# Weak wreath products and weak quantum duplicates

Esperanza López Centella



University of Novi Sad

AAA91 – 91st Workshop on General Algebra

Brno, Czech Republic, February 2016

# Classical

### Factorization problem

A factorization structure of an algebra C by means of algebras A and B is a pair  $(i_A, i_B)$  of algebra morphisms  $i_A : A \to C$ ,  $i_B : B \to C$  such that  $B \otimes A \cong C$  via  $\mu_C(i_A \otimes i_B)$ .

Factorization structures



Distributive laws

A distributive law of A over B is a linear map  $\tau: A \otimes B \to B \otimes A$  obeying

$$\tau(\mu_A \otimes B) = (B \otimes \mu_A)(\tau \otimes A)(A \otimes \tau)$$

$$\tau(A \otimes \mu_B) = (\mu_B \otimes A)(B \otimes \tau)(\tau \otimes B)$$

$$\tau(a \otimes 1) = 1 \otimes a, \quad \tau(1 \otimes b) = b \otimes 1$$

for any  $a \in A, b \in B$ .

#### Factorization problem

A factorization structure of an algebra C by means of algebras A and B is a pair  $(i_A, i_B)$  of algebra morphisms  $i_A : A \to C$ ,  $i_B : B \to C$  such that  $B \otimes A \cong C$  via  $\mu_C(i_A \otimes i_B)$ .

Factorization structures



Distributive laws

A distributive law of A over B is a linear map  $\tau: A \otimes B \to B \otimes A$  obeying

$$\tau(\mu_A \otimes B) = (B \otimes \mu_A)(\tau \otimes A)(A \otimes \tau)$$

$$\tau(A \otimes \mu_B) = (\mu_B \otimes A)(B \otimes \tau)(\tau \otimes B)$$

$$au(a\otimes 1) = 1\otimes a, \quad au(1\otimes b) = b\otimes 1$$

for any  $a \in A, b \in B$ .

#### Factorization problem

For any distributive law  $\tau: A \otimes B \to B \otimes A$ , the map

$$\mu_{\tau} := (\mu_B \otimes \mu_A)(B \otimes \tau \otimes A)$$

defines an associative and <u>unital</u> multiplication on  $B \otimes A$ .

The algebra  $(B \otimes A, \mu_{\tau})$  is called **wreath product** of A and B and denoted by  $B \otimes_{\tau} A$ .

Proposition. For any factorization structure of an algebra C by means of algebras A and B, there exists an unique distributive law  $\tau: A \otimes B \to B \otimes A$  such that C is isomorphic to  $B \otimes_{\tau} A$  as a wreath product.

Consider a manifold M representing some physical system:



$$A = \mathcal{C}^{\infty}(M)$$

From a dual point of view, this manifold can be also represented by some algebra of functions, for instance,  $A = \mathcal{C}^{\infty}(M)$ (the algebra of smooth functions on M) over some base field k.

Consider a manifold M representing some physical system:



Commutative duplicate

$$A \times A \cong A \otimes k^2$$

Consider a manifold M representing some physical system:



**Closer and closer!** 



Commutative duplicate

$$A \times A \cong A \otimes k^2$$

Consider a manifold M representing some physical system:



#### **Quantized situation!**



Commutative duplicate

$$A \times A \cong A \otimes k^2$$

Consider a manifold M representing some physical system:



Commutative duplicate

$$A \times A \cong A \otimes k^2$$

#### **Quantized situation!**



Non-commutative duplicate

$$A \otimes_{\tau} k^2$$

Consider a manifold M representing some physical system:



Commutative duplicate

$$A \times A \cong A \otimes k^2$$

#### **Quantized situation!**



Non-commutative duplicate



Deformation of  $A \otimes k^2$  with similar structural properties

A quantum duplicate of an algebra A is a wreath product  $B \otimes_{\tau} A$ , where  $dim_k(B) = 2$ .

$$dim_k(B) = 2 \Longrightarrow B = k[x]/(p(x)), \ p(x) = x^2 - cx + d, \ c, d \in k.$$

Proposition (Cortadellas et al.). The set of distributive laws  $\tau: k[\xi] \otimes B \to B \otimes k[\xi]$  is in one-to-one correspondence with the set of pairs  $(f, \delta)$  obeying

- $\diamond f: B \to B$  is an endomorphism of algebras,
- $\diamond \ \delta: B \to B \text{ is a left } f\text{-derivation},$
- $\diamond \ \delta^2 c\delta = d(f^2 1),$
- $\Rightarrow f\delta + \delta f = c(f f^2).$

A quantum duplicate of an algebra A is a wreath product  $B \otimes_{\tau} A$ , where  $dim_k(B) = 2$ .

$$dim_k(B) = 2 \Longrightarrow B = k[\xi], \ \xi^2 = c\xi - d, \ c, d \in k.$$

Proposition (Cortadellas et al.). The set of distributive laws  $\tau: k[\xi] \otimes B \to B \otimes k[\xi]$  is in one-to-one correspondence with the set of pairs  $(f, \delta)$  obeying

- $\diamond f: B \to B$  is an endomorphism of algebras,
- $\diamond \ \delta: B \to B \text{ is a left } f\text{-derivation},$
- $\diamond \ \delta^2 c\delta = d(f^2 1),$
- $\Rightarrow f\delta + \delta f = c(f f^2).$

## Weak

A weak factorization structure of an algebra C by means of algebras A and B is a triple  $(i_A, i_B, i)$  of algebra morphisms  $i_A: A \to C, i_B: B \to C$  such that  $i: C \to B \otimes A$  is (B, A)-bimodule section of  $\mu_C(i_A \otimes i_B)$ .

Weak distributive laws — Weak factorization structures one-to-one

A weak distributive law of A over B is a linear map

$$\Psi: A \otimes B \to B \otimes A$$
 obeying

$$\Psi(\mu_A \otimes B) = (B \otimes \mu_A)(\Psi \otimes A)(A \otimes \Psi)$$

$$\Psi(A \otimes \mu_B) = (\mu_B \otimes A)(B \otimes \Psi)(\Psi \otimes B)$$

$$\Psi(a\otimes 1) = \Psi(1\otimes 1)a, \quad \Psi(1\otimes b) = b\Psi(1\otimes 1).$$

for any  $a \in A, b \in B$ .

A weak factorization structure of an algebra C by means of algebras A and B is a triple  $(i_A, i_B, i)$  of algebra morphisms  $i_A: A \to C, i_B: B \to C$  such that  $i: C \to B \otimes A$  is (B, A)-bimodule section of  $\mu_C(i_A \otimes i_B)$ .

Weak distributive laws — Weak factorization structures one-to-one

A weak distributive law of A over B is a linear map

$$\Psi: A \otimes B \to B \otimes A$$
 obeying

$$\Psi(\mu_A \otimes B) = (B \otimes \mu_A)(\Psi \otimes A)(A \otimes \Psi)$$

$$\Psi(A \otimes \mu_B) = (\mu_B \otimes A)(B \otimes \Psi)(\Psi \otimes B)$$

$$\Psi(a\otimes 1) = \Psi(1\otimes 1)a, \quad \Psi(1\otimes b) = b\Psi(1\otimes 1).$$

for any  $a \in A, b \in B$ .

For any weak distributive law  $\tau: A \otimes B \to B \otimes A$ , the map

$$\mu_{\Psi} := (\mu_B \otimes \mu_A)(B \otimes \Psi \otimes A)$$

defines an associative multiplication on  $B \otimes A$ 

$$(a \otimes b)(1 \otimes 1)$$

For any weak distributive law  $\tau: A \otimes B \to B \otimes A$ , the map

$$\mu_{\Psi} := (\mu_B \otimes \mu_A)(B \otimes \Psi \otimes A)$$

defines an associative multiplication on  $B \otimes A$ 

$$(a \otimes b)(1 \otimes 1) = a\Psi(b \otimes 1)$$

For any weak distributive law  $\tau: A \otimes B \to B \otimes A$ , the map

$$\mu_{\Psi} := (\mu_B \otimes \mu_A)(B \otimes \Psi \otimes A)$$

defines an associative multiplication on  $B \otimes A$ 

$$(a \otimes b)(1 \otimes 1) = a\Psi(b \otimes 1)$$

$$1 \otimes b$$

For any weak distributive law  $\tau: A \otimes B \to B \otimes A$ , the map

$$\mu_{\Psi} := (\mu_B \otimes \mu_A)(B \otimes \Psi \otimes A)$$

defines an associative multiplication on  $B \otimes A$ 

$$(a \otimes b)(1 \otimes 1) = a\Psi(b \otimes 1) \times a \otimes b$$

$$1 \otimes b$$

For any weak distributive law  $\tau: A \otimes B \to B \otimes A$ , the map

$$\mu_{\Psi} := (\mu_B \otimes \mu_A)(B \otimes \Psi \otimes A)$$

defines an associative multiplication on  $B \otimes A$ 

The natural candidate, the element  $1 \otimes 1$ , fails to be the unit for this multiplication: For any  $a \in A, b \in B$ ,

$$(a \otimes b)(1 \otimes 1) = a\Psi(b \otimes 1) \times a \otimes b$$

$$1 \otimes b$$

Lemma. The element  $\mathbf{1} = (1 \otimes 1)^2$  is a central idempotent for the multiplication  $\mu_{\Psi}$ .

Proposition (Street). Let  $\Psi: A \otimes B \to B \otimes A$  a weak distributive law. Then the linear map

$$\kappa_{\Psi}: B \otimes A \to B \otimes A, \quad \kappa_{\Psi}(b \otimes a) := (b \otimes 1)(1 \otimes a)$$

is an idempotent endomorphism of (non-unital) algebras and of (B, A)-bimodules and  $\kappa_{\Psi}\Psi = \Psi$  and  $\kappa_{\Psi}\mu_{\Psi} = \mu_{\Psi}$ .

Denote by  $B \otimes_{\Psi} A$  the range of  $\kappa_{\Psi}$  in  $B \otimes A$ .

 $\rightarrow$   $(B \otimes_{\Psi} A, \mu_{\Psi})$  is a unital algebra, termed as **weak wreath product** of A and B.

Proposition (Böhm & Gómez-Torrecillas). For any weak distributive law  $\Psi: A \otimes B \to B \otimes A$ , the maps

$$i_B: A \to B \otimes_{\Psi} A, \quad b \otimes a \mapsto (b \otimes 1)(1 \otimes 1)$$

$$i_A:A\to B\otimes_\Psi A,\quad b\otimes a\mapsto (1\otimes 1)(1\otimes a)$$

and the inclusion  $i: B \otimes_{\Psi} A \to B \otimes A$  constitutes a weak factorization of  $B \otimes_{\Psi} A$ .

Conversely, if  $(i_B, i_A, i)$  is a weak factorization of an algebra C by means of algebras A and B, then the map  $\Psi := i\mu_C(i_A \otimes i_B)$  is a weak distributive law of A over B such that the corresponding  $\kappa_{\Psi}$  splits and  $C \cong B \otimes_{\Psi} A$  as unital algebras.

### Weak quantum duplicates

We call **weak quantum duplicate** a weak wreath product involving an arbitrary algebra B and a 2-dimensional algebra A.



The number of ways in which this 2-dimensional factor can be chosen depends on the field k.

More concretely, if k admits a degree 2 field extension k, then there are three non-isomorphic algebras of dimension 2 (over k):

- The trivial direct product  $k^2$
- The ring of dual numbers
- Quadratic field extensions of k

### Weak quantum duplicates

We call **weak quantum duplicate** a weak wreath product involving an arbitrary algebra B and a 2-dimensional algebra A.



The number of ways in which this 2-dimensional factor can be chosen depends on the field k.

More concretely, if k admits a degree 2 field extension k, then there are three non-isomorphic algebras of dimension 2 (over k):

- The trivial direct product  $k^2 \cong k[x]/\langle x^2-x\rangle$
- The ring of dual numbers  $\cong k[x]/\langle x^2 \rangle$
- Quadratic field extensions of  $k \cong k[x]/< p(x)>$  p(x) irreducible

### Weak quantum duplicates

**Aim:** To give a characterization of

weak quantum duplicates



weak distributive laws

 $\Psi: k[\xi] \otimes B \to B \otimes k[\xi], \text{ with } \xi^2 = c\xi - d.$ 

Theorem. Let B be an algebra over k. The set of weak distributive laws  $\Psi : k[\xi] \otimes B \to B \otimes k[\xi]$  is in one-to-one correspondence with the set of quadruples  $(f, \delta, p, q)$ , where  $f, \delta : B \to B$  are linear maps and p, q are elements of B obeying:

• 
$$B \to \mathcal{M}_2(B)$$
,  $b \mapsto \begin{pmatrix} bp & bq \\ \delta(b) & f(b) \end{pmatrix}$  is multiplicative.

$$\begin{cases} \diamond p = p^2 - dq^2, & q = cq^2 + pq + qp \\ \diamond \delta^2 - c\delta = d(f^2 - \overline{p}) \\ \diamond f\delta + \delta f = c(f - f^2) - d\overline{q} \\ \diamond \delta = \delta \overline{p} - df \overline{q} = \overline{p}\delta - d\overline{q}f \\ \diamond f = cf \overline{q} + f\overline{p} + \delta \overline{q} = c\overline{q}f + \overline{q}\delta + \overline{p}f \\ \diamond f(1) = p + cq, & \delta(1) = -dq \end{cases}$$

Theorem. Let B be an algebra over k. The set of weak distributive laws  $\Psi: k[\xi] \otimes B \to B \otimes k[\xi]$  is in one-to-one correspondence with the set of quadruples  $(f, \delta, p, q)$ , where  $f, \delta : B \to B$  are linear maps and p, q are elements of B obeying:

• 
$$B \to \mathcal{M}_2(B), \quad b \mapsto \begin{pmatrix} bp & bq \\ \delta(b) & f(b) \end{pmatrix}$$
 is multiplicative.

• 
$$B o \mathcal{M}_2(B), \quad b \mapsto \begin{pmatrix} bp & bq \\ \delta(b) & f(b) \end{pmatrix}$$
 is multiplicative. 
$$\begin{cases} \diamond p = p^2 - dq^2, & q = cq^2 + pq + qp \\ \diamond \delta^2 - c\delta = d(f^2 - \overline{p}) \\ \diamond f\delta + \delta f = c(f - f^2) - d\overline{q} \\ \diamond \delta = \delta \overline{p} - df \overline{q} = \overline{p}\delta - d\overline{q}f \\ \diamond f = cf \overline{q} + f \overline{p} + \delta \overline{q} = c\overline{q}f + \overline{q}\delta + \overline{p}f \\ \diamond f(1) = p + cq, \quad \delta(1) = -dq \end{cases}$$

Theorem. Let B be an algebra over k. The set of weak distributive laws  $\Psi : k[\xi] \otimes B \to B \otimes k[\xi]$  is in one-to-one correspondence with the set of quadruples  $(f, \delta, p, q)$ , where  $f, \delta : B \to B$  are linear maps and p, q are elements of B obeying:

• 
$$B \to \mathcal{M}_2(B)$$
,  $b \mapsto \begin{pmatrix} bp & bq \\ \delta(b) & f(b) \end{pmatrix}$  is multiplicative.

$$\begin{cases} \diamond p = p^2 - dq^2, \quad q = cq^2 + pq + qp \\ \diamond \delta^2 - c\delta = d(f^2 - \overline{p}) \\ \diamond f\delta + \delta f = c(f - f^2) - d\overline{q} \\ \diamond \delta = \delta \overline{p} - df \overline{q} = \overline{p}\delta - d\overline{q}f \\ \diamond f = cf \overline{q} + f\overline{p} + \delta \overline{q} = c\overline{q}f + \overline{q}\delta + \overline{p}f \\ \diamond f(1) = p + cq, \quad \delta(1) = -dq \end{cases}$$

Theorem. Let B be an algebra over k. The set of weak distributive laws  $\Psi : k[\xi] \otimes B \to B \otimes k[\xi]$  is in one-to-one correspondence with the set of quadruples  $(f, \delta, p, q)$ , where  $f, \delta : B \to B$  are linear maps and p, q are elements of B obeying:

• 
$$B \to \mathcal{M}_2(B)$$
,  $b \mapsto \begin{pmatrix} bp & bq \\ \delta(b) & f(b) \end{pmatrix}$  is multiplicative.

$$\begin{cases} \diamond p = p^2 - dq^2, & q = cq^2 + pq + qp \\ \diamond \delta^2 - c\delta = d(f^2 - \overline{p}) \\ \diamond f\delta + \delta f = c(f - f^2) - d\overline{q} \\ \diamond \delta = \delta \overline{p} - df \overline{q} = \overline{p}\delta - d\overline{q}f \\ \diamond f = cf \overline{q} + f\overline{p} + \delta \overline{q} = c\overline{q}f + \overline{q}\delta + \overline{p}f \\ \diamond f(1) = p + cq, & \delta(1) = -dq \end{cases}$$
 (f,\delta)-equations

#### Remarks.

- The first 'multiplicativity' condition is independent of the 2-dimensional factor.
- This characterization generalizes that one by Cibils and Cortadellas et al.. Indeed, (non-weak) quantum duplicates are labeled by those quadruples of the type  $(1, 0, f, \delta)$ .
- $dim(B \otimes_{\Psi} k[\xi]) \not\succeq 2 \cdot dim(B)$  (in general).

### Application

**Aim:** Classify (up to isomorphism) the weak wreath products of two 2–dimensional algebras.

Method: Determine the weak distributive laws

$$\Psi: k[\xi] \otimes k[\eta] \to k[\eta] \otimes k[\xi], \text{ with } \xi^2 = c\xi - d, \ \eta^2 = C\eta - D.$$

#### Cases:

| ) |
|---|

#### Application

**Aim:** Classify the weak wreath products over two 2–dimensional algebras.

Method: Determine the weak distributive laws

$$\Psi: k[\xi] \otimes k[\eta] \to k[\eta] \otimes k[\xi], \text{ with } \xi^2 = c\xi - d, \ \eta^2 = C\eta - D.$$

#### Cases:

| $k^2 \otimes_{\Psi} k^2 - (1, 0, 1, 0)$          |
|--------------------------------------------------|
| $k[\zeta] \otimes_{\Psi} k[\zeta]$ — $(0,0,0,0)$ |
| $k^2 \otimes_{\Psi} k[\zeta] - (1,0,0,0)$        |
| $k[\zeta] \otimes_{\Psi} k^2 - (0,0,1,0)$        |
|                                                  |

the sequence of the sequence

#### Brief comments

- For most of the cases, we use mathematical software to solve all the equations imposed on such weak distributive laws.
- (p,q)—equations are crucial within the system of equations. They are solved first. For each solution pair (p,q), the remaining equations are then solved, obtaining the admissible  $(f,\delta)$ .
- Charasteristic of the field k matters (we distinguish char(k) = 2 or  $char(k) \neq 2$ ).

#### $2 \times 2 = 3$ and

#### commutative x commutative = non-commutative

Set  $u_1 = (1,0)$  and  $u_2 = (0,1)$  and consider the following bases of  $k^2$  and the ring  $\mathcal{T}$  of upper triangular matrices:

$$B_{k^2 \otimes k^2} = \{ u_1 \otimes u_1, \ u_1 \otimes u_2, \ u_2 \otimes u_1, \ u_2 \otimes u_2 \}$$

$$B_{\mathcal{T}} = \{ x = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, y = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \alpha = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \}.$$

We have the following two homomorphisms of unital k-algebras:

$$k^{2} \xrightarrow{\beta} \mathcal{T}$$

$$u_{1} \longmapsto \alpha + x$$

$$u_{2} \longmapsto y - \alpha$$

$$k^{2} \xrightarrow{\gamma} \mathcal{T}$$

$$u_{1} \longmapsto y$$

$$u_{2} \longmapsto x$$

#### $2 \times 2 = 3$ and

#### commutative x commutative = non-commutative

Then,

$$\nu: k^2 \otimes k^2 \xrightarrow{\beta \otimes \gamma} \mathcal{T} \otimes \mathcal{T} \xrightarrow{\mu_{\mathcal{T}}} \mathcal{T}$$

and

$$\iota:\mathcal{T}\longrightarrow K^2\otimes k^2$$

$$x \longmapsto u_1 \otimes u_2, \quad y \longmapsto u_1 \otimes u_1 + u_2 \otimes u_1, \quad \alpha \longmapsto u_1 \otimes u_1$$

hold  $\nu \circ \iota = id_{\mathcal{T}}$ , and  $\iota$  is an homomorphism of  $k^2$ -bimodules. That is,  $\nu$  is an splitting epimorphism of  $k^2$ -bimodules.

 $\stackrel{\text{Theorem}}{\Longrightarrow} \mathcal{T} \cong k^2 \otimes_{\Psi} k^2$ , for the following weak distributive law:

$$\Psi: k^2 \otimes k^2 \xrightarrow{\gamma \otimes \beta} \mathcal{T} \otimes \mathcal{T} \xrightarrow{\mu_{\mathcal{T}}} \mathcal{T} \xrightarrow{\iota} k^2 \otimes k^2.$$

