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Medial quasigroups

Medial Quasigroups

Definition

A groupoid (Q, -) is called medial if it satisfies

(c-y)-(z-u) = (x-2)- (y-u)
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Medial quasigroups

Medial Quasigroups

Definition
A groupoid (Q, -) is called medial if it satisfies

(c-y)-(z-u) = (x-2)- (y-u)

Theorem (K. Toyoda; R. Bruck)

A groupoid (Q, -) is a medial quasigroup if and only if there exist

@ an abelian group (Q, +,0),
@ two commuting automorphisms @, \p € Aut(Q, +),
@ a constantc € Q,

such that, for each x,y € Q,

Xy = o) +by) +c.
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Definition

A groupoid (Q, -) is called trimedial if every 3-generated
sub-groupoid is medial
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Medial quasigroups

Trimedial Quasigroups

A groupoid (Q, -) is called trimedial if every 3-generated
sub-groupoid is medial

\

Theorem (T. Kepka)

A groupoid (Q, -) is a tri-medial quasigroup if and only if there
exist

@ a commutative Moufang loop (Q, +,0),
@ two commuting T1-central automorphisms @, 1 € Aut(Q, +),
@ a constant c € Z(Q),

such that, for each x,y € Q,

x-y =@+ +c




Distributive
Medial quasigroups

Moufang Loops

Let (Q, +) be a quasigroup. Then Q is a loop if there exists a
neutral element 0 in Q.

o’

A loop (Q, +, 0) is called a Moufang loop if it satisfies

x-(y-(x-2))=((x-y)-x) 2

A,
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Medial quasigroups

Moufang Loops

Let (Q, +) be a quasigroup. Then Q is a loop if there exists a
neutral element 0 in Q.

A loop (Q, +, 0) is called a Moufang loop if it satisfies
x-(y-(x-2)=(lx-y)x)z

The center of a loop Q is the set

Z(Q={a€eQ ax=xa, a-xy=ax-y, x-ay =xa-y,
Xy-a=x-ya; Vx,y € Q}

4
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Medial quasigroups

Commutative Moufang Loops

Definition
Let Q be a loop and let : Q — Q. We denote by & the mapping

X = X+ ofx).
We say that « is 1-central, if &(x) € Z(Q), for all x € Q.
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Medial quasigroups

Commutative Moufang Loops

Definition

Let Q be a loop and let : Q — Q. We denote by & the mapping
X = X+ ofx).

We say that « is 1-central, if &(x) € Z(Q), for all x € Q.

Proposition (R. Bruck)
Let (Q,+,0) be a commutative Moufang loop. Then 3Q C Z(Q).
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Medial quasigroups

Commutative Moufang Loops

Definition

Let Q be a loop and let : Q — Q. We denote by & the mapping
X = X+ ofx).

We say that « is 1-central, if &(x) € Z(Q), for all x € Q.

Proposition (R. Bruck)
Let (Q,+,0) be a commutative Moufang loop. Then 3Q C Z(Q).

Let Q be a finite commutative Moufang loop. If |Q| is coprime to 3
then Q is an abelian group.
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Medial quasigroups

Commutative Moufang Loops

Definition

Let Q be a loop and let : Q — Q. We denote by & the mapping
X = X+ ofx).

We say that « is 1-central, if &(x) € Z(Q), for all x € Q.

Proposition (R. Bruck)
Let (Q,+,0) be a commutative Moufang loop. Then 3Q C Z(Q).

Corollary

Let Q be a finite commutative Moufang loop. If |Q| is coprime to 3
then Q is an abelian group.

Example

The mapping x — 2x is a 1-central automorphism of a
commutative Moufang loop.

| \

\
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Distributive quasigroups

Distributive Quasigroups

Definition

A groupoid (Q, -) is called distributive if it satisfies

x-(y-2)=0-y)(x-2)
(x‘y)~ =(X-Z)-(y-2)-
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Distributive quasigroups

Distributive Quasigroups

A groupoid (Q, -) is called distributive if it satisfies
x-(y-z)=(x-y) (x-z)
(X‘y) = (X-Z) (v -2).

A\

Theorem (V. D. Belousov)

A quasigroup is distributive if and only if it is idempotent and
trimedial.

N
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Distributive quasigroups

Distributive Quasigroups

A groupoid (Q, -) is called distributive if it satisfies
x-(y-z)=(x-y) (x-z)
(X‘y)' = (X-Z) (v -2).

A\

Theorem (V. D. Belousov)

A quasigroup is distributive if and only if it is idempotent and
trimedial.

N

Corollary (V. D. Belousov; J.-P. Soublin)

A groupoid (Q, -) is a distributive quasigroup iff there exist
@ a commutative Moufang loop (Q, +,0),
@ a 1-central automorphism \ with id — 1\ € Aut(Q, +),

such thatx -y = (x —(x)) + P (y).
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Distributive quasigroups

Decomposition of Finite Distributive Quasigroups

Theorem (B. Fisher, J. D. H. Smith)
Let Q be a finite distributive quasigroup. Then

Q=Qix - x Q

where |Q;| = p?i, for some prime p;.
Moreover, if, for some i < k, Q; is not medial then p; = 3.
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Distributive quasigroups

Decomposition of Finite Distributive Quasigroups

Theorem (B. Fisher, J. D. H. Smith)
Let Q be a finite distributive quasigroup. Then

Q=Qix - x Q

where |Q;| = p?i, for some prime p;.
Moreover, if, for some i < k, Q; is not medial then p; = 3.

Theorem (T. Kepka, P. Némec)

There are 6 non-medial distributive quasigroups of size 81, up to
isomorphism.
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Distributive quasigroups

1-central Automorphisms

Lemma (PJ., D.S., P.V.)

Let Q be a commutative Moufang loop. A mapping «: Q — Q is a
1-central automorphism if and only if & is a fix-point-free
endomorphism Q — Z(Q).

Moreover, the endomorphism id — « is a bijection if and only if
&(x) = 2x implies x = 0.
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Distributive quasigroups

1-central Automorphisms

Lemma (PJ., D.S., P.V.)

Let Q be a commutative Moufang loop. A mapping «: Q — Q is a
1-central automorphism if and only if & is a fix-point-free
endomorphism Q — Z(Q).

Moreover, the endomorphism id — « is a bijection if and only if
&(x) = 2x implies x = 0.

| A\

Corollary
A groupoid (Q, -) is a distributive quasigroup iff there exist
@ a commutative Moufang loop (Q, +,0),

@ an endomorphism \{ : Q — Z(Q) satisfying {(x) ¢ {x, 2x}, for
eachx #0,

such that, for all x,y € Q,

x-y=2x—y+ Wy —x).

A
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Distributive quasigroups

Isomorphism of Distributive Quasigroups

Proposition

Let Q; and Q5 be commutative Moufang loops and let

i : Qi — Z(Q;) be endomorphism, fori € {1, 2}. The associated
distributive quasigroups are isomorphic if and only if there exists
an isomorphism f : Q1 — Q2 such that

P =fTodyof.
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Distributive quasigroups

Enumeration of Distributive Quasigroups of Size 243

Theorem (T. Kepka, P. Némec)

There exist 6 non-associative commutative Moufang loops of
order 243.
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Distributive quasigroups

Enumeration of Distributive Quasigroups of Size 243

Theorem (T. Kepka, P. Némec)
There exist 6 non-associative commutative Moufang loops of
order 243.

Theorem (PJ., D.S., P.V.)
There exist 92 non-medial distributive quasigroups of order 243.
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Distributive quasigroups

Example of a Distributive Quasigroup of Size 243

Fact (H. Zassenhaus)
The set Z3 with the operation
(a1,by,c1,dy, e1) + (az, ba, c2,d2,€2) =
(a1 +az+(ex+ez)-(cid2 —dica), by +ba, c1+c2,d1 +do, 1 +€2)
is a non-associative CML of order 243 and exponent 3.
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Distributive quasigroups

Example of a Distributive Quasigroup of Size 243

Fact (H. Zassenhaus)
The set Z3 with the operation
(a1, b1,c1,d1,e1) + (az, by, ca,do, e2) =
(a1 +azx+(e1+e2)-(c1da —dic2), b1 +ba, c1+co,d1 +do, €1 +e2)
is a non-associative CML of order 243 and exponent 3.

Proposition (P.J., D.S., P.V.)

Up to conjugacy, there are six endomorphisms { : Q — Z(Q)
satisfying \(x) ¢ {x, 2x}, for all x # 0:

(al b/ C/ d/ e) H (Ol O/ OI OI 0) (al bl CI dl e) '_> (b/ Ol O/ OI O)
(al bl CI dl e) '_> (CI Ol O/ OI 0) (a/ bl Cl dl e) '_> (OI CI OI OI 0)
(al b/ Cl dl e) }_) (bl CI Ol 0/ 0) (a/ bl Cl dl e) }_> (C/ dl OI Ol 0)
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Distributive quasigroups

Steiner and Mendelsohn Distributive Quasigroups

Proposition (D. Donovan, T. Griggs, T. McCourt, J. Oprsal,
D. Stanovsky)

A distributive quasigroup (Q, -) satisfies

if and only if {2 — 3\ + 3x = 0. Such a quasigroup is called
distributive Mendelsohn quasigroup.

Moreover, Q is also commutative if and only if (Q,+) is of
exponent 3 and \ = 0. Such quasigroups are called distributive
Steiner quasigroups.
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Steiner and Mendelsohn Distributive Quasigroups

Proposition (D. Donovan, T. Griggs, T. McCourt, J. Oprsal,
D. Stanovsky)

A distributive quasigroup (Q, -) satisfies

if and only if {2 — 3\ + 3x = 0. Such a quasigroup is called
distributive Mendelsohn quasigroup.

Moreover, Q is also commutative if and only if (Q,+) is of
exponent 3 and \ = 0. Such quasigroups are called distributive
Steiner quasigroups.

Proposition (P.J., D.S., P.V.)

There are 6 non-medial Mendelsohn quasigroups of order 243,
one of them being Steiner.
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