Recovering short generators of principal ideals in some cyclotomic fields of pq-order

Jaroslav Šeděnka PhD Student at Masaryk University, CZ

Work in progress with Efthymios Sofos

February 6th, 2016 AAA91 Brno

Outline

- Cyclotomic field $k = \mathbb{Q}(\zeta)$
 - \circ Representation of ideals in \mathcal{O}_k
 - \circ Log-embedding of k^*
- Lattices
 - Closest vector problem
 - Babai's rounding algorithm
- Short Generator of Principal Ideal
 - \circ Solution for $k = \mathbb{Q}(\zeta_{p^k})$
 - \circ Obstacles for $k=\mathbb{Q}(\zeta_{pq})$
- Preliminary results

Cyclotomic field $k = \mathbb{Q}(\zeta)$

Let $\zeta_m = e^{2\pi i/m}$

 $k=\mathbb{Q}(\zeta_m)$ is a cyclotomic number field of order m and degree arphi(m)

 $\mathcal{O}_k = \mathbb{Z}[\zeta_m]$ the ring of integers in k.

There are exactly $\varphi(m)$ different complex embeddings $\sigma_j: k \to \mathbb{C}$, defined for each $j \in \{1, \ldots, m-1\}$ satisfying (j, m) = 1. These embeddings can be defined by setting $\sigma_j(\zeta_m) = \zeta_m^j$.

Log-embedding of
$$k^* = \mathbb{Q}(\zeta_m)^*$$

We can set $n = \varphi(m)/2$ and define the log-embedding

$$Log: k^* \to \mathbb{R}^n$$

$$\alpha \longmapsto (\log |\sigma_{j_1}(\alpha)|, \cdots, \log |\sigma_{j_n}(\alpha)|)$$

Important remark

 $\Lambda = \mathsf{Log}(\mathcal{O}_k^{ imes})$ is a full-rank (n-1) lattice in $H = (1, \dots, 1)^{\perp} \subset \mathbb{R}^n$.

Principal ideals of \mathcal{O}_k with short generators

Proposed by several lattice cryptosystems

- Homomorphic encryption Smart and Vercauteren [2010]
- Soliloquy Campbell et al. [2014]

Cryptoanalyzed later

- Soliloquy Campbell et al. [2014]
- Dan Bernstein's blog post
- Cramer et al. [2015]

Principal ideals of \mathcal{O}_k with short generators

Let $g \in \mathcal{O}_k$ be a "short" element, and let $I = (g) = g\mathcal{O}_k$ be a principal ideal.

We will consider retrieving g (or other short element) from a arbitrary element h such as I = (h).

Reduction modulo Λ

We have g=hu for some $u\in\mathcal{O}_k^{\times}$, so

$$Log(g) \in Log(h) + \Lambda$$

To minimize the right side is equivalent to solving the Closest Vector Problem for Log(h) in Λ .

Closest vector problem (CVP)

Closest vector problem (CVP)

Solving CVP using $\it U$

Babai's rounding algorithm

Goal: Given basis B of lattice L and a vector $v \in span(B)$, compute a vector $w \in L$ close to v

- Let $\mathbb{R}^n = span(B)$, compute the dual basis $B^{\dagger} = (B^{-1})^T$
- Express v in dual basis as $v^{\dagger} = (B^{\dagger})^T a$
- Round coefficient-wise $w^{\dagger} = round((B^{\dagger})^T a)$
- Transform w^{\dagger} back to standard basis as $w = Bw^{\dagger}$

Finding short generator in $\mathbb{Q}(\zeta_{p^r})$

As has been shown in Cramer et al. [2015], the canonical basis of cyclotomic units $C\subset \mathcal{O}_k^{\times}$, defined as $b_i=\frac{\zeta^i-1}{\zeta-1}$ for $i\neq 1, (i,m)=1$ is suitable for Babai's rounding algorithm.

All $||b_i^{\dagger}||$ are the same and $||b_i^{\dagger}||^2 = O(m^{-1}\log^3 m)$.

Generalizing the result for $k = \mathbb{Q}(\zeta_m)$

Recovering g from Log(g): double exponential in number of distinct primes

Babai's algorithm recovers $\operatorname{Log}(g) = \operatorname{Log}(h) + \operatorname{Log}(u)$, so we know u up to $\operatorname{Ker} \operatorname{Log} = \langle \zeta_m, -1 \rangle$ and $[\mathcal{O}_k^\times : C] = 2^k h^+(m)$ (showed by Sinnott [1978]). Here $k = 2^{s-2} + 1 - s$ where $s \geq 2$ is the number of distinct primes dividing m.

We need some small-index subgroup of \mathcal{O}_k^{\times} with a nice basis. So we do not want too many distinct primes dividing m.

b_i is not a basis for units

In general, b_i for (i, m) = 1 do not suffice as generators for C. Adding b_{jp} and b_{lq} would help (in some sense), but these elements are not units.

Focus on $k = \mathbb{Q}(\zeta_{pq})$

$$[\mathcal{O}_k^{\times}:C]=h^+(pq).$$

Do we have a simple basis of C?

Yes, under a technical condition: we need p,q to be mutual *semi-primitive* roots, that is, $\langle p,-1\rangle=\mathbb{F}_q^*$ and $\langle q,-1\rangle=\mathbb{F}_p^*$. Then $\{z_i=\zeta_{pq}^i-1;s.t.(i,pq)=1\}$ is a full set of generators of C.

From now on, we will use m = pq such that p, q satisfy the above condition.

Caveat!

There are $\varphi(pq)/2$ generators of Log(C), but $rank(\Lambda) = \varphi(pq)/2 - 1$, so we have one too many elements to get a basis.

First possible solution

Set $n = \varphi(pq)/2$.

1. Lift generators to \mathbb{R}^n

By using $z_i' = z_i + t.(1,...,1)$ as a basis of $L \subset \mathbb{R}^n$, we can compute a dual basis and project it back to H to get a dual basis of Log(C).

- Prone to numerical instability (how do you pick the right t)?
- Rather unsatisfactory results

Second possibility

Sacrifice *n* in index

We can repeat the work of Cramer et al. [2015] and use $Log(b_i) = Log(z_i) - Log(z_1)$ as basis of some C'.

- We get a symmetric basis
- However, [C:C']=n.

Precisely and full-index

Remember, the problem was to find a lattice basis in $(1, ..., 1)^{\perp} = H \subset \mathbb{R}^n$ from a set of n (one too many!) generators.

There is $\operatorname{Gal}(k/Q)\cong (\mathbb{Z}/(pq\mathbb{Z}))^{\times}$ -action on k, which corresponds to $(\mathbb{Z}/(pq\mathbb{Z}))^{\times}/\{\pm 1\}\cong G$ -action on $\operatorname{Log}(k^*)$

$$0 \longrightarrow I_G \stackrel{\iota}{\to} \mathbb{R}[G] \stackrel{\epsilon}{\longrightarrow} \mathbb{R} \longrightarrow 0$$

Decompose $R[G]\cong e\mathbb{R} imes (1-e)\mathbb{R}$ using ring idempotent $e=rac{1}{n}\sum_{\sigma\in G}\sigma$

Thank you for your attention.

References

- Peter Campbell, Michael Groves, and Dan Shepherd. Soliloquy: A cautionary tale. In ETSI 2nd Quantum-Safe Crypto Workshop, 2014.
- Ronald Cramer, Leo Ducas, Chris Peikert, and Oded Regev. Recovering short generators of principal ideals in cyclotomic rings. Cryptology ePrint Archive, Report 2015/313, 2015.
- Warren Sinnott. On the stickelberger ideal and the circular units of a cyclotomic field. *Annals of Mathematics*, pages 107–134, 1978.
- Nigel P Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext sizes. In *Public Key Cryptography–PKC 2010*, pages 420–443. Springer, 2010.