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Motivation

The constraint satisfaction problem is a widely studied

computational problem.

The algebraic approach o�ers a systematic approach for

studying its compexity.

Most research is devoted to separating tractable from

intractable problems.

In this talk we will look at generalizations allowing a

more �ne-grained complexity analysis.
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Outline of the Presentation

1 The constraint satisfaction problem.

2 The algebraic approach.

3 A more re�ned approach.

4 Two non-trivial applications.
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two adjacent states are not assigned the same colour.
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The Constraint Satisfaction Problem

De�nition Let D be a �nite set of values. A k-ary relation over D
is a subset of the k-ary Cartesian product of D.

A set of relations S is called a constraint language.

The

constraint satisfaction problem over S (CSP(S)) is
de�ned as follows.

Instance: A tuple (V ,C ) where V is a set of variables

and C a set of constraints over V and S .
Question: Does there exist a function f : V → D such

that (f (x1, . . . , xk)) ∈ R for every constraint

R(x1, . . . , xk) in C?
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The Constraint Satisfaction Problem

If S is Boolean the CSP(S) problem is sometimes

denoted by SAT(S), the so-called generalised

satis�ability problem.

Example Let R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} and let

RNAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. Then the two

well-known NP-complete problems monotone 1-in-3-SAT

and NOT-ALL-EQUAL-3-SAT can be formulated as

SAT({R1/3}) and SAT({RNAE}).
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Similarly f is a polymorphism of a constraint language S
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Then

neg is a polymorphism of RNAE, but

neg is not a polymorphism of R1/3 since

neg((0, 0, 1)) = (1, 1, 0) /∈ R1/3.



The Algebraic Approach

De�nition Let R be a relation. An n-ary function f is a

polymorphism of R if f (t1, . . . , tn) ∈ R for every

t1, . . . , tn ∈ R (applied componentwise).

Similarly f is a polymorphism of a constraint language S
if it is a polymorphism of every relation in S . We also

say that S is invariant under f or that f preserves S .

Example Let RNAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} and let

R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Let neg be the

unary function de�ned as neg(0) = 1 and neg(1) = 0.

Then

neg is a polymorphism of RNAE, but

neg is not a polymorphism of R1/3 since

neg((0, 0, 1)) = (1, 1, 0) /∈ R1/3.



The Algebraic Approach

De�nition Let R be a relation. An n-ary function f is a

polymorphism of R if f (t1, . . . , tn) ∈ R for every

t1, . . . , tn ∈ R (applied componentwise).

Similarly f is a polymorphism of a constraint language S
if it is a polymorphism of every relation in S . We also

say that S is invariant under f or that f preserves S .

Example Let RNAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} and let

R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Let neg be the

unary function de�ned as neg(0) = 1 and neg(1) = 0.

Then

neg is a polymorphism of RNAE, but

neg is not a polymorphism of R1/3 since

neg((0, 0, 1)) = (1, 1, 0) /∈ R1/3.



The Algebraic Approach

De�nition Let R be a relation. An n-ary function f is a

polymorphism of R if f (t1, . . . , tn) ∈ R for every

t1, . . . , tn ∈ R (applied componentwise).

Similarly f is a polymorphism of a constraint language S
if it is a polymorphism of every relation in S . We also

say that S is invariant under f or that f preserves S .

Example Let RNAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} and let

R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Let neg be the

unary function de�ned as neg(0) = 1 and neg(1) = 0.

Then

neg is a polymorphism of RNAE, but

neg is not a polymorphism of R1/3 since

neg((0, 0, 1)) = (1, 1, 0) /∈ R1/3.



The Algebraic Approach

De�nition Let R be a relation. An n-ary function f is a

polymorphism of R if f (t1, . . . , tn) ∈ R for every

t1, . . . , tn ∈ R (applied componentwise).

Similarly f is a polymorphism of a constraint language S
if it is a polymorphism of every relation in S . We also

say that S is invariant under f or that f preserves S .

Example Let RNAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} and let

R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}. Let neg be the

unary function de�ned as neg(0) = 1 and neg(1) = 0.

Then

neg is a polymorphism of RNAE, but

neg is not a polymorphism of R1/3 since

neg((0, 0, 1)) = (1, 1, 0) /∈ R1/3.



The Algebraic Approach

De�nition If S is a constraint language then we let Pol(S) be the

set of all polymorphisms of S .

Sets of the form Pol(S) are known as clones.

Clones are sets of functions closed under functional

composition.



The Algebraic Approach

De�nition If S is a constraint language then we let Pol(S) be the

set of all polymorphisms of S .

Sets of the form Pol(S) are known as clones.

Clones are sets of functions closed under functional

composition.



The Algebraic Approach

De�nition If S is a constraint language then we let Pol(S) be the

set of all polymorphisms of S .

Sets of the form Pol(S) are known as clones.

Clones are sets of functions closed under functional

composition.



The Algebraic Approach

The polymorphisms of a constraint language determines

the complexity of the CSP problem up to

polynomial-time reductions.

Theorem
(Jeavons et al.)

Let S and S ′ be two �nite constraint languages. If

Pol(S) ⊆ Pol(S ′) then CSP(S ′) is polynomial-time

many-one reducible to CSP(S).

Very useful when separating tractable CSP problems

from NP-complete CSP problems...



The Algebraic Approach

The polymorphisms of a constraint language determines

the complexity of the CSP problem up to

polynomial-time reductions.

Theorem
(Jeavons et al.)

Let S and S ′ be two �nite constraint languages. If

Pol(S) ⊆ Pol(S ′) then CSP(S ′) is polynomial-time

many-one reducible to CSP(S).

Very useful when separating tractable CSP problems

from NP-complete CSP problems...



The Algebraic Approach

... But does not say anything about the relative

worst-case time complexity for the NP-complete cases.

1-in-3-SAT is solvable in roughly O(1.09n) time.

3-SAT is only known to be solvable in O(1.308n) time.

But both problems correspond to the same clone and are

polynomial-time reducible to each other.



The Algebraic Approach

... But does not say anything about the relative

worst-case time complexity for the NP-complete cases.

1-in-3-SAT is solvable in roughly O(1.09n) time.

3-SAT is only known to be solvable in O(1.308n) time.

But both problems correspond to the same clone and are

polynomial-time reducible to each other.



The Algebraic Approach

... But does not say anything about the relative

worst-case time complexity for the NP-complete cases.

1-in-3-SAT is solvable in roughly O(1.09n) time.

3-SAT is only known to be solvable in O(1.308n) time.

But both problems correspond to the same clone and are

polynomial-time reducible to each other.



The Algebraic Approach

... But does not say anything about the relative

worst-case time complexity for the NP-complete cases.

1-in-3-SAT is solvable in roughly O(1.09n) time.

3-SAT is only known to be solvable in O(1.308n) time.

But both problems correspond to the same clone and are

polynomial-time reducible to each other.



The Algebraic Approach

Want something more �ne-grained than polymorphisms.

One alternative is to consider partial polymorphisms.



The Algebraic Approach

Want something more �ne-grained than polymorphisms.

One alternative is to consider partial polymorphisms.



A More Re�ned Approach

De�nition Let R be a relation. A partial function f is a partial

polymorphism of R if f (t1, . . . , tn) ∈ R for every

t1, . . . , tn ∈ R such that f (t1, . . . , tn) is de�ned for each

componentwise application.

Example Recall that the function neg(x) = 1− x was not a

polymorphism of R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)}.
De�ne the partial unary function neg′ as neg′(0) = 1

and let it be unde�ned for 1. Then neg′ is a partial

polymorphism of R1/3 since it will always be unde�ned

on any application of a tuple from R1/3.
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uncountably in�nite. Even worse:
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(Schölzel)

Assume P 6= NP. Then the set {pPol(S) | SAT(S) is

NP-complete} is uncountably in�nite.

Theorem
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Assume P 6= NP. Then the set

{pPol(S) | pPol(S) ⊃ pPol({R1/3})} is (at least)

countably in�nite.

Theorem
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Let Pol(S) be an essentially unary clone over a �nite

domain. If S is �nite then pPol(S) does not have a

�nite base.

Implies that reasoning with partial polymorphisms is

almost always di�cult.
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The �easiest NP-complete SAT(S) problem�.

Theorem
(Jonsson et al.)

Assume P 6= NP. Then there exists a relation R such

that SAT({R}) is NP-complete but not strictly harder

than any other NP-complete SAT(S) problem.

Proof. Proof sketch:

If pPol(S) ⊆ pPol(S ′) then SAT(S ′) is not
computationally harder than SAT(S).

It is possible to �nd a relation R such that

pPol(S) ⊆ pPol({R}) for any S such that SAT(S) is
NP-complete.
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It can be seen as a preprocessing technique for reducing

a problem to a smaller version of the problem, a kernel.

For SAT(S) we measure the size of the kernel with

respect to the number of constraints.

Polymorphisms doesn't work for studying kernelizability

of SAT(S) problems.
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Theorem
(Lagerkvist &
Wahlström)

SAT(S) has a kernel with O(n) constraints if S is

�embeddable� into a language Ŝ preserved by a Maltsev

polymorphism.

Proof.

Translate instance I of SAT(S) to instance of SAT(Ŝ).

Use a variation of the simple algorithm for Maltsev

constraints to remove redundant constraints.

Reduce back to SAT(S).
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If S is not �embeddable� into a language preserved by a

Maltsev polymorphism then this can be witnessed by

certain Boolean partial Maltsev polymorphisms.

Theorem
(Lagerkvist &
Wahlström)

If S is not preserved by a partial Maltsev operation then

SAT(S) does not have a kernel with O(n2−ε) constraints
for any ε > 0.

Hence, the absence of partial polymorphisms provides a

lot of structural information for a SAT problem.
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