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Introduction: Ω-sets and structures

In sixties of the previous century, Tarski notion of a truth values
structure was generalized to Boolean-valued models by D.S. Scott,
R.M. Solovay and P. Vopěnka. In this model, truth values are
elements of a complete Boolean algebra (e.g., J.L. Bell,
Boolean-Valued Models and Independence Proofs in Set Theory,
(1985) Oxford).

Further, in 1977., M.P. Fourman and D.S. Scott (Sheaves and
logic, Lecture Notes in Mathematics, vol. 753, Springer, Berlin,
Heidelberg, New York, 1979, 302–401) introduced models for
intuitionistic predicate logic. These were Ω-sets, or Heyting-valued
sets, Ω being a Heyting algebra.

An Ω-set is a nonempty set equipped with an Ω-valued equality.
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This notion has been further applied to non-classical predicate
logics e.g.,

G.P. Monro, Quasitopoi, logic and Heyting-valued models, Journal
of pure and applied algebra, (1986) 42(2), 141-164,
E. Palmgren, S.J. Vickers, Partial Horn logic and cartesian
categories, Annals of Pure and Applied Logic, (2007) 145(3),
314-353.
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Ω-sets and related notions were also applied to foundations of
Fuzzy Set Theory, e.g.:

U. Höhle, Fuzzy sets and sheaves. Part I: basic concepts, Fuzzy
Sets and Systems, (2007) 158(11),
S. Gottwald, Universes of fuzzy sets and axiomatizations of fuzzy
set theory, Part II: Category theoretic approaches, Studia Logica,
(2006) 84(1), 23-50. 1143-1174,
R. Bělohlávek, Fuzzy equational logic, Archive for Mathematical
Logic 41.1 (2002): 83-90,
R. Bělohlávek, Fuzzy Relational Systems: Foundations and
Principles, Kluwer Academic/Plenum Publishers, New York, 2002.
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R. Bělohlávek, Fuzzy equational logic, Archive for Mathematical
Logic 41.1 (2002): 83-90,
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What we present here

Our basic idea is the generalization of the well known connection:

– a preorder R on a nonempty set A
– equivalence S = R ∩ R−1 on A
– order T on A/S , induced by R.

Actually, we replace reflexivity of R by strictness:
(x , y) ∈ R implies (x , x), (y , y) ∈ R.
Then S is an equivalence on B = {x | (x , x) ∈ R},
and T is an order on B/S .
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What we present here

Our basic idea is the generalization of the well known connection:

– a preorder R on a nonempty set A
– equivalence S = R ∩ R−1 on A

– order T on A/S , induced by R.

Actually, we replace reflexivity of R by strictness:
(x , y) ∈ R implies (x , x), (y , y) ∈ R.
Then S is an equivalence on B = {x | (x , x) ∈ R},
and T is an order on B/S .

E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices
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As a generalization, we deal with functions from a nonempty set M
to a complete lattice Ω – Ω-valued relations.

We equip M with a transitive and strict Ω-valued function R on M.
Then, E (x , y) = R(x , y) ∧ R(y , x) defines an Ω-valued equality on
M.
Consequently, we obtain a closure system of quotient structures
which are ordered, where these orders are induced by R.
What we get here, the structure (M,E ,R), is an Ω-poset.
Imposing particular conditions on R, we define a complete
Ω-lattice.
In the structure (M,E ,R), (M,E ) is an Ω-set (a nonempty set and
an Ω-valued equality on it).
We equip an Ω-set with operations and with particular formulas
acting as identities.
In this way we obtain an Ω-lattice as an algebraic structure.
This is not a classical lattice, still classical lattices appear as
special quotients with respect to the Ω-valued equality.
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As a generalization, we deal with functions from a nonempty set M
to a complete lattice Ω – Ω-valued relations.
We equip M with a transitive and strict Ω-valued function R on M.
Then, E (x , y) = R(x , y) ∧ R(y , x) defines an Ω-valued equality on
M.
Consequently, we obtain a closure system of quotient structures
which are ordered, where these orders are induced by R.
What we get here, the structure (M,E ,R), is an Ω-poset.
Imposing particular conditions on R, we define a complete
Ω-lattice.

In the structure (M,E ,R), (M,E ) is an Ω-set (a nonempty set and
an Ω-valued equality on it).
We equip an Ω-set with operations and with particular formulas
acting as identities.
In this way we obtain an Ω-lattice as an algebraic structure.
This is not a classical lattice, still classical lattices appear as
special quotients with respect to the Ω-valued equality.
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E.E. Edeghagba, B. Šešelja, A. Tepavčević Complete Ω-lattices



As a generalization, we deal with functions from a nonempty set M
to a complete lattice Ω – Ω-valued relations.
We equip M with a transitive and strict Ω-valued function R on M.
Then, E (x , y) = R(x , y) ∧ R(y , x) defines an Ω-valued equality on
M.
Consequently, we obtain a closure system of quotient structures
which are ordered, where these orders are induced by R.
What we get here, the structure (M,E ,R), is an Ω-poset.
Imposing particular conditions on R, we define a complete
Ω-lattice.
In the structure (M,E ,R), (M,E ) is an Ω-set (a nonempty set and
an Ω-valued equality on it).
We equip an Ω-set with operations and with particular formulas
acting as identities.
In this way we obtain an Ω-lattice as an algebraic structure.
This is not a classical lattice, still classical lattices appear as
special quotients with respect to the Ω-valued equality.
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Preliminaries

A complete lattice is here denoted by (Ω,∧,∨,6, 0, 1), with
bottom and the top element, 1 and 0 respectively.

A collection C of subsets of a nonempty set X is called a closure
system on X , if it is closed under arbitrary set intersections.

A closure system on X contains also X , as the intersection of the
empty collection of subsets.

A closure system is a complete lattice under inclusion.
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Ω-valued functions and relations

Let (Ω,6) be a complete lattice, or a poset if so indicated.
An Ω-valued function on a nonempty set X is mapping
µ : X → Ω.

A mapping R : X 2 → Ω (an Ω-function on X 2) is an Ω-valued
relation on X .

If µ : X → Ω is an Ω-valued function on a set X then for p ∈ Ω,
the set

µp := {x ∈ X | µ(x) > p}

is a p-cut, or a cut set, (cut) of µ.
Obviously,

µp = µ−1(↑p).
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Ω-valued functions and relations

Let (Ω,6) be a complete lattice, or a poset if so indicated.
An Ω-valued function on a nonempty set X is mapping
µ : X → Ω.

A mapping R : X 2 → Ω (an Ω-function on X 2) is an Ω-valued
relation on X .

If µ : X → Ω is an Ω-valued function on a set X then for p ∈ Ω,
the set

µp := {x ∈ X | µ(x) > p}

is a p-cut, or a cut set, (cut) of µ.
Obviously,

µp = µ−1(↑p).
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Ω-set

In our approach, Ω is a complete lattice (Ω,∧,∨,6, 0, 1).

An Ω-set is a pair (A,E ), where A is a nonempty set, and E is an
Ω-valued equality on A, i.e., a mapping E : M2 → Ω satisfying

E (x , y) = E (y , x) – symmetry
and
E (x , y) ∧ E (y , z) 6 E (x , z) – transitivity.

An Ω-valued equality E on a set A fulfills the strictness property:
E (x , y) 6 E (x , x) ∧ E (y , y).
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Ω-poset

Let M be a nonempty set and R : M2 → Ω a transitive Ω-valued
relation on M:
R(x , y) ∧ R(y , z) 6 R(x , z).
Let also R fulfills the strictness property:
R(x , y) 6 R(x , x) ∧ R(y , y).

Define E : M2 → L by
E (x , y) := R(x , y) ∧ R(y , x).
Obviously, E is an Ω-valued equality on M,
hence (M,E ) is an Ω-set.
We also say that R is antisymmetric with respect to E , i.e., that it
is E -antisymmetric.
Therefore we say that R is an Ω-valued order on (M,E ).

Under the above conditions, we say that (M,E ,R) is an Ω-poset.
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Ω-poset

Let M be a nonempty set and R : M2 → Ω a transitive Ω-valued
relation on M:

R(x , y) ∧ R(y , z) 6 R(x , z).
Let also R fulfills the strictness property:
R(x , y) 6 R(x , x) ∧ R(y , y).

Define E : M2 → L by
E (x , y) := R(x , y) ∧ R(y , x).
Obviously, E is an Ω-valued equality on M,
hence (M,E ) is an Ω-set.
We also say that R is antisymmetric with respect to E , i.e., that it
is E -antisymmetric.
Therefore we say that R is an Ω-valued order on (M,E ).

Under the above conditions, we say that (M,E ,R) is an Ω-poset.
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Ω-poset

Let M be a nonempty set and R : M2 → Ω a transitive Ω-valued
relation on M:
R(x , y) ∧ R(y , z) 6 R(x , z).
Let also R fulfills the strictness property:
R(x , y) 6 R(x , x) ∧ R(y , y).

Define E : M2 → L by
E (x , y) := R(x , y) ∧ R(y , x).
Obviously, E is an Ω-valued equality on M,
hence (M,E ) is an Ω-set.
We also say that R is antisymmetric with respect to E , i.e., that it
is E -antisymmetric.
Therefore we say that R is an Ω-valued order on (M,E ).

Under the above conditions, we say that (M,E ,R) is an Ω-poset.
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Let (A,E ) be an Ω-set.

Define µ : A→ Ω by
µ(x) := E (x , x).

If (A,E ) is an Ω-set, then for every p ∈ Ω, the cut Ep is an
equivalence relation on the subset - cut µp of A.

Theorem

Let (M,E ,R) be an Ω-poset. Then for every p ∈ Ω, the quotient
structure (µp/Ep,≤) is a poset, where the relation ≤ is defined by

[x ]p ≤ [y ]p if and only if (x , y) ∈ Rp.
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Let (M,E ,R) be an Ω-poset and A ⊆ M.

An element u ∈ M is an upper bound of A (under R), if for every
a ∈ A ∧

(µ(x) | x ∈ A) ≤ R(a, u).

An element v ∈ M is a lower bound A, if for every a ∈ A∧
(µ(x) | x ∈ A) ≤ R(v , a).
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Let (M,E ,R) be an Ω-poset and A ⊆ M.

Then an element u ∈ M is a pseudo-supremum of A, if for every
p ∈ Ω, p ≤

∧
(µ(x) | x ∈ A), the following hold:

(i) u is an upper bound of A and

(ii) if there is u1 ∈ M such that p ≤ R(a, u1) for every a ∈ A,
then p ≤ R(u, u1).

Dually, an element v ∈ M is a pseudo-infimum of A, if for every
p ∈ Ω, p ≤

∧
(µ(x) | x ∈ A), the following hold:

(j) v is a lower bound of A and

(jj) if there is v1 ∈ M such that p ≤ R(v1, a) for every a ∈ A,
then p ≤ R(v1, v).
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Proposition

Let (M,E ,R) be an Ω-poset, let A ⊆ M and u ∈ M a
pseudo-supremum (pseudo-infimum) of A ⊆ M. Then v ∈ M is
also a pseudo-supremum (pseudo-infimum) of A ⊆ M, if and only
if
∧

(µ(x) | x ∈ A) ≤ E (u, v).

For an arbitrary subset A ⊆ M, if a pseudo-supremum
(pseudo-infimum) exists it is generally not unique.

Two pseudo-suprema u, v of A belong to the same equivalence
class µp/Ep for every p ≤

∧
(µ(x) | x ∈ A).
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A pseudo-top of A, A ⊆ M, is an element t ∈ A such that for
every y ∈ A ∧

(µ(x) | x ∈ A) ≤ R(y , t).

Dually, a pseudo-bottom of A, A ⊆ M, is an element b ∈ A, such
that for every y ∈ A∧

(µ(x) | x ∈ A) ≤ R(b, y).

In particular, if A = M, then the above elements t and b are said
to be a pseudo-top and a pseudo-bottom, respectively, of the
whole Ω-poset (M,E ,R).
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An Ω-poset (M,E ,R) is called a complete Ω-lattice if for every
A ⊆ M pseudo-supremum and pseudo-infimum of A exist.

Proposition

A complete Ω-lattice possesses a pseudo-top and a pseudo bottom
element.

Theorem

Let (M,E ,R) be a complete Ω-lattice. Then, for every p ∈ Ω, the
poset (µp/Ep, ≤p ) is a complete lattice. In addition, for A ⊆ M, if
c is a pseudo-infimum of A in (M,E ,R), then [c]p is the infimum
of {[a]p | a ∈ A} in the lattice (µp/Ep, ≤p ), for every p ∈ Ω, such
that A ⊆ µp.
Analogously, if d is a pseudo-supremum of A, then [d ]p is the
supremum of {[a]p | a ∈ A} in (µp/Ep, ≤p ).
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Theorem

Let (M,E ,R) be an Ω-poset. Then it is a complete Ω-lattice if
and only if for every q ∈ Ω, the poset (µq/Eq, ≤q ) is a complete
lattice, and the following holds: for all A ⊆ M,
p =

∧
(µ(a) | a ∈ A), and q ≤ p, we have

inf{[a]Ep | a ∈ A} ⊆ inf{[a]Eq | a ∈ A},

and sup{[a]Ep | a ∈ A} ⊆ sup{[a]Eq | a ∈ A},

where the infima (suprema) belong to the corresponding posets
(µq/Eq,≤q) and (µp/Ep,≤p).
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Theorem

An Ω-poset (M,E ,R) is a complete Ω-lattice, if the following
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∧
(µ(a) | a ∈ A), and q ≤ p, if
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In the following we denote:

∆(f ) := {x ∈ M | (x , x) ∈ f }.

Theorem

Let M 6= ∅, and let F ⊆ P(M2) be a closure system over M2 such
that each f ∈ F is transitive and strict. Then the following hold.
(a) There is a complete lattice Ω and a mapping R : M2 −→ Ω
such that F is a collection of cuts of R and (M,E ,R) is an
Ω-poset, where E : M2 −→ Ω is defined by
E (x , y) = R(x , y) ∧ R(y , x).
(b) Let, in addition, for every f ∈ F and for every A ⊆ ∆f there is
an infimum and a supremum in the relational structure (∆(f ), f ),
and for g ∈ F , such that f ⊆ g, the following hold:

if c is an infimum of A in ∆(f ), then c is an infimum of A in ∆(g);

if c is a supremum of A in ∆(f ), then c is a supremum of A in ∆(g).

Then, (M,E ,R) is a complete Ω-lattice.
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Ω-algebras

We use Ω-sets as a framework for introducing Ω-algebras, and
Ω-relational structures.
As above, Ω is a complete lattice.

An Ω-algebra is a pair (A,E ), where A = (A,F ) is an algebra
with the set F of fundamental operations, and (A,E ) is an Ω-set,
where Ω-valued equality E : M2 → Ω fulfills
n∧

i=1

E (xi , yi ) 6 E (f (x1, . . . , xn), f (y1, . . . , yn)), for an n-ary

operation f ∈ F – compatibility.
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We use Ω-valued equalities fulfilling the property
E (x , y) = E (x , x) = E (y , y) implies x = y – strong separation.

To each Ω-algebra (A,E ) there corresponds the Ω-function
µ : A→ Ω, defined by:
µ(x) := E (x , x).
The following is straightforward.

For all x1, . . . , xn ∈ A and for an n-ary f ∈ F , µ fulfills
n∧

i=1

µ(xi ) 6 µ(f (x1, . . . , xn)) – compatibility.
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We use Ω-valued equalities fulfilling the property
E (x , y) = E (x , x) = E (y , y) implies x = y – strong separation.

To each Ω-algebra (A,E ) there corresponds the Ω-function
µ : A→ Ω, defined by:
µ(x) := E (x , x).
The following is straightforward.

For all x1, . . . , xn ∈ A and for an n-ary f ∈ F , µ fulfills
n∧

i=1

µ(xi ) 6 µ(f (x1, . . . , xn)) – compatibility.
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Identities

If (A,E ) is an Ω-algebra, and u ≈ v is an identity in the
language of the algebra A, then we say that (A,E ) fulfills the
identity u ≈ v if
n∧

i=1

µ(xi ) 6 E (f (x1, . . . , xn), f (y1, . . . , yn)),

where x1, . . . , xn are variables appearing in terms u and v .

If (A,E ) is an Ω-algebra, and the algebra A satisfies an identity
u ≈ v, then also (A,E ) satisfies this identity.
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Cut properties

Theorem

Let (A, E ) be an Ω-algebra, and Σ a set of identities. Then,
(A, E ) fulfils Σ if and only if for every p ∈ Ω, the cut µp is a
subalgebra of A, the cut relation Ep is a congruence on µp, and
the quotient structure µp/Ep satisfies Σ.
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Ω-lattice as an algebra

Let (Ω,∧,∨,6, 0, 1) be a complete lattice.
Further, let (M,E ) be an Ω-bigroupoid, i.e., an Ω-algebra in
which M = (M,u,t) is a bigroupoid – an algebra with two binary
operations.

As already defined, E : M2 → Ω is an Ω-valued equality, and the
function µ : M → Ω is given by µ(x) = E (x , x).

Then, (M,E ) is an Ω-lattice if the following formulas hold:

µ(x) ∧ µ(y) 6 E (x u y , y u x)
µ(x) ∧ µ(y) 6 E (x t y , y t x)
µ(x) ∧ µ(y) ∧ µ(z) 6 E ((x u y) u z , x u (y u z))
µ(x) ∧ µ(y) ∧ µ(z) 6 E ((x t y) t z , x t (y t z))
µ(x) ∧ µ(y) 6 E ((x u y) t x , x)
µ(x) ∧ µ(y) 6 E ((x t y) u x , x).
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Ω-lattice as an algebra

Let (Ω,∧,∨,6, 0, 1) be a complete lattice.
Further, let (M,E ) be an Ω-bigroupoid, i.e., an Ω-algebra in
which M = (M,u,t) is a bigroupoid – an algebra with two binary
operations.

As already defined, E : M2 → Ω is an Ω-valued equality, and the
function µ : M → Ω is given by µ(x) = E (x , x).

Then, (M,E ) is an Ω-lattice if the following formulas hold:

µ(x) ∧ µ(y) 6 E (x u y , y u x)
µ(x) ∧ µ(y) 6 E (x t y , y t x)
µ(x) ∧ µ(y) ∧ µ(z) 6 E ((x u y) u z , x u (y u z))
µ(x) ∧ µ(y) ∧ µ(z) 6 E ((x t y) t z , x t (y t z))
µ(x) ∧ µ(y) 6 E ((x u y) t x , x)
µ(x) ∧ µ(y) 6 E ((x t y) u x , x).
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Proposition

In an Ω-lattice (M,E ) the idempotent laws µ(x) 6 E (x u x , x)
and µ(x) 6 E (x t x , x) are fulfilled.

Proposition

If (M,E ) is an Ω-lattice, then the bigroupoid M is idempotent
with respect to both operations.
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If µ : M → Ω, and p ∈ Ω, then a p-cut, or a cut of µ is a subset
µp of M defined by

µp := µ−1(↑p).

Obviously,
µp = {x ∈ M | µ(x) > p}.

Consequently, for E : M2 → Ω, Ep is a binary relation on M, given
by

Ep = E−1(↑p).

Theorem

Let M = (M,∧,∨) be a bigroupoid and E an Ω-equality on M.
Then, (M,E ) is an Ω-lattice if and only if for every p ∈ Ω, the cut
µp is a subalgebra (sub-bigroupoid) of M, the cut relation Ep is a
congruence on µp and a quotient structure µp/Ep is a lattice.
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Order on Ω-lattices

Let (M,E ) be an Ω-set. The mapping R : M2 → Ω fulfilling

R(x , x) = E (x , x),
R(x , y) ∧ R(y , x) 6 E (x , y) (E -antisymmetry) and
R(x , y) ∧ R(y , z) 6 R(x , z),

is an Ω-valued order on (M,E ).

Theorem

If (M,E ) is an Ω-lattice, then the Ω-valued relation R : M2 → L,
such that
R(x , y) := µ(x) ∧ µ(y) ∧ E (x u y , x)
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Let (M,E ,R) be an Ω-poset, and a, b ∈ M. An element c ∈ M is
a pseudo-infimum of a, b, if for every p ∈ Ω such that
µ(a) ∧ µ(b) > p, the following holds:

(i) µ(c) ∧ R(c , a) ∧ R(c, b) > p and
for every x ∈ M
µ(x) ∧ R(x , a) ∧ R(x , b) > p implies R(x , c) > p.

An element d ∈ M is a pseudo-supremum of a, b ∈ M, if for
every p ∈ Ω such that µ(a) ∧ µ(b) > p, the following holds:
(ii) µ(d) ∧ R(a, d) ∧ R(b, d) > p and
for every x ∈ M
µ(x) ∧ R(a, x) ∧ R(b, x) > p implies R(d , x) > p.

Observe that for given a, b ∈ M, a pseudo-infimum and a
pseudo-supremum, if they exist, are not unique in general.
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We say that an Ω-poset (M,E ,R) is an Ω-lattice as an ordered
structure, if for every a, b ∈ M there exist a pseudo-infimum and
a pseudo-supremum.

Proposition

Let (M,E ,R) be an Ω-lattice and c, c1 pseudo-infima of a, b ∈ M.
If for p ∈ Ω, µ(a) ∧ µ(b) > p, then E (c, c1) > p. Analogously, if
d , d1 are pseudo-suprema of a, b and µ(a) ∧ µ(b) > p, then
E (d , d1) > p.

Obviously, by this Proposition, pseudo-infima (suprima) of two
element a, b from µp, belong to the same equivalence class in
µp/Ep.
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Theorem

Let (M,E ,R) be an Ω-lattice as an ordered structure. Then for
every p ∈ Ω, the poset (µp/Ep, ≤p ) is a lattice, where the relation
≤p on the quotient set µp/Ep is defined above.

Theorem

Let M = (M,u,t) be a bi-groupoid, (M,E ) an Ω-lattice as an
algebra in which E is strongly separated, and R : M2 → Ω an
Ω-valued relation on M defined by R(x , y) := E (x u y , x). Then,
(M,E ,R) is an Ω-lattice as an ordered structure.
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Let (M,E ,R) be an Ω-lattice as an ordered structure.

We define two binary operations, u and t on M as follows: for
every pair a, b of elements from M, a u b is an arbitrary, fixed
pseudo-infimum of a and b, and a t b is an arbitrary, fixed
pseudo-supremum of a and b.

Assuming Axiom of Choice, by which an element is chosen among
all pseudo-infima (suprema) of a and b, the operations u and t on
M are well defined.

Theorem

If (M,E ,R) is an Ω-lattice as an ordered structure, and
M = (M,u,t) the bi-groupoid in which operations u, t are
introduced above, then (M,E ) is an Ω-lattice as an algebra.
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M = {x0, x1, . . . , x9, x10}

R x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x0 p z z z z z z z z z p

x1 0 q q 0 0 0 0 0 0 z 0

x2 0 t q 0 0 0 0 0 0 z 0

x3 0 0 0 r1 w w w w w z 0

x4 0 0 0 w r2 w w z z z 0

x5 0 0 0 w w r3 w w w z 0

x6 0 0 0 w w w r4 w w z 0

x7 0 0 0 z z z z r5 w z 0

x8 0 0 0 z z z z v r6 z 0

x9 0 0 0 0 0 0 0 0 0 s 0

x10 z z z z z z z z z z p
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E (x , y) = R(x , y) ∧ R(y , x)

E x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x0 p 0 0 0 0 0 0 0 0 0 z

x1 0 q t 0 0 0 0 0 0 0 0

x2 0 t q 0 0 0 0 0 0 0 0

x3 0 0 0 r1 w w w z z 0 0

x4 0 0 0 w r2 w w z z 0 0

x5 0 0 0 w w r3 w z z 0 0

x6 0 0 0 w w w r4 z z 0 0

x7 0 0 0 z z z z r5 v 0 0

x8 0 0 0 z z z z v r6 0 0

x9 0 0 0 0 0 0 0 0 0 s 0

x10 z 0 0 0 0 0 0 0 0 0 p
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E (x , y) = R(x , y) ∧ R(y , x)

E x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x0 p 0 0 0 0 0 0 0 0 0 z

x1 0 q t 0 0 0 0 0 0 0 0

x2 0 t q 0 0 0 0 0 0 0 0

x3 0 0 0 r1 w w w z z 0 0

x4 0 0 0 w r2 w w z z 0 0

x5 0 0 0 w w r3 w z z 0 0

x6 0 0 0 w w w r4 z z 0 0

x7 0 0 0 z z z z r5 v 0 0

x8 0 0 0 z z z z v r6 0 0

x9 0 0 0 0 0 0 0 0 0 s 0

x10 z 0 0 0 0 0 0 0 0 0 p
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Quotient lattices:

µz/Ez = {{x0, x10}, {x1, x2}, {x3, . . . , x8}, {x9}}, – Boolean lattice;
µq/Eq = {{x1}, {x2}};
the other quotient structures are one-element lattices.
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u x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0 x0

x1 x0 x1 x1 x10 x10 x10 x10 x10 x10 x1 x10

x2 x0 x1 x2 x0 x10 x10 x10 x10 x10 x2 x10

x3 x0 x10 x10 x3 x3 x3 x3 x3 x3 x3 x10

x4 x0 x10 x10 x3 x4 x3 x4 x4 x4 x4 x10

x5 x0 x10 x10 x3 x3 x5 x5 x5 x5 x5 x10

x6 x0 x10 x10 x3 x4 x5 x6 x4 x6 x6 x10

x7 x0 x10 x10 x3 x4 x5 x4 x7 x7 x7 x10

x8 x0 x0 x0 x3 x4 x5 x6 x7 x8 x8 x10

x9 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x10 x0 x10 x10 x10 x10 x10 x10 x10 x10 x10 x10
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t x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x0 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

x1 x1 x1 x2 x9 x9 x9 x9 x9 x9 x9 x1

x2 x2 x2 x2 x9 x9 x9 x9 x9 x9 x9 x2

x3 x3 x9 x9 x3 x4 x5 x6 x7 x8 x9 x3

x4 x4 x9 x9 x4 x4 x6 x6 x7 x8 x9 x4

x5 x5 x9 x9 x5 x6 x5 x6 x7 x8 x9 x5

x6 x6 x9 x9 x6 x6 x6 x6 x8 x8 x9 x6

x7 x7 x9 x9 x7 x7 x7 x8 x7 x8 x9 x7

x8 x8 x9 x9 x8 x8 x8 x8 x8 x8 x9 x8

x9 x9 x9 x9 x9 x9 x9 x9 x9 x9 x9 x9

x10 x10 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
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Thank you for the attention !
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