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Motivation

The constraint satisfaction problem is a widely studied
computational problem.

The algebraic approach offers a systematic approach for
studying its compexity.

Most research is devoted to separating tractable from
intractable problems.

In this talk we will look at generalizations allowing a
more fine-grained complexity analysis.



Outline of the Presentation

The constraint satisfaction problem.
The algebraic approach.
A more refined approach.

Two non-trivial applications.




The Constraint Satisfaction Problem

Assume that we are given a map of Australia and want
to colour its states with three colours, in such a way that
two adjacent states are not assigned the same colour.
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The Constraint Satisfaction Problem

Let D be a finite set of values. A k-ary relation over D
is a subset of the k-ary Cartesian product of D.

A set of relations S is called a constraint language. The
constraint satisfaction problem over S (CSP(S)) is
defined as follows.

Instance: A tuple (V, C) where V is a set of variables
and C a set of constraints over V and S.

Question: Does there exist a function f : V — D such
that (f(x1,...,xk)) € R for every constraint
R(x1,...,xk)in C?
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The Constraint Satisfaction Problem

If S is Boolean the CSP(S) problem is sometimes
denoted by SAT(S), the so-called generalised
satisfiability problem.

Let Ry/3 = {(0,0,1),(0,1,0),(1,0,0)} and let

Rnar = {0,1}3\ {(0,0,0),(1,1,1)}. Then the two
well-known NP-complete problems monotone 1-in-3-SAT
and NOT-ALL-EQUAL-3-SAT can be formulated as
SAT({R1/3}) and SAT({RxaE})
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Given a constraint language S, is CSP(S) tractable or
intractable?

The most successful approach to study this question is
based on relating constraint languages with algebras.




The Algebraic Approach

DISIIAIeI4M Let R be a relation. An n-ary function f is a
polymorphism of R if f(ti,...,t,) € R for every
ti,...,tn € R (applied componentwise).




The Algebraic Approach

DISIIAIeI4M Let R be a relation. An n-ary function f is a
polymorphism of R if f(ti,...,t,) € R for every
ti,...,tn € R (applied componentwise).

Similarly f is a polymorphism of a constraint language S
if it is a polymorphism of every relation in S. We also
say that S is invariant under f or that f preserves S.




Definition

Example

The Algebraic Approach

Let R be a relation. An n-ary function f is a
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The Algebraic Approach

Let R be a relation. An n-ary function f is a
polymorphism of R if f(ti,...,t,) € R for every
ti,...,tn € R (applied componentwise).

Similarly f is a polymorphism of a constraint language S
if it is a polymorphism of every relation in S. We also
say that S is invariant under f or that f preserves S.

Let Rxae = {0,133\ {(0,0,0),(1,1,1)} and let

Ri/3 = {(0,0,1),(0,1,0),(1,0,0)}. Let neg be the
unary function defined as neg(0) = 1 and neg(1) = 0.
Then

neg is a polymorphism of Ryag, but

neg is not a polymorphism of Ry /3 since
neg((07 O) 1)) = (1) 17 0) ¢ R1/3'
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set of all polymorphisms of S.
Sets of the form Pol(S) are known as clones.

Clones are sets of functions closed under functional
composition.
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The Algebraic Approach

The polymorphisms of a constraint language determines
the complexity of the CSP problem up to
polynomial-time reductions.

Let S and S’ be two finite constraint languages. If
Pol(S) C Pol(S’) then CSP(S') is polynomial-time
many-one reducible to CSP(S).

Very useful when separating tractable CSP problems
from NP-complete CSP problems...
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The Algebraic Approach

... But does not say anything about the relative
worst-case time complexity for the NP-complete cases.

1-in-3-SAT is solvable in roughly O(1.09") time.
3-SAT is only known to be solvable in O(1.308") time.

But both problems correspond to the same clone and are
polynomial-time reducible to each other.
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The Algebraic Approach

Want something more fine-grained than polymorphisms.

One alternative is to consider partial polymorphisms.
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A More Refined Approach

Let R be a relation. A partial function f is a partial
polymorphism of R if f(t1,...,t,) € R for every
t1,...,tn € R such that f(t1,...,t,) is defined for each
componentwise application.

Recall that the function neg(x) =1 — x was not a
polymorphism of Ry /3 = {(0,0,1),(0,1,0),(1,0,0)}.
Define the partial unary function neg’ as neg’(0) =1
and let it be undefined for 1. Then neg’ is a partial
polymorphism of Ry /3 since it will always be undefined
on any application of a tuple from Ry 3.
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A More Refined Approach

Let pPol(S) be the set of all partial polymorphisms of a
constraint language S.

Sets of the form pPol(S) are known as strong partial
clones.

Strong partial clones are sets of partial functions closed
under functional composition and containing all
subfunctions.



A More Refined Approach

The partial polymorphisms determines the complexity of
CSP problems up to O(c") time complexity.

IS Let S and S’ be two finite constraint languages. If
WNEINRCEIRN pPol(S) C pPol(S’) and CSP(S) is solvable in O(c")
time, then CSP(S') is also solvable in O(c") time.
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A More Refined Approach

The lattice of Boolean strong partial clones is
uncountably infinite. Even worse:

Assume P # NP. Then the set {pPol(S) | SAT(S) is
NP-complete} is uncountably infinite.

Assume P % NP. Then the set
{pPol(S) | pPol(S) D pPol({Ry/3})} is (at least)
countably infinite.

Let Pol(S) be an essentially unary clone over a finite
domain. If S is finite then pPol(S) does not have a
finite base.

Implies that reasoning with partial polymorphisms is
almost always difficult.
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Proof.

Two Non-Trivial Applications

The “easiest NP-complete SAT(S) problem”.

Assume P # NP. Then there exists a relation R such
that SAT({R}) is NP-complete but not strictly harder
than any other NP-complete SAT(S) problem.

Proof sketch:
If pPol(S) C pPol(S’) then SAT(S’) is not
computationally harder than SAT(S).

It is possible to find a relation R such that
pPol(S) C pPol({R}) for any S such that SAT(S) is
NP-complete.



Two Non-Trivial Applications

A related problem to studying worst-case time
complexity is kernelization.




Two Non-Trivial Applications

A related problem to studying worst-case time
complexity is kernelization.

It can be seen as a preprocessing technique for reducing
a problem to a smaller version of the problem, a kernel.



Two Non-Trivial Applications

A related problem to studying worst-case time
complexity is kernelization.

It can be seen as a preprocessing technique for reducing
a problem to a smaller version of the problem, a kernel.

For SAT(S) we measure the size of the kernel with
respect to the number of constraints.



Two Non-Trivial Applications

A related problem to studying worst-case time
complexity is kernelization.

It can be seen as a preprocessing technique for reducing
a problem to a smaller version of the problem, a kernel.
For SAT(S) we measure the size of the kernel with
respect to the number of constraints.

Polymorphisms doesn’t work for studying kernelizability
of SAT(S) problems.
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ALECEON SAT(S) has a kernel with O(n) constraints if S is
(OISR ‘cmbeddable” into a language S preserved by a Maltsev
WEWEREI polymorphism.

Proof.

Translate instance | of SAT(S) to instance of SAT(S).

Use a variation of the simple algorithm for Maltsev
constraints to remove redundant constraints.

Reduce back to SAT(S).
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Two Non-Trivial Applications

If S is not “embeddable” into a language preserved by a
Maltsev polymorphism then this can be witnessed by
certain Boolean partial Maltsev polymorphisms.

IS EWR /F S is not preserved by a partial Maltsev operation then
(BEVVERIM SAT(S) does not have a kernel with O(n?~¢) constraints
WEWSTCIONR for any c > 0.
Hence, the absence of partial polymorphisms provides a
lot of structural information for a SAT problem.
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Concluding Remarks

To study the worst-case time complexity of CSP
problems we used partial polymorphisms instead of total
polymorphisms.

The resulting theory is much more complicated.

But non-trivial results can still be obtained.




