ̄ψ representing the obstruction of

the composition. With this choice, the equation already holds for representatives,

θ̃ψ̄ψ = θ̃ψ̄Sα(ϕn+1) +H0Sα(ϕ̄∗)θ̃
ψ ,

since

(ψ̄′
nf

Y
n+1 − fZn+1ϕ̄n+1)ϕn+1 + ψ̄′

n(ψ
′
nf

X
n+1 − fYn+1ϕn+1)

= ψ̄′
nf

Y
n+1ϕn+1 − fZn+1ϕ̄n+1ϕn+1 + ψ̄′

nψ
′
nf

X
n+1 − ψ̄′

nf
Y
n+1ϕn+1

= (ψ̄′
nψ

′
n)f

X
n+1 − fZn+1(ϕ̄n+1ϕn+1).

�

Proposition 6.43. For any n-truncated Postnikov system (X≤n, P∗) and any

ζ ∈ Extn+1,−n
α,C (H0Sα(P∗), H0Sα(P∗))

there exists another n-truncated Postnikov system (Y≤n, Q∗) with the same (n− 1)-
truncation (X≤n−1, P∗) = (Y≤n−1, Q∗) such that

θ(X≤n,P∗),(Y≤n,Q∗)(id(X≤n−1,P∗)) = ζ.

Proof. We define the n-truncated Postnikov system (Y≤n, Q∗) as follows, Xk = Yk,
fXk = fYk , iXk = iYk , q

X
k = qYk , 0 ≤ k ≤ n, Pk = Qk, k ≥ 0, dXk = dYk , k ≥ n+ 2. It

is only left to define fYn+1.

Choose a morphism ζ̃ : Sα(Pn+1)
+1
→ H0Sα(P∗) representing ζ. The composite

Sα(Pn+1)
ζ̃

−→
+1

H0Sα(Q∗)⊂
−1

Sα(Xn)

is the image by Sα of a unique φ : Pn+1 → Xn, which must satisfy qXn φ = 0 and

φdn+2 = 0, since ζ̃Sα(dn+2) = 0. The morphism fYn+1 = fXn+1 − φ yields an
n-truncated Postnikov system (Y≤n, Q∗) since the cocycle condition holds,

fYn+1dn+2 = (fXn+1 − φ)dn+2 = fXn+1dn+2 − φdn+2 = 0− 0 = 0.

To show that its (n − 1)-truncation is (X≤n−1, P∗), it is enough to notice that
dYn+1 = qYn f

Y
n+1 = qXn (fXn+1 − φ) = qXn f

X
n+1 − 0 = dXn+1. In order to compute the

obstruction of id(X≤n−1,P∗) we can take ψ′
n = idXn

, so θ̃ = ζ̃ and the obstruction
is ζ. �
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Definition 6.44. Given a pair of n-truncated Postnikov systems (X≤n, P∗) and

(Y≤n, Q∗), n > 0, any degree 0 morphism ζ̃ : Sα(Pn) → H0Sα(Q∗) with ζ̃Sα(d
X
n+1) =

0 gives rise to a morphism

ı̄(ζ̃) : (X≤n, P∗) −→ (Y≤n, Q∗)

whose only non-trivial component is gζ̃q
X
n : Xn → Yn,

· · · Xn−1
//

0

��

Xn

xxqqq
qqq

g
ζ̃
qXn

��

Pn

dd❍❍❍❍

0

��

g
ζ̃ &&▼
▼

▼ Pn+1

dd❍❍❍❍

0

��

Pn+2
oo

0

��

· · ·oo

· · · Yn−1
// Yn

xxqqq
qqq

Qn

dd❍❍❍

Qn+1

dd❍❍❍❍

Qn+2
oo · · ·oo

Here gζ̃ : Pn
−1
→ Yn is the morphism whose image by Sα is

Sα(Pn)
ζ̃

−→H0Sα(Q∗)
−1

⊂ Sα(Yn).

This construction defines a natural homomorphism

ı̄ : KerHom0
α,C (Sα(d

X
n+1), H0Sα(Q∗)) −→ Postn((X≤n, P∗), (Y≤n, Q∗)).

Proposition 6.45. The natural homomorphism ı̄ factors as

ı : Extn,−nα,C (H0Sα(P∗), H0Sα(Q∗)) −→ Postn((X≤n, P∗), (Y≤n, Q∗)).

Proof. It is enough to notice that if ζ̃ factors through Sα(d
X
n ) then ı̄(ζ̃) = 0. This

follows from dXn q
X
n = qXn−1i

X
n q

X
n = qXn−10 = 0. �

The kernel of ı = ı(X≤n,P∗),(Y≤n,Q∗) and of its composition with the natural pro-

jection onto the homotopy category Post≃n can be computed by means of spectral
sequences associated to the Postnikov system (X≤n, P∗). We omit the details to
avoid further technicalities, compare [Bau89, page 340 and VI.5.16].

Proposition 6.46. Given a morphism of n-truncated Postnikov systems

(ψ≤n, ϕ∗) : (X≤n, P∗) −→ (Y≤n, Q∗),

its (n − 1)-truncation (ψ≤n−1, ϕ∗) is nullhomotopic if and only if (ψ≤n, ϕ∗) is ho-
motopic to a morphism in the image of ı in Proposition 6.45.

Proof. The truncation of a morphism in the image of ı is trivial. Conversely, if
(ψ≤n−1, ϕ∗) is nullhomotopic then 0 = iYnψn−1 = ψni

X
n , so we can factor ψn = φqXn .

Moreover, ϕ∗ is nullhomotopic, so ϕn+1 = hn+1d
X
n+1 + dYn+2hn+2 for certain hn+1

and hn+2,

· · · Xn−1
//

ψn−1

��

Xn

xxqqq
qqq

ψn

��

Pn

dd❍❍❍❍

ϕn

��
hn+1

,,

❂
❃
❆
❋
▼
❚

φ

&&▼
▼

▼ Pn+1

dd❍❍❍❍

ϕn+1

��

hn+2

!!❇
❇

❇
❇

❇
Pn+2

oo

ϕn+2

��

· · ·oo

· · · Yn−1
// Yn

xxqqq
qqq

Qn

dd❍❍❍

Qn+1

dd❍❍❍❍

Qn+2
oo · · ·oo
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If we denote γ = φ− fYn+1hn+1 we have that γdXn+1 = 0, since

φdXn+1 = φqXn f
X
n+1 = ψnf

X
n+1 = fYn+1ϕn+1

= fYn+1(hn+1d
X
n+1 + dYn+2hn+2) = fYn+1hn+1d

X
n+1.

Here we use the cocycle condition fYn+1d
Y
n+2 = 0.

Using the direct sum decomposition in Lemma 6.34,
(

ξ1
ξ2

)

= Sα(γ) : Sα(Pn) −→ Sα(Yn) ∼= H0Sα(Q∗)⊕ ImSα(f
Y
n+1).

Since γdXn+1 = 0 we have ξkSα(d
X
n+1) = 0, k = 1, 2. Let us check that ı̄(ξ1) is

homotopic to (ψ≤n, ϕ∗). Notice that, since (ψ≤n−1, ϕ∗) is nullhomotopic, we only
have to check that ψn − gξ1q

X
n = (φ − gξ1)q

X
n factors through fYn+1 : Qn+1 → Yn

where gξ1 is the morphism whose image by Sα is ξ1. This is obvious since by
construction the image of Sα(φ − gξ1) = Sα(φ) − ξ1 lies on ImSα(f

Y
n+1) in the

previous direct sum decomposition. �

6.7. The obstruction of a module. In this short section we analyze the most
basic of the obstructions in Section 6.6.

Definition 6.47. The obstruction of an α-continuous C -module M is the obstruc-
tion of a 0-truncated Postnikov system (X0, P∗) with homology H0Sα(P∗) =M ,

κ(M) = κ(X0, P∗) ∈ Ext3,−1
α,C (M,M).

The following characterization of this obstruction extends [BKS04, Theorem 3.7].

Proposition 6.48. Given an α-continuous C -module M , κ(M) = 0 if an only if
M is a retract of a restricted representable functor Sα(X).

Proof. If κ(M) = 0 we can extend (X0, P∗) to a 1-truncated Postnikov system
(X≤1, P∗) by Proposition 6.38, and Lemma 6.34 shows that M is a direct sum-
mand of Sα(X1). Conversely, we always have κ(Sα(X)) = 0 from the existence of
Postnikov resolutions, see Corollary 6.11 and Proposition 6.38. Moreover, if

M
i //

Sα(X)
r

oo ri = idM

is a retraction, then, by Proposition 6.37,

κ(M) = idM ·κ(M) = ri · κ(M) = r · κ(Sα(X)) · i = 0.

�

Corollary 6.49. If Sα is full, then an α-continuous C -module M is isomorphic to
a restricted representable functor, M ∼= Sα(X), if and only if κ(M) = 0.

Proof. If M is a restricted representable functor, then κ(M) = 0 by Proposition
6.48. Conversely, if κ(M) = 0, then we have a retraction

M
i //

Sα(X)
r

oo ri = idM .

Since Sα is full ir : Sα(X) → Sα(X) is the image by Sα of some f : X → X . One
can check, as in the proof of Theorem 6.29, that M is isomorphic to the image by
Sα of

Hocolim(X
f

−→ X
f

−→ X
f

−→ · · · ).

�
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6.8. Connection with the Adams spectral sequence. Given a pair of objects
X and Y in T , the Adams spectral sequence is a conditionally convergent cohomo-
logical spectral sequence abutting to T ∗(X,Y ) with E2-term

Ep,q2 = Extp,qα,C (Sα(X), Sα(Y )),

cf. [Chr98, Section 4]. It is defined by the exact couple

T (W∗, Y ) oo
T (j∗,Y )

(−1,0)
T (W∗, Y )
88

T (r∗,Y )

(0,−1)

qqq
qqq

qqq
qq

T (P∗, Y )
&&

T (g∗,Y )

(+1,0)

◆◆◆◆◆◆◆◆◆◆

associated to an Adams resolution (X,W∗, P∗) of X . Here we set W−1 = X . The
induced decreasing filtration of T ∗(X,Y ) is the filtration by powers of the ideal I

of phantom maps.
The following result relates the obstruction to the lifting of morphisms along

tn−1 in Definition 6.39 with the differentials of the Adams spectral sequence.

Proposition 6.50. Given Postnikov resolutions (X,X∗, P∗) and (Y, Y∗, Q∗) and
a morphism of (n − 1)-truncated Postnikov systems (ψ≤n−1, ϕ∗) : (X≤n−1, P∗) →
(Y≤n−1, Q∗), n > 0, the differentials of the previous Adams spectral sequence satisfy

dk(H0Sα(ϕ∗) : Sα(X) −→ Sα(Y )) =

{

0 if 2 ≤ k ≤ n

θ(X≤n,P∗),(Y≤n,Q∗)(ψ≤n−1, ϕ∗) if k = n+ 1.

In particular, if f : Sα(X) → Sα(Y ) is a morphism satisfying dk(f) = 0 for 1 <
k ≤ n, then there exists a morphism of (n−1)-truncated Postnikov systems as above
with f = H0Sα(ϕ∗).

Proof. The second part of the statement follows from the first part and Proposition
6.41. Let us deal with the first part.

Take an Adams resolution (X,W∗, P∗) adapted to (X,X∗, P∗) in the sense of
Lemma 6.10. The morphisms φn and idPn

, n ≥ 0, define a morphism between the
previous exact couple and the exact couple

T (X∗, Y ) oo
T (i∗,Y )

(−1,0)
T (X∗, Y )
88

T (q∗,Y )

(0,−1)

qq
qq
qq
qq
qq

T (P∗, Y )
&&

T (f∗,Y )

(+1,0)

▼▼▼▼▼▼▼▼▼▼

associated to the Postnikov system (X∗, P∗). This morphism is the identity on
E1-terms, and hence on Ek-terms for all k ≥ 1. We can therefore compute the
differentials of the Adams spectral sequence by using this second exact couple.



44 FERNANDO MURO AND ORIOL RAVENTÓS

Let n = 1. Since H0Sα(ϕ∗) is represented by pY0 (q
Y
0 )−1ϕ0q

X
0 , using the second

exact couple it is clear that d2(H0Sα(ϕ∗)) is represented by pY1 ψ
′
1f
X
2 .

X

0

__❄❄❄❄
iX0 // X0

pX0

oo

ψ0

��

+1

qX0
ww♦♦♦

♦♦♦
♦

iX1 // X1

pX1

ψ′
1

��
✤
✤
✤
✤
✤
✤+1

qX1
ww♦♦♦

♦♦♦
♦ · · ·

P0

__❄❄❄❄

ϕ0

��

P1

__❄❄❄

ϕ1

��

P2

fX
2__❄❄❄

ϕ2

��

Y

0

__❄❄❄❄
iY0 // Y0

pY0

oo

+1

qY0
ww♦♦♦

♦♦♦
♦

iY1 // Y1

pY1

+1

qY1
ww♦♦♦

♦♦♦
♦ . . .

Q0
fY
0

__❄❄❄❄

Q1
fY
1

__❄❄❄

Q2
fY
2

__❄❄❄

Moreover, Sα(p
Y
1 ψ

′
1f

X
2 ) = θ̃ by Lemma 6.15 since

pY1 (ψ
′
1f
X
2 − fY2 ϕ2) = pY1 ψ

′
1f

X
2 − pY1 f

Y
2 ϕ2 = pY1 ψ

′
1f
X
2 − 0ϕ2 = pY1 ψ

′
1f

X
2 .

If n > 1 then ψ′
1 = ψ1 and pY1 ψ

′
1f
X
2 = pY1 f

Y
2 ϕ2 = 0ϕ2 = 0 by Lemma 6.15. In

this way, by induction dk(H0Sα(ϕ∗)) = 0 for 1 < k ≤ n and dn+1(H0Sα(ϕ∗)) is

represented by pYn ψ
′
nf

X
n+1. Moreover, Sα(p

Y
nψ

′
nf

X
n+1) = θ̃ by Lemma 6.15 since

pYn (ψ
′
nf

X
n+1 − fY2 ϕn+1) = pYn ψ

′
nf

X
n+1 − pYn f

Y
n+1ϕn+1

= pYn ψ
′
nf

X
n+1 − 0ϕn+1 = pYnψ

′
nf

X
n+1.

�

7. The first obstruction of an extension of representables

A triangulated category is said to be algebraic if it is a full triangulated subcate-
gory of the homotopy categoryK(A ) of some additive categoryA , cf. [Kra07, §7.5].

Theorem 7.1. Let T be an algebraic triangulated category. Suppose F is a
C -module fitting into a short exact sequence

Sα(Y )
a
→֒ F

b
։ Sα(X)

classified by

eF ∈ Ext1,0
C

(Sα(X), Sα(Y )).

Then the obstruction of F is

κ(F ) = a · d2(eF ) · b ∈ Ext3,−1
C

(F, F ),

where d2 is the second differential of the Adams spectral sequence in Section 6.8
abutting to T ∗(X,Y ).

This result is a paradigmatic example of a statement which makes sense for any
triangulated category but which requires the use of models in its proof. The proof
uses maps and homotopies in the category of complexes in A , actually homotopy
classes of homotopies suffice, but we will not get into such technicalities. Never-
theless, this suggests that it should be enough to assume that T is the homotopy
category of a triangulated track category [BM08, BM09]. This includes topological
triangulated categories, i.e. full triangulated subcategories of stable model cate-
gories. The proof in the non-additive setting is however more complicated. This is
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why we restrict to algebraic triangulated categories here. The proof is at the end
of this section.

Definition 7.2. Let C(A ) be the category of chain complexes in an additive
category A . Differentials of chain complexes in A are denoted by ∂ and have
degree −1. We add a superscript ∂A if we need to specify the complex A. A type
0 standard exact triangle starting at A is a diagram in C(A )

A
f

// B

i��⑧⑧
⑧⑧
⑧

Cf
q

+1
__❄❄❄❄❄

such that Cf is the mapping cone of f ,

(Cf )n = An−1 ⊕Bn, ∂
Cf
n =

(

−∂An−1 0
fn−1 ∂Bn

)

,

and i and q are given by

Bn
in=(01)

// (Cf )n = An−1 ⊕Bn
qn=(1,0)

// An−1.

The type 1 standard exact triangle starting at ΣA and the type 2 standard exact
triangle starting at A are

ΣA
f

+1

// B

i��⑧⑧
⑧⑧
⑧

Cf
q

__❄❄❄❄❄

A
f

// B

i

+1

��⑧⑧
⑧⑧
⑧

Σ−1Cf
q

__❄❄❄❄❄

respectively. Notice that, in all cases, qi = 0 in C(A ).

Remark 7.3. Recall that a chain map
(

g
h

)

: D → Cf is the same as a chain map

g : D → ΣA, given by morphisms gn : Dn → An−1 with ∂An−1gn + gn−1∂
D
n = 0, to-

gether with a nullhomotopy h : (Σf)g ⇒ 0, i.e. a sequence of morphisms hn : Dn →
Bn with fn−1gn + ∂Bn hn = hn−1∂

D
n . Similarly, a chain map (h, g) : Cf → D is

simply a map g : B → D together with a nullhomotopy h : gf ⇒ 0.

Suppose for the rest of this section that T is algebraic, and fix an embedding
T ⊂ K(A ) which allows us to work with complexes in A . The following lemma
shows how to compute κ(F ) by means of chain homotopies.

Lemma 7.4. Let F be an α-continuous C -module and

· · · → Rm
dm−→ Rm−1 → · · · → R0

a sequence of morphisms in C(A ) whose homotopy classes lie in T and map by
Sα to a resolution of F in Modα(C ). Let hm : dmdm+1 ⇒ 0 be nullhomotopies,
m = 1, 2,

R0R1 +1

d1 //R2 +1

d2 //

+2

0

""

R3 +1

d3 //

+2

0

<<
h2��

h1

KS
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The degree +2 chain morphism R3 → R0 defined by the morphisms

h1,n−1d3,n − d1,n−1h2,n : R3,n −→ R0,n−2, n ∈ Z,

represents κ(F ).

Proof. The nullhomotopies consist of morphisms hm,n : Rm+1,n → Rm−1,n−1 in A ,
n ∈ Z, with

dm,n−1dm+1,n = ∂
Rm−1

n−1 hm,n + hm,n−1∂
Rm+1
n .

Take Z0 = ΣR0, f1 = d1, and extend this morphism to a standard exact triangle

of type 0 starting at R1. For the definition of κ(F ) we can take f ′
2 =

(

d2
h1

)

: R2 →
Z1 = Cd1 as in the following diagram

ΣR0
i1 //❴❴❴❴❴❴ Z1

q1

+1

��⑧
⑧
⑧
⑧

R1

d1

__❄❄❄❄❄❄❄

R2
d2

+1
oo

f ′
2

__❄
❄
❄
❄

R3
d3

+1

oo · · ·oo

Then f ′
2d3 is given by the following morphisms in A , n ∈ Z:

(

d2,n−1

h1,n−1

)

d3,n =

(

d2,n−1d3,n
h1,n−1d3,n

)

=

(

∂R1

n−1h2,n + h2,n−1∂
R3
n

h1,n−1d3,n

)

.

We can deform this representative of the composite f ′
2d3 in T by using the mor-

phisms
(

h2,n

0

)

: R3,n → R1,n−1 ⊕ R0,n, n ∈ Z, obtaining a chain morphism in the
same homotopy class defined by the following morphisms in A , n ∈ Z:

(

d2,n−1

h2,n−1

)

d3,n −

(

h2,n−1

0

)

∂R3
n − ∂

Cd1
n

(

h2,n
0

)

=

(

∂R1

n−1h2,n + h2,n−1∂
R3
n

h1,n−1d3,n

)

−

(

h2,n−1

0

)

∂R3
n −

(

−∂
R1
n−1 0

d1,n−1 ∂
R0
n

)(

h2,n
0

)

=

(

0

h1,n−1d3,n − d1,n−1h2,n

)

,

hence we are done. �

Lemma 7.5. Let (X,X∗, P∗) be a Postnikov resolution whose underlying Postnikov
system consists of type 2 standard triangles starting at Xm−1, m ≥ 0, where X−1 =
0,

0
i0 // X0

+1

q0

��⑧⑧
⑧⑧
⑧

i1 // X1

+1

q1

��⑧⑧
⑧⑧
⑧

i2 // X2

+1

q2

��⑧⑧
⑧⑧
⑧

i3 // X3

+1

q3

��⑧⑧
⑧⑧
⑧

· · ·

P0

f0

__❄❄❄❄❄❄

P1

f1

__❄❄❄❄❄❄

P2

f2

__❄❄❄❄❄❄

P3

f3

__❄❄❄❄❄❄

Given e ∈ Exts,tα,C (Sα(X), Sα(Y )) = Es,t2 represented by a chain map ẽ : Ps → Y

of degree s + t, if l : ẽdXs+1 ⇒ 0 is a nullhomotopy, then the image of e by the

Adams spectral sequence’s second differential d2(e) ∈ Exts+2,t−1
α,C (Sα(X), Sα(Y )) =

Es+2,t−1
2 is represented by the chain map Ps+2 → Y of degree s+ t+ 1 defined by

the following morphisms, n ∈ Z:

−ln−1d
X
s+2,n : Ps+2,n −→ Yn−s−t−1.
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Proof. The nullhomotopy l is given by morphisms ln : Ps+1,n → Yn−s−t in A sat-

isfying ẽn−1d
X
s+1,n = ∂Yn−s−tln + ln−1∂

Ps+1
n , n ∈ Z. This nullhomotopy and ẽqXs

define a degree s+ t+ 1 morphism (l, ẽqXs ) : CfX
s+1

→ Y . Since the extact triangles

of (X∗, P∗) are standard of type 2, Ps+1 is the the desuspension of the mapping
cone of iXs+1, and CfX

s+1
is given by

(CfX
s+1

)n = Xs,n−1 ⊕Xs+1,n ⊕Xs,n, ∂
C

fX
s+1

n =







−∂Xs

n−1 0 0

is+1,n ∂
Xs+1
n 0

1 0 ∂Xs
n






.

The inclusion of the middle direct summands




0
1
0



 : Xs+1,n −→ (CfX
s+1

)n = Xs,n−1 ⊕Xs+1,n ⊕Xs,n

yield a homotopy equivalence Xs+1
∼
→ CfX

s+1
such that the triangle

Xs

is+1
//

inclusion into
mapping cone

!!❉
❉❉

❉❉
❉❉

❉❉
Xs+1

∼

��

CfX
s+1

anticommutes up to the homotopy given by the morphisms




1
0
0



 : Xs,n −→ (CfX
s+1

)n+1 = Xs,n ⊕Xs+1,n+1 ⊕Xs,n+1.

Hence −d2(e) is represented by

Ps+2

fX
s+2

// Xs+1
∼ // CfX

s+1

(l,ẽqXs )

p+s+1

// Y.

This composite is defined by the morphisms ln−1d
X
s+2,n, n ∈ Z, hence we are done.

�

Remark 7.6. It is always possible to represent a Postnikov system by type 2 stan-
dard triangles as in the statement of Lemma 7.5. Moreover, in the conditions of
that statement, if ẽ : Ps → Y represents an element in Exts,tα,C (Sα(X), Sα(Y )) there

must exist a nullhomotopy l : ẽdXs+1 ⇒ 0 since ẽdXs+1 = 0 in T .

Proof of Theorem 7.1. Take a Postnikov resolution (X,X∗, P∗) whose underlying
Postnikov system (X∗, P∗) consists of type 2 standard triangles starting at Xm−1,
m ≥ 0, and an Adams resolution (Y,W∗, Q∗) consisting of type 2 standard triangles
starting at Y andWm, m ≥ 0. By elementary homological algebra, there are degree
+1 chain maps sm : Pm → Qm−1, m > 0, such that the morphisms

dZm =

(

dYm sm
0 dXm

)

: Qm ⊕ Pm −→ Qm−1 ⊕ Pm−1,

map to a projective resolution of F in Modα(C ). The element eF is represented by
−Sα(s1). Since these matrices define differentials in T , dXmd

X
m+1 = 0, dYmd

Y
m+1 = 0,

and dYmsm+1 + smd
X
m+1 = 0. The first two equations also hold at the level of chain
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maps by the properties of standard triangles. For the third equation, we choose
an arbitrary nullhomotopy km : dYmsm+1 + smd

X
m+1 ⇒ 0, defined by morphisms

km,n : Pm+1,n → Qm−1,n−1, n ∈ Z, satisfying

dYm,n−1sm+1,n + sm,n−1d
X
m+1,n = ∂

Qm−1

n−1 km,n + km,n−1∂
Pm+1
n .(7.7)

We take hm : dZmd
Z
m+1 ⇒ 0, m = 1, 2, to be defined by

hm,n =

(

0 km,n
0 0

)

, n ∈ Z.

By Lemma 7.4 the following morphisms define a chain morphism representing κ(F ),
(

0 k1,n−1d
X
3,n − dY1,n−1k2,n

0 0

)

: Q3,n ⊕ P3,n −→ Q0,n−2 ⊕ P0,n−2.

This shows that if x ∈ Ext3,−1
α,C (Sα(X), Sα(Y )) is the element represented by the

chain map defined by the following morphisms, n ∈ Z,

g0,n−2(k1,n−1d
X
3,n − dY1,n−1k2,n) = g0,n−2k1,n−1d

X
3,n − 0k2,n = g0,n−2k1,n−1d

X
3,n,

then

κ(F ) = a · x · b.

We now identify this x with d2(eF ).
Take

ẽ : P1
s1−→
+1

Q0
g0
−→ Y, ln = g0,n−1k1,n, n ∈ Z.

We must check that l defined in this way is a homotopy. Indeed, since g0 is a chain
map

∂Yn−1ln + ln−1∂
P2
n = ∂Yn−1g0,n−1k1,n + g0,n−2k1,n−1∂

P2
n

= g0,n−2∂
Q0

n−1k1,n + g0,n−2k1,n−1∂
P2
n

= g0,n−2(∂
Q0

n−1k1,n + k1,n−1∂
P2
n )

= g0,n−2(d
Y
1,n−1s2,n + s1,n−1d

X
2,n) by (7.7)

= 0s2,n + g0,n−2s1,n−1d
X
2,n

= ẽn−1d
X
2,n.

Hence d2(eF ) = x by Lemma 7.5. �

8. A characterization of α-compact objects

The following theorem is used in Sections 3 and 4 to prove that some categories
satisfy AROℵ1 .

Theorem 8.1. Let α be a regular cardinal. Suppose that β is a cardinal satisfying
one of the following hypotheses:

(1) β = (γ<δ)+ for some γ ≥ cardT α and some regular cardinal δ ≥ α.
(2) β > cardT α is inaccessible.

Then T β is the full subcategory of objects Z such that T (Y, Z) < β for any Y
in T α.
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One can easily produce cardinals satisfying (1), however the existence of cardinals
as in (2) depends on large cardinal principles. Theorem 8.1 recovers Krause’s
[Kra02, Theorem C] by taking β = (γ<δ)+ as in (1) for γ = cardT α and δ = α+,
i.e. β = ((cardT α)α)+. Notice that the smallest cardinal β we can take as in (1)
is β = ((cardT α)<α)+, which is smaller than Krause’s choice.

Lemma 8.2. Let β be as in the statement of Theorem 8.1. Given a set I of
card I < β and objects Xi, Y in T α, i ∈ I, then cardT (Y,

∐

i∈I Xi) < β.

Proof. Notice that β > cardT α in both cases. Since Y is α-small,

T (Y,
∐

i∈I

Xi) = colim
J⊂I

card J<α

T
α(Y,

∐

i∈I

Xi).

The cardinal of this set is bounded above by (card I)<α · cardT α, so it is enough
to check that (card I)<α < β. If β satisfies condition (2), the result follows from
the strong limit property. Otherwise, (card I)<α ≤ (γ<δ)<α = γ<δ < β by [AR94,
Lemma 2.10]. �

The following lemma is obvious.

Lemma 8.3. Let S be a class of objects in T closed under (de)suspensions, ΣS =
S, and β an infinite cardinal. The full subcategory of objects Z such that T (Y, Z) <
β for all Y ∈ S is triangulated.

We are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. Denote S the full subcategory of T spanned by the objects
Z such that T (Y, Z) < β for any Y in T α. This subcategory is triangulated
by Lemma 8.3. We claim that Z is in S if and only if there is an morphism
g0 : P0 =

∐

i∈I Xi → Z with Xi in T α and card I < β, such that Sα(g0) is an
epimorphism. If such a morphism exists, then for any Y in T α, cardT (Y, Z) ≤
cardT (Y,

∐

i∈I Xi) < β by Lemma 8.2, so Z is in S . Conversely, if Z is in S ,
consider the evaluation morphism

g : P =
∐

Y in T
α

T (Y,Z)

Y −→ Z.

The coproduct is indexed by a set of cardinality ≤
∑

cardT α cardT (Y, Z) < β,
since β is regular, and Sα(g) is clearly an epimorphism.

We now prove that S = T α. Given an object Z in S , we can construct, as
in Remark 6.7, an Adams resolution (Z,W∗, P∗) where each Pn is a direct sum of
< β objects in T α ⊂ T β , so each Pn is in T β . Let (Z,Z∗, P∗) be an associated
Postnikov resolution, as in Lemma 6.10. It can be seen by induction that each Zn
is in T β since we have exact triangles Pn → Zn−1 → Zn → ΣPn. Hence Z =
Hocolimn Zn is also in T β because, since β > ℵ0, T β has countable coproducts.
This proves S ⊂ T β.

Since T β is the smallest β-localizing subcategory containing a set of α-compact
generators, in order to show T β ⊂ S it is enough to see that S is β-localizing,
i.e. closed under coproduct of < β objects. Let {Zj}j∈J be a set of objects in S

with cardJ < β. By the first part of the proof there are morphisms gj : Pj → Zj
such that Pj is a coproduct of < β objects in T α and Sα(gj) is an epimorphism for
all i ∈ J . Hence, the source of

∐

j∈J gj :
∐

j∈J Pj →
∐

j∈J Zj is also a coproduct
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of < β objects in T α. Moreover, Sα(gj) is an epimorphism by [Kra01, Theorem
A], therefore

∐

j∈J Zj is in S . �

Proposition 8.4. Let T be an α-compactly generated triangulated category and
κ > α be regular cardinal such that either κ is strongly inaccessible or 2λ = λ+ for
every λ < κ. If cardT α ≤ κ, then cardT κ = κ.

Proof. Our assumptions on κ and [Jec03, Theorem 5.20] show that κ<κ = κ. Taking

β = κ+ in Theorem 8.1, we deduce that the size of morphism sets in T κ+

is < κ+,

i.e. ≤ κ. Hence the same is true for T κ ⊂ T κ+

.
By the proof of [Nee01b, Lemma 3.2.4 and Proposition 3.2.5], the set of objects

Sκ of T κ can be constructed as a continuous increasing union Sκ =
⋃

µ<κ Sµ
starting with the set S0 of objects of T α. The set Sµ+1 is defined from Sµ by
adding coproducts of< κ objects in Sµ and mapping cones of all possible morphisms
between such coproducts. Assume that cardSµ ≤ κ. Adding coproducts of < κ
objects increases the cardinal at most to (cardSµ)

<κ ≤ κ<κ = κ. Adding mapping
cones neither increases the cardinal of Sµ since the size of morphism sets in T κ

is ≤ κ. �

Corollary 8.5. Let T be an ℵ1-compactly generated triangulated category. As-
suming the continuum hypothesis, if cardT ℵ0 ≤ ℵ1, then cardT ℵ1 = ℵ1.
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(1957), 119–221.
[Jec03] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003,

The third millennium edition, revised and expanded.
[JL89] C. U. Jensen and H. Lenzing, Model-theoretic algebra with particular emphasis on fields,

rings, modules, Algebra, Logic and Applications, vol. 2, Gordon and Breach Science
Publishers, New York, 1989.

[Kra00] H. Krause, Smashing subcategories and the telescope conjecture—an algebraic approach,
Invent. Math. 139 (2000), no. 1, 99–133.

[Kra01] , On Neeman’s well generated triangulated categories, Doc. Math. 6 (2001), 121–
126 (electronic).

[Kra02] , A Brown representability theorem via coherent functors, Topology 41 (2002),
no. 4, 853–861.

[Kra05] , The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005),
no. 5, 1128–1162.

[Kra07] , Derived categories, resolutions, and Brown representability, 101–139, Contemp.
Math., 436, Amer. Math. Soc., Providence, RI, 2007.

[Kra10] , Localization theory for triangulated categories, Triangulated categories, 161–
235, London Math. Soc. Lecture Note Ser., 375, Cambridge Univ. Press, Cambridge,
2010.

[Mur11] D. Murfet, Rouquier’s cocovering theorem and well-generated triangulated categories, J.
K-Theory 8 (2011), no. 1, 31–57.

[Nee97] A. Neeman, On a theorem of Brown and Adams, Topology 36 (1997), no. 3, 619–645.
[Nee98] , Brown representability for the dual, Invent. Math. 133 (1998), no. 1, 97–105.
[Nee01a] , On the derived category of sheaves on a manifold, Doc. Math. 6 (2001), 483–488

(electronic).
[Nee01b] , Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton

University Press, Princeton, NJ, 2001.
[Nee08] , The homotopy category of flat modules, and Grothendieck duality, Invent. Math.

174 (2008), no. 2, 255–308.
[Nee09] , Brown representability follows from Rosický’s theorem, J. Topol. 2 (2009), no. 2,
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