Regular subsemigroups of the semigroup of fence-preserving partial transformations on N

Laddawan Lohapan Khon Kaen University, Thailand

SSAOS 5th September 2016

$$X \neq \emptyset$$

 \leq binary relation on X

$$X \neq \emptyset$$

 \leq binary relation on X

• ≤ is called a partial order

transitive : $\forall a, b, c \in X (a \leq b \& b \leq c) \Rightarrow a \leq c$

reflexive : $\forall a \in X, a \leq a$

antisymmetric: $\forall a, b \in X (a \leq b \& b \leq a) \Rightarrow a = b$

$$X \neq \emptyset$$

 \leq binary relation on X

• ≤ is called a partial order

transitive:
$$\forall a, b, c \in X (a \leq b \& b \leq c) \Rightarrow a \leq c$$

reflexive :
$$\forall a \in X, a \leq a$$

antisymmetric :
$$\forall a, b \in X (a \leq b \& b \leq a) \Rightarrow a = b$$

 (X, \preceq) is called a partially ordered set

$$X \neq \emptyset$$

 \leq binary relation on X

• ≤ is called a partial order

transitive:
$$\forall a, b, c \in X (a \leq b \& b \leq c) \Rightarrow a \leq c$$

reflexive : $\forall a \in X, a \leq a$

antisymmetric :
$$\forall a, b \in X (a \leq b \& b \leq a) \Rightarrow a = b$$

 (X, \preceq) is called a partially ordered set

• a partial order ≤ is called linear order

$$\forall a, b \in X \text{ either } a \leq b \text{ or } b \leq a$$

$$X \neq \emptyset$$

 \leq binary relation on X

• ≤ is called a partial order

transitive :
$$\forall a, b, c \in X (a \leq b \& b \leq c) \Rightarrow a \leq c$$
 reflexive : $\forall a \in X, a \leq a$

antisymmetric:
$$\forall a, b \in X (a \leq b \& b \leq a) \Rightarrow a = b$$

 (X, \preceq) is called a partially ordered set

• a partial order \leq is called linear order

$$\forall a, b \in X \text{ either } a \leq b \text{ or } b \leq a$$

 (X, \preceq) is called a linearly ordered set or chain

• $\alpha: X \to X$ is called a full transformation on XT(X) := the set of all full transformations on X

- $\alpha: X \to X$ is called a full transformation on XT(X) := the set of all full transformations on X
- \bullet $Y \subseteq X$

- $\alpha: X \to X$ is called a full transformation on XT(X) := the set of all full transformations on X
- \bullet $Y \subset X$
- $\alpha: Y \to X$ is called a partial transformation on XP(X) := the set of all partial transformations on X

- $\alpha: X \to X$ is called a full transformation on XT(X) := the set of all full transformations on X
- \bullet $Y \subset X$
- α: Y → X is called a partial transformation on X
 P(X) := the set of all partial transformations on X
- A partial transformation $\alpha: Y \to X$ is order-preserving

$$\forall x, y \in Y, \ x \leq y \Rightarrow x\alpha \leq y\alpha$$

OP(X) := the set of all order-preserving partial transformations on X

- In 2004, A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations
- In 2010, W. Mora and Y. Kemprasit, Regular elements of some order-preserving transformation semigroups
- In 2011, I. Dimitrova and J. Koppitz, On the maximal regular subsemigroups of ideals of order-preserving or order-reversing transformations
- In 2015, P. Zhao, H. Hu and T. You, Maximal regular subsemibands of the finite order-preserving partial transformation semigroups PO(n, r)

A fence X, also called zigzag poset, is a partially ordered set (X, \preceq) in which the order relation forms a path with alternating orientations:

$$a_1 \prec a_2 \succ a_3 \prec a_4 \succ \cdots \succ a_{2m-1} \prec a_{2m} \succ a_{2m+1} \prec \cdots$$

A fence X, also called zigzag poset, is a partially ordered set (X, \preceq) in which the order relation forms a path with alternating orientations:

$$a_1 \prec a_2 \succ a_3 \prec a_4 \succ \cdots \succ a_{2m-1} \prec a_{2m} \succ a_{2m+1} \prec \cdots$$

up-fence

or
$$a_1 \succ a_2 \prec a_3 \succ a_4 \prec \cdots \prec a_{2m-1} \succ a_{2m} \prec a_{2m+1} \succ \cdots$$

or
$$a_1 \succ a_2 \prec a_3 \succ a_4 \prec \cdots \prec a_{2m-1} \succ a_{2m} \prec a_{2m+1} \succ \cdots$$

down-fence

where
$$X = \{a_1, a_2, a_3, \ldots\}.$$

The number of antichains in a fence

The number of antichains in a fence is Fibonacci numbers

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

Definition

Let $\mathbb N$ be the set of natural numbers. We define a partial order \leq on $\mathbb N$ by

$$n \prec n+1$$
 if n is odd $n \succ n+1$ if n is even.

Then (\mathbb{N}, \preceq) is an up-fence.

Definition

Let $\mathbb N$ be the set of natural numbers. We define a partial order \preceq on $\mathbb N$ by

$$n \prec n+1$$
 if n is odd $n \succ n+1$ if n is even.

Then (\mathbb{N}, \preceq) is an up-fence.

Definition

A partial transformation α on a fence $\mathbb N$ is fence-preserving if $a \leq b$ in $dom\alpha$, then $a\alpha \leq b\alpha$.

Definition

A partial transformation α on a fence \mathbb{N} is fence-preserving if $a \leq b$ in $dom\alpha$, then $a\alpha \prec b\alpha$.

Example

 $\alpha: \mathbb{N} \setminus \{1,2\} \to \mathbb{N}$ defined by $i\alpha = i-2$ for all $i \in \mathbb{N} \setminus \{1,2\}$ is a fecne-preserving partial transformation on \mathbb{N} .

• $FP(\mathbb{N})$:= the set of all partial transformations on \mathbb{N} which is fence-preserving

- $FP(\mathbb{N})$:= the set of all partial transformations on \mathbb{N} which is fence-preserving
- $Reg(FP(\mathbb{N})) :=$ the set of all fence-preserving partial transformations on \mathbb{N} which is regular in $FP(\mathbb{N})$:= $\{\alpha \in FP(\mathbb{N}) : \alpha \text{ is regular in } FP(\mathbb{N})\}$

- $FP(\mathbb{N})$:= the set of all partial transformations on \mathbb{N} which is fence-preserving
- $Reg(FP(\mathbb{N})):=$ the set of all fence-preserving partial transformations on \mathbb{N} which is regular in $FP(\mathbb{N})$:= $\{\alpha \in FP(\mathbb{N}) : \alpha \text{ is regular in } FP(\mathbb{N})\}$
- $id_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}$ defined by $xid_{\mathbb{N}} = x$ for all $x \in \mathbb{N}$

• $a \parallel b$: a and b are not comparable

• $A \parallel B$: for each $x \in A, x \parallel y$ for all $y \in B$

• $a \parallel b$: a and b are not comparable

• $A \| B$: for each $x \in A, x \| y$ for all $y \in B$

• $a \not\parallel b$: a and b are comparable

• $A \not\parallel B$: for each $x \in A, x \not\parallel y$ for all $y \in B$

Results

Theorem

Let $\alpha \in FP(\mathbb{N})$. Then α is regular if and only if there exists a subset $Y \subseteq dom\alpha$ such that $\alpha|_Y$ is a bijection from Y to $ran\alpha$ and $(\alpha|_Y)^{-1} \in FP(\mathbb{N})$.

Results

Theorem

Let $\alpha \in FP(\mathbb{N})$. Then α is regular if and only if there exists a subset $Y \subseteq dom\alpha$ such that $\alpha|_Y$ is a bijection from Y to $ran\alpha$ and $(\alpha|_Y)^{-1} \in FP(\mathbb{N})$.

Corollary

Let $\alpha \in FP(\mathbb{N})$ with $|\operatorname{ran}\alpha| = 2$. Then α is regular if and only if $\operatorname{ran}\alpha$ is not a fence or there is a two-element subfence Y of $\operatorname{dom}\alpha$ such that $Y\alpha = \operatorname{ran}\alpha$.

$$A:=\{\alpha\in \mathit{Reg}(\mathit{FP}(\mathbb{N})): \mid \mathit{ran}\alpha\mid\leq 2\}$$

$$A:=\{\alpha\in Reg(FP(\mathbb{N})): | ran\alpha |\leq 2\}$$

$$A_1 := \{ \alpha \in A : ran\alpha \text{ is a fence} \}$$

$$A_2 := \{ \alpha \in A : ran\alpha \text{ is not a fence} \}$$

$$A := \{ \alpha \in Reg(FP(\mathbb{N})) : | ran\alpha | \leq 2 \}$$

$$A_1 := \{ \alpha \in A : ran\alpha \text{ is a fence} \}$$

$$A_2 := \{ \alpha \in A : ran\alpha \text{ is not a fence} \}$$

 $B:=\{\alpha\in Reg(FP(\mathbb{N})): (a,b\in ran\alpha\ \&\ a\nparallel b)\Rightarrow a\alpha^{-1}\nparallel b\alpha^{-1}\}$

$$B:=\{\alpha\in \operatorname{Reg}(\operatorname{FP}(\mathbb{N})): (a,b\in\operatorname{ran}\alpha\ \&\ a\nparallel b)\Rightarrow a\alpha^{-1}\nparallel b\alpha^{-1}\}$$

$$\bullet \ A_1 \subseteq A_1 \cup \{id_{\mathbb{N}}\}$$

$$B := \{ \alpha \in Reg(FP(\mathbb{N})) : (a, b \in ran\alpha \& a \nmid b) \Rightarrow a\alpha^{-1} \nmid b\alpha^{-1} \}$$

- $A_1 \subseteq A_1 \cup \{id_{\mathbb{N}}\}$
- $A_2 \subseteq B$

Theorem

 $A_1 \cup \{id_{\mathbb{N}}\} = \{\alpha \in Reg(FP(\mathbb{N})) : ran\alpha \text{ is a fence and } | ran\alpha | \leq 2\}$ $\cup \{id_{\mathbb{N}}\}$ is a maximal regular subsemigroup of $FP(\mathbb{N})$.

Theorem

$$A_1 \cup \{id_{\mathbb{N}}\} = \{\alpha \in Reg(FP(\mathbb{N})) : ran\alpha \text{ is a fence and } | ran\alpha | \leq 2\}$$

 $\cup \{id_{\mathbb{N}}\}$ is a maximal regular subsemigroup of $FP(\mathbb{N})$.

Theorem

 $B = \{ \alpha \in Reg(FP(\mathbb{N})) : (a, b \in ran\alpha \& a \not\mid b) \Rightarrow a\alpha^{-1} \not\mid b\alpha^{-1} \} \text{ is a } maximal regular subsemigroup of } FP(\mathbb{N}).$

Let $a \in \mathbb{N} \setminus \{1, 2, 3\}$ and let C_a be the set of all $\alpha \in Reg(FP(\mathbb{N}))$ with

- (i) $a \notin ran\alpha$ or $ran\alpha \subseteq \{a-1, a, a+1\}$
- (ii) $a \notin dom\alpha \text{ or } | a\alpha\alpha^{-1} | \ge 2 \text{ or } ran\alpha = ran(\alpha|_{\{a-1,a,a+1\}})$
- (iii) $\alpha|_{dom\alpha\setminus\{a\}} \in B$.

Let $a \in \mathbb{N} \setminus \{1, 2, 3\}$ and let C_a be the set of all $\alpha \in Reg(FP(\mathbb{N}))$ with

- (i) $a \notin ran\alpha$ or $ran\alpha \subseteq \{a-1, a, a+1\}$
- (ii) $a \notin dom\alpha$ or $|a\alpha\alpha^{-1}| \ge 2$ or $ran\alpha = ran(\alpha|_{\{a-1,a,a+1\}})$
- (iii) $\alpha|_{dom\alpha\setminus\{a\}} \in B$.

Theorem

 $C_a^* := C_a \cup \{id_{\mathbb{N}}\}$ is a maximal regular subsemigroup of $FP(\mathbb{N})$.

Let $a \in \mathbb{N} \setminus \{1, 2, 3\}$ and let C_a be the set of all $\alpha \in Reg(FP(\mathbb{N}))$ with

- (i) $a \notin ran\alpha$ or $ran\alpha \subseteq \{a-1, a, a+1\}$
- (ii) $a \notin dom\alpha$ or $|a\alpha\alpha^{-1}| \ge 2$ or $ran\alpha = ran(\alpha|_{\{a-1,a,a+1\}})$
- (iii) $\alpha|_{dom\alpha\setminus\{a\}} \in B$.

Theorem

 $C_a^* := C_a \cup \{id_{\mathbb{N}}\}$ is a maximal regular subsemigroup of $FP(\mathbb{N})$.

Corollary

Let $a, b \in \mathbb{N} \setminus \{1, 2, 3\}$ with $a \neq b$. Then $C_a^* \neq C_b^*$

References

- [1] I. Dimitrova and J. Koppitz, **On the maximal regular** subsemigroups of ideals of order-preserving or order-reversing transformations, Semigroup Forum **82**(1) (2011)
- [2] J.M. Howie, **Fundamentals of Semigroup Theory**, Oxford Science Publications, Clarendon Press, Oxford (1995)
- [3] H. Hu, T. You P. Zhao, Maximal regular subsemibands of the finite order-preserving partial transformation semigroups PO(n,r), Bulletin of the Malaysian Mathematical Sciences Society 1-12 (2015)

References

- [4] Y. Kemprasiit and W. Mora, **Regular elements of some** order-preserving transformation semigroups, Int. J. Algebra 4.13-16 (2010)
- [5] A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278.1 (2004)
 - [6] R. Tanyawong, R. Srithus & R. Chinram Regular subsemigroups of the semigroups of transformations preserving a fence, Asian-European Journal of Mathematics, Vol. 9 No. 1 (2016)

Thank you for your attention

