Strong Partial Clones and the Complexity of
Constraint Satisfaction Problems

Victor Lagerkvist
TU Dresden, Institut fiir Algebra

September 8

Motivation

The constraint satisfaction problem is a widely studied
computational problem.

Motivation

The constraint satisfaction problem is a widely studied
computational problem.

The algebraic approach offers a systematic approach for
studying its compexity.

Motivation

The constraint satisfaction problem is a widely studied
computational problem.

The algebraic approach offers a systematic approach for
studying its compexity.

Most research is devoted to separating tractable from
intractable problems.

Motivation

The constraint satisfaction problem is a widely studied
computational problem.

The algebraic approach offers a systematic approach for
studying its compexity.

Most research is devoted to separating tractable from
intractable problems.

In this talk we will look at generalizations allowing a
more fine-grained complexity analysis.

Outline of the Presentation

The constraint satisfaction problem.
The algebraic approach.
A more refined approach.

Two non-trivial applications.

The Constraint Satisfaction Problem

Assume that we are given a map of Australia and want
to colour its states with three colours, in such a way that
two adjacent states are not assigned the same colour.

Northern
Territory

Queensland

Western
Australia

South
Australia

New South
Vales

0

9
Tasmania t;)

The Constraint Satisfaction Problem

This kind of problem is an example of a constraint
satisfaction problem.

The Constraint Satisfaction Problem

This kind of problem is an example of a constraint
satisfaction problem.
We have some objects that we want to assign values to.

The Constraint Satisfaction Problem

This kind of problem is an example of a constraint
satisfaction problem.
We have some objects that we want to assign values to.

But when assigning values we have to do it in such a
way that all constraints are satisfied.

The Constraint Satisfaction Problem

This kind of problem is an example of a constraint
satisfaction problem.
We have some objects that we want to assign values to.

But when assigning values we have to do it in such a
way that all constraints are satisfied.

Tasmania '

The Constraint Satisfaction Problem

DISIIAI4M Let D be a finite set of values. A k-ary relation over D
is a subset of the k-ary Cartesian product of D.
A set of relations S is called a constraint language.

Definition

The Constraint Satisfaction Problem

Let D be a finite set of values. A k-ary relation over D
is a subset of the k-ary Cartesian product of D.

A set of relations S is called a constraint language. The
constraint satisfaction problem over S (CSP(S)) is
defined as follows.

Instance: A tuple (V, C) where V is a set of variables
and C a set of constraints over V and S.

Question: Does there exist a function f : V — D such
that (f(x1,...,xk)) € R for every constraint
R(x1,...,xk)in C?

The Constraint Satisfaction Problem

If S is Boolean the CSP(S) problem is sometimes
denoted by SAT(S), the so-called generalised
satisfiability problem.

Example

The Constraint Satisfaction Problem

If S is Boolean the CSP(S) problem is sometimes
denoted by SAT(S), the so-called generalised
satisfiability problem.

Let Ry/3 = {(0,0,1),(0,1,0),(1,0,0)} and let

Rnar = {0,1}3\ {(0,0,0),(1,1,1)}. Then the two
well-known NP-complete problems monotone 1-in-3-SAT
and NOT-ALL-EQUAL-3-SAT can be formulated as
SAT({R1/3}) and SAT({RxaE})

The Algebraic Approach

Given a constraint language S, is CSP(S) tractable or
intractable?

The Algebraic Approach

Given a constraint language S, is CSP(S) tractable or
intractable?

The most successful approach to study this question is
based on relating constraint languages with algebras.

The Algebraic Approach

DISIIAIeI4M Let R be a relation. An n-ary function f is a
polymorphism of R if f(ti,...,t,) € R for every
ti,...,tn € R (applied componentwise).

The Algebraic Approach

DISIIAIeI4M Let R be a relation. An n-ary function f is a
polymorphism of R if f(ti,...,t,) € R for every
ti,...,tn € R (applied componentwise).

Similarly f is a polymorphism of a constraint language S
if it is a polymorphism of every relation in S. We also
say that S is invariant under f or that f preserves S.

Definition

Example

The Algebraic Approach

Let R be a relation. An n-ary function f is a
polymorphism of R if f(ti,...,t,) € R for every
ti,...,tn € R (applied componentwise).

Similarly f is a polymorphism of a constraint language S
if it is a polymorphism of every relation in S. We also
say that S is invariant under f or that f preserves S.

Let Rxae = {0,133\ {(0,0,0),(1,1,1)} and let

Ri/3 = {(0,0,1),(0,1,0),(1,0,0)}. Let neg be the
unary function defined as neg(0) = 1 and neg(1) = 0.

Definition

Example

The Algebraic Approach

Let R be a relation. An n-ary function f is a
polymorphism of R if f(ti,...,t,) € R for every
ti,...,tn € R (applied componentwise).

Similarly f is a polymorphism of a constraint language S
if it is a polymorphism of every relation in S. We also
say that S is invariant under f or that f preserves S.

Let Rxae = {0,133\ {(0,0,0),(1,1,1)} and let

Ri/3 = {(0,0,1),(0,1,0),(1,0,0)}. Let neg be the
unary function defined as neg(0) = 1 and neg(1) = 0.
Then

neg is a polymorphism of Ryag, but

Definition

Example

The Algebraic Approach

Let R be a relation. An n-ary function f is a
polymorphism of R if f(ti,...,t,) € R for every
ti,...,tn € R (applied componentwise).

Similarly f is a polymorphism of a constraint language S
if it is a polymorphism of every relation in S. We also
say that S is invariant under f or that f preserves S.

Let Rxae = {0,133\ {(0,0,0),(1,1,1)} and let

Ri/3 = {(0,0,1),(0,1,0),(1,0,0)}. Let neg be the
unary function defined as neg(0) = 1 and neg(1) = 0.
Then

neg is a polymorphism of Ryag, but

neg is not a polymorphism of Ry /3 since
neg((07 O) 1)) = (1) 17 0) ¢ R1/3'

The Algebraic Approach

BTN If S is a constraint language then we let Pol(S) be the
set of all polymorphisms of S.

The Algebraic Approach

BTN If S is a constraint language then we let Pol(S) be the
set of all polymorphisms of S.

Sets of the form Pol(S) are known as clones.

The Algebraic Approach

BTN If S is a constraint language then we let Pol(S) be the
set of all polymorphisms of S.
Sets of the form Pol(S) are known as clones.

Clones are sets of functions closed under functional
composition.

The Algebraic Approach

The polymorphisms of a constraint language determines
the complexity of the CSP problem up to
polynomial-time reductions.

ILECSGEN Let S and S’ be two finite constraint languages. If

WEEVCOHECEIRE Pol(S) C Pol(S') then CSP(S') is polynomial-time
many-one reducible to CSP(S).

Theorem

(Jeavons et al.)

The Algebraic Approach

The polymorphisms of a constraint language determines
the complexity of the CSP problem up to
polynomial-time reductions.

Let S and S’ be two finite constraint languages. If
Pol(S) C Pol(S’) then CSP(S') is polynomial-time
many-one reducible to CSP(S).

Very useful when separating tractable CSP problems
from NP-complete CSP problems...

The Algebraic Approach

... But does not say anything about the relative
worst-case time complexity for the NP-complete cases.

The Algebraic Approach

... But does not say anything about the relative
worst-case time complexity for the NP-complete cases.

1-in-3-SAT is solvable in roughly O(1.09") time.

The Algebraic Approach

... But does not say anything about the relative
worst-case time complexity for the NP-complete cases.

1-in-3-SAT is solvable in roughly O(1.09") time.
3-SAT is only known to be solvable in O(1.308") time.

The Algebraic Approach

... But does not say anything about the relative
worst-case time complexity for the NP-complete cases.

1-in-3-SAT is solvable in roughly O(1.09") time.
3-SAT is only known to be solvable in O(1.308") time.

But both problems correspond to the same clone and are
polynomial-time reducible to each other.

The Algebraic Approach

Want something more fine-grained than polymorphisms.

The Algebraic Approach

Want something more fine-grained than polymorphisms.

One alternative is to consider partial polymorphisms.

A More Refined Approach

DISIIAIIAM Let R be a relation. A partial function f is a partial
polymorphism of R if f(t1,...,t,) € R for every
t1,...,tn € R such that f(t1,...,t,) is defined for each
componentwise application.

Definition

Example

A More Refined Approach

Let R be a relation. A partial function f is a partial
polymorphism of R if f(t1,...,t,) € R for every
t1,...,tn € R such that f(t1,...,t,) is defined for each
componentwise application.

Recall that the function neg(x) =1 — x was not a
polymorphism of Ry /3 = {(0,0,1),(0,1,0),(1,0,0)}.
Define the partial unary function neg’ as neg’(0) =1
and let it be undefined for 1. Then neg’ is a partial
polymorphism of Ry /3 since it will always be undefined
on any application of a tuple from Ry 3.

A More Refined Approach

Let pPol(S) be the set of all partial polymorphisms of a
constraint language S.

A More Refined Approach

Let pPol(S) be the set of all partial polymorphisms of a
constraint language S.

Sets of the form pPol(S) are known as strong partial
clones.

A More Refined Approach

Let pPol(S) be the set of all partial polymorphisms of a
constraint language S.

Sets of the form pPol(S) are known as strong partial
clones.

Strong partial clones are sets of partial functions closed
under functional composition and containing all
subfunctions.

A More Refined Approach

The partial polymorphisms determines the complexity of
CSP problems up to O(c") time complexity.

IS Let S and S’ be two finite constraint languages. If
WNEINRCEIRN pPol(S) C pPol(S’) and CSP(S) is solvable in O(c")
time, then CSP(S') is also solvable in O(c") time.

A More Refined Approach

The lattice of Boolean strong partial clones is
uncountably infinite. Even worse:

ALECER Assume P # NP. Then the set {pPol(S) | SAT(S) is
(S elP)N NP-complete} is uncountably infinite.

A More Refined Approach

The lattice of Boolean strong partial clones is
uncountably infinite. Even worse:

ALECER Assume P # NP. Then the set {pPol(S) | SAT(S) is
(S elP)N NP-complete} is uncountably infinite.

AUl Assume P # NP. Then the set
(ELCLVERA {pPol(S) | pPol(S) D pPol({Ry/3})} is (at least)
NN countably infinite.

Theorem
(Scholzel)

Theorem
(Lagerkvist &
Roy)

Theorem
(Lagerkvist &
Wahlstrom)

A More Refined Approach

The lattice of Boolean strong partial clones is
uncountably infinite. Even worse:

Assume P # NP. Then the set {pPol(S) | SAT(S) is
NP-complete} is uncountably infinite.

Assume P % NP. Then the set
{pPol(S) | pPol(S) D pPol({Ry/3})} is (at least)
countably infinite.

Let Pol(S) be an essentially unary clone over a finite
domain. If S is finite then pPol(S) does not have a
finite base.

Theorem
(Scholzel)

Theorem

(Lagerkvist &
Roy)

Theorem
(Lagerkvist &
Wahlstrom)

A More Refined Approach

The lattice of Boolean strong partial clones is
uncountably infinite. Even worse:

Assume P # NP. Then the set {pPol(S) | SAT(S) is
NP-complete} is uncountably infinite.

Assume P % NP. Then the set
{pPol(S) | pPol(S) D pPol({Ry/3})} is (at least)
countably infinite.

Let Pol(S) be an essentially unary clone over a finite
domain. If S is finite then pPol(S) does not have a
finite base.

Implies that reasoning with partial polymorphisms is
almost always difficult.

Theorem
(Jonsson et al.)

Two Non-Trivial Applications

The “easiest NP-complete SAT(S) problem”.

Assume P # NP. Then there exists a relation R such
that SAT({R}) is NP-complete but not strictly harder
than any other NP-complete SAT(S) problem.

Theorem
(Jonsson et al.)

Proof.

Two Non-Trivial Applications

The “easiest NP-complete SAT(S) problem”.

Assume P # NP. Then there exists a relation R such
that SAT({R}) is NP-complete but not strictly harder
than any other NP-complete SAT(S) problem.

Proof sketch:
If pPol(S) C pPol(S’) then SAT(S’) is not
computationally harder than SAT(S).

Theorem
(Jonsson et al.)

Proof.

Two Non-Trivial Applications

The “easiest NP-complete SAT(S) problem”.

Assume P # NP. Then there exists a relation R such
that SAT({R}) is NP-complete but not strictly harder
than any other NP-complete SAT(S) problem.

Proof sketch:
If pPol(S) C pPol(S’) then SAT(S’) is not
computationally harder than SAT(S).

It is possible to find a relation R such that
pPol(S) C pPol({R}) for any S such that SAT(S) is
NP-complete.

Two Non-Trivial Applications

A related problem to studying worst-case time
complexity is kernelization.

Two Non-Trivial Applications

A related problem to studying worst-case time
complexity is kernelization.

It can be seen as a preprocessing technique for reducing
a problem to a smaller version of the problem, a kernel.

Two Non-Trivial Applications

A related problem to studying worst-case time
complexity is kernelization.

It can be seen as a preprocessing technique for reducing
a problem to a smaller version of the problem, a kernel.

For SAT(S) we measure the size of the kernel with
respect to the number of constraints.

Two Non-Trivial Applications

A related problem to studying worst-case time
complexity is kernelization.

It can be seen as a preprocessing technique for reducing
a problem to a smaller version of the problem, a kernel.
For SAT(S) we measure the size of the kernel with
respect to the number of constraints.

Polymorphisms doesn’t work for studying kernelizability
of SAT(S) problems.

Two Non-Trivial Applications

ALECEON SAT(S) has a kernel with O(n) constraints if S is
(OISR ‘cmbeddable” into a language S preserved by a Maltsev
WEWEREI polymorphism.

Two Non-Trivial Applications

ALECEON SAT(S) has a kernel with O(n) constraints if S is
(OISR ‘cmbeddable” into a language S preserved by a Maltsev
WEWEREI polymorphism.

Proof.

M Translate instance / of SAT(S) to instance of SAT(S).

Two Non-Trivial Applications

ALECEON SAT(S) has a kernel with O(n) constraints if S is
(OISR ‘cmbeddable” into a language S preserved by a Maltsev
WEWEREI polymorphism.

Proof.

M Translate instance / of SAT(S) to instance of SAT(S).

(W Use a variation of the simple algorithm for Maltsev
constraints to remove redundant constraints.

Two Non-Trivial Applications

ALECEON SAT(S) has a kernel with O(n) constraints if S is
(OISR ‘cmbeddable” into a language S preserved by a Maltsev
WEWEREI polymorphism.

Proof.

Translate instance | of SAT(S) to instance of SAT(S).

Use a variation of the simple algorithm for Maltsev
constraints to remove redundant constraints.

Reduce back to SAT(S).

Two Non-Trivial Applications

If S is not “embeddable” into a language preserved by a
Maltsev polymorphism then this can be witnessed by
certain Boolean partial Maltsev polymorphisms.

IS EWR /F S is not preserved by a partial Maltsev operation then
(BEVVERIM SAT(S) does not have a kernel with O(n?~¢) constraints
WEWSTCIONR for any c > 0.

Two Non-Trivial Applications

If S is not “embeddable” into a language preserved by a
Maltsev polymorphism then this can be witnessed by
certain Boolean partial Maltsev polymorphisms.

IS EWR /F S is not preserved by a partial Maltsev operation then
(BEVVERIM SAT(S) does not have a kernel with O(n?~¢) constraints
WEWSTCIONR for any c > 0.
Hence, the absence of partial polymorphisms provides a
lot of structural information for a SAT problem.

Concluding Remarks

To study the worst-case time complexity of CSP
problems we used partial polymorphisms instead of total
polymorphisms.

Concluding Remarks

To study the worst-case time complexity of CSP

problems we used partial polymorphisms instead of total
polymorphisms.

The resulting theory is much more complicated.

Concluding Remarks

To study the worst-case time complexity of CSP
problems we used partial polymorphisms instead of total
polymorphisms.

The resulting theory is much more complicated.

But non-trivial results can still be obtained.

