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Classical



Factorization problem

A factorization structure of an algebra C' by means of algebras
A and B is a pair (i4,7p) of algebra morphisms i : A — C,
ip: B — C such that B® A= C via uc(ia ®ip).

Factorization structures ge——p Distributive laws
ome—KLeo—oeme

A distributive law of A over Bisalinearmap7: AQ B > B® A
obeying

T(pa @ B) = (B@MA)(T@A)(A@T)
T(A®u) = (up®A)(B®T)(T® B)
re®l) = 1®a 7(1QD0)=>0x1

for any a € A,b € B.
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Factorization problem

For any distributive law 7: A ® B — B ® A, the map

pr = (uB @ pa)(BRTQ A)
defines an associative and unital multiplication on B ® A.

The algebra (B ® A, ;) is called wreath product of A and B
and denoted by B ®, A.

Proposition. For any factorization structure of an algebra C' by
means of algebras A and B, there exists an unique distributive
law 7: A® B — B ® A such that C' is isomorphic to B ®, A
as a wreath product.



Quantum duplicates

Consider a manifold M representing some physical system:

T

A =C®(M)

From a dual point of view, this manifold can be also represented
by some algebra of functions, for instance, A = C*°(M)
(the algebra of smooth functions on M) over some base field k.
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Quantum duplicates

Consider a manifold M representing some physical system:

Quantized situation!

Ml\/\) M i |
M2moo(M)) M o

Commutative duplicate Non-commutative duplicate

Deformation of A ® k? with
similar structural properties




Quantum duplicates

A quantum duplicate of an algebra A is a wreath product B&, A,
where dimy(B) = 2.

dimy(B) =2 — B = k[z]|/(p(x)), p(x) =2* —cx+d, c,d € k.

Proposition (Cortadellas et al.). The set of distributive laws
7 : k|| ® B — B ® k|¢] is in one-to-one correspondence with the

set of pairs (f,d) obeying

¢ f: B — B is an endomorphism of algebras,
& 0: B — B is a left f-derivation,

o 0% —cd=d(f*—1),

o f5+0f =c(f - f?).
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Weak



Weak factorization problem

A weak factorization structure of an algebra C' by means

of algebras A and B is a triple (i4,ip,%) of algebra morphisms
ia:A— Ciig: B— Csuchthat::C - B® Ais (B,A)-

bimodule section of puc(ia R ip).

Weak distributive laws <g——p Weak factorization structures
eme—kLe—eme

A weak distributive law of A over B is a linear map
U:A® B — B® A obeying
U(pa®@B) = (B ua)(¥e A)(AR D)
V(A®up) = (up®A)(BY)(¥®B)
Vel = ¥Y(1x®1l)a Y(1IRd0) = W (1IXI1).
for any a € A,b € B.
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Weak factorization problem

For any weak distributive law 7: A® B —+ B ® A, the map

po = (pp @ pa)(BRY ® A)
defines an associative multiplication on B ® A

The natural candidate, the element 1 ® 1, fails to be the unit for
this multiplication: For any a € A,b € B,

(a®b)(1®1)
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Weak factorization problem

For any weak distributive law 7: A® B —+ B ® A, the map

po = (pp @ pa)(BRY ® A)
defines an associative multiplication on B ® A

The natural candidate, the element 1 ® 1, fails to be the unit for
this multiplication: For any a € A,b € B,

(a®b)(1®1) = aV(b®1l) X a®b
38

1®b

Lemma. The element 1 = (1® 1) is a central idempotent for the
multiplication py.



Weak factorization problem

Proposition (Street). Let ¥ : A® B — B® A a weak distributive
law. Then the linear map

ky : BRA—->BRA ke(b®a):=0b®1)(1®a)

is an idempotent endomorphism of (non-unital) algebras and of
(B, A)-bimodules and kg¥ =V and Kyuy = ly.

Denote by B ®y A the range of kg in B ® A.

= (B ®y A, uy) is a unital algebra, termed as weak wreath
product of A and B.



Weak factorization problem

Proposition (Bohm & Gomez-Torrecillas). For any weak distribu-
tivelaw UV : A® B — B ® A, the maps

ip:A—>B®g A, bRa— (b1)(1x®1)
ian: A—>B®R¢A, d®ae— (1®1)(1®a)

and the inclusion 7 : B @y A — B ® A constitutes a weak factor-
ization of B @y A.

Conversely, if (ip,74,%) is a weak factorization of an algebra C' by
means of algebras A and B, then the map ¥ := iuc(ia ® i) is
a weak distributive law of A over B such that the corresponding
ry splits and C = B ®y A as unital algebras.



Weak quantum duplicates

We call weak quantum duplicate a weak wreath product
involving an arbitrary algebra B and a 2-dimensional algebra A.

The number of ways in which this 2-dimensional
factor can be chosen depends on the field k.

More concretely, if £ admits a degree 2 field extension k, then
there are three non-isomorphic algebras of dimension 2 (over k):

o The trivial direct product k?
* The ring of dual numbers

e (Quadratic field extensions of k



Weak quantum duplicates

We call weak quantum duplicate a weak wreath product
involving an arbitrary algebra B and a 2-dimensional algebra A.

The number of ways in which this 2-dimensional
factor can be chosen depends on the field k.

More concretely, if £ admits a degree 2 field extension k, then
there are three non-isomorphic algebras of dimension 2 (over k):

o The trivial direct product k* = klx]/ < a? — 2 >

 The ring of dual numbers >~ klx]/ < 2 >

e Quadratic field extensions of k = k|z|/ < p(z) >
p(x) irreducible



Weak quantum duplicates

Aim: To give a characterization of

weak quantum duplicates

I

weak distributive laws
U : k[(] ® B — B ® k[€], with €2 = c£ — d.



Characterization

Theorem. Let B be an algebra over k. The set of weak distributive
laws U : k|£|® B — B ® k[£] is in one-to-one correspondence with
the set of quadruples (f,9,p,q), where f,0 : B — B are linear
maps and p, g are elements of B obeying:

o(b) f(b)
([ op=p’ —dq, q=cq +pq+qp
©d0° —cd=d(f°—Dp)
ofot+of=clf—f)—dg
©d = 0p — dfg = po — dqf
o f=cfq+fp+0q=cqf +0 +pf
. of(1)=p+ecqg, (1) =—dg
denoting p, ¢ the maps B — B sending any b € B to bp and bgq.

* B— M,(B), b ( op by ) is multiplicative.




Characterization

Theorem. Let B be an algebra over k. The set of weak distributive
laws U : k|£|® B — B ® k[£] is in one-to-one correspondence with
the set of quadruples (f,9,p,q), where f,0 : B — B are linear
maps and p, g are elements of B obeying:

o(b) f(b)

([ op=p’ —dq, q=cq +pq+qp
©d0° —cd=d(f°—Dp)
ofot+of=clf—f)—dg
©d = 0p — dfg = po — dqf
o f=cfq+fp+0q=cqf +0 +pf

. of(1)=p+ecqg, (1) =—dg

denoting p, ¢ the maps B — B sending any b € B to bp and bgq.

* B—> M,(B), b~ ( b by > is multiplicative.
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condition
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Characterization

Theorem. Let B be an algebra over k. The set of weak distributive
laws U : k(] ® B — B ® k[£] is in one-to-one correspondence with

the set of quadruples (f,9d,p,q), where f,0 : B — B are linear
maps and p, g are elements of B obeying:

* B> M,(B), b~ ( 512213) fb(%) > is multiplicative.

( op=p°—dq’, q=-cq’+pq+qp

(f,5)-equations

\

denoting p,q the maps B — B sending any b € B to bp and bq.



Characterization

Remarks.

e The first ‘multiplicativity’ condition is
independent of the 2—dimensional factor.

e This characterization generalizes that one
by Cibils and Cortadellas et al.. Indeed,
(non-weak) quantum duplicates are labeled

by those quadruples of the type (1,0, f,d).

e dzm(B OSONT, k[g]) % 2 - dzm(B) (in general).



Application

Aim: Classify (up to isomorphism) the weak wreath products of
two 2—dimensional algebras.

Method: Determine the weak distributive laws
U : k[E] @ k[n] — kn] ® k[¢], with €2 =c§ —d, n°* = Cn— D.

Cases:

k does NOT admit
guadratic extensions
=
o
X
S
3~
S
/N N /L /N
o
o
o
SN——" \_O/ N—"



Application

Aim: Classify the weak wreath products over two 2—dimensional
algebras.

Method: Determine the weak distributive laws
U : k[E] @ k[n] — kn] ® k[¢], with €2 =c§ —d, n°* = Cn— D.

Cases:

(c¢,d,C, D)
c .9 =
2 Koy k’ (1,0,1,0) 2 & Pt 1@y k(]
08 Kkl @y k[¢(]——(0,0,0,0) 55 L @y U
88 Kk’ ©uk[(] (1,0,0,0) xg k2 @
©
i S k@’ (0,0,1,0) s k[ ®vl



Brief comments

e For most of the cases, we use mathematical soft-
ware to solve all the equations imposed on such weak
distributive laws.

e (p,q)—equations are crucial within the system of
equations. They are solved first. For each solution
pair (p,q), the remaining equations are then solved,
obtaining the admissible (f,d).

e Charasteristic of the field k£ matters (we distin-
guish char(k) = 2 or char(k) # 2).



2x2=3and

commutative x commutative = non-commutative

Set u; = (1,0) and us = (0,1) and consider the following bases
of k% and the ring T of upper triangular matrices:

Birgrz = {u1 @ u1, u1 @ u2, U2 @ U1, Uz @ Ua}

rr-t=(55) 0= (82) o= (8 0]

We have the following two homomorphisms of unital k—algebras:

% P s T k2 i > T
Ui — a+x uy —y
Uy — Y — « Uy — &




2x2=3and

commutative x commutative = non-commutative

Then,
v k? Rk B®7>T®T T T

and
LT — K2 ®K?

T——> UL QUs, Y= U QUL +U2 R U, C+—— Ul QU

hold v ot = id+, and ¢ is an homomorphism of k*-bimodules.
That is, v is an splitting epimorphism of k?~bimodules.

Hheotem k2 o0 k2, for the following weak distributive law:

U 2ok 2 T T T Tt k2o k2
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