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In this presentation, I introduce the notion of the meet set based
on two subsets of a lower BCK-semilattice X and I discuss
conditions for the meet set to be a (positive implicative,
commutative, implicative) ideal. Also introduced the meet
ideal based on subsets, and the plus ideal of two subsets in a
lower BCK-semilattice X. I induce the semiring structure by
using meet operation and addition.
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BCI-ALGEBRA

Definition
An algebra (X; ∗, 0) of type (2,0) is called a BCI-algebra if it
satisfies the following conditions: for any x, y, z ∈ X,
BCI-1: ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0
BCI-2: x ∗ 0 = x
BCI-3: x ∗ y = 0 and y ∗ x = 0 imply x = y

Proposition
Suppose that X is a BCI-algebra. Define a binary relation ≤ on X by
which x ≤ y if and only if x ∗ y = 0 for any x, y ∈ X. Then (X;≤) is
a partially ordered set with 0 as a minimal element.
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BCK-ALGEBRA

Definition
Given a BCI-algebra X, if it satisfies the condition
BCK-1: 0 ∗ x = 0 for all x ∈ X, which means that 0 ≤ x. for each
x ∈ X.
We call this algebra a BCK-algebra.

Definition
A partially ordered set (X;≤) is called a lower semilattice if any
two elements of X have the greatest lower bound. It is called an
upper semilattice if each pair of elements in X has its least
upper bound.
Given a BCK-algebra X, if it with respect to its BCI-ordering ≤
forms a lower semilattice, then the algebra X is called a lower
BCK-semilattice. Similarly we can define an upper
BCK-semilattice.
In a lower BCK-semilattice we denote x ∧ y = glb{x, y}.
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IDEAL

Definition
A subset A of a BCI-algebra X is called an ideal of X if
(i) 0 ∈ A.
(ii) x ∈ A and y ∗ x ∈ A imply y ∈ A for any x, y ∈ X.
Note that X and {0} are ideals of X, and they are called the
trivial ideals of X.

Definition
Let S be a subset of a BCI-algebra X. We call the least ideal of X,
containing S, the generated ideal of X by S, denoted by < S >
or (S].
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MEET IDEAL

In what follows, let X be a lower BCK-semilattice unless
otherwise specified.
For any nonempty subsets A and B of X, we consider the set

K := {a ∧ b | a ∈ A, b ∈ B}

where a ∧ b is the greatest lower bound of a and b. We say that
K is the meet set based on A and B.
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Note that A ∩ B ⊆ K, but the reverse inclusion is not true as
seen in the following example.

Example
Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4}with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0

For A = {2, 3} and B = {1, 4}, we have

K := {a ∧ b | a ∈ A, b ∈ B} = {0, 1, 2} * A ∩ B.
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The following example shows that the set
K := {a ∧ b | a ∈ A, b ∈ B}may not be an ideal of X for some
subsets A and B of X.

Example
Let X = {0, 1, 2, 3, 4} be a lower BCK-semilattice with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 1 3 0 3
4 4 4 4 4 0
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Then X has four ideals A0 = {0}, A1 = {0, 1, 3}, A2 = {0, 2, 4}
and A4 = X. For subsets A = {2, 3} and B = {1, 4} of X, we
have 2 ∧ 1 = 0, 2 ∧ 4 = 2, 3 ∧ 1 = 1 and 3 ∧ 4 = 0. Thus

{a ∧ b | a ∈ A, b ∈ B} = {0, 1, 2},

which is not an ideal of X.
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Definition
For any nonempty subsets A and B of X, we denote

A ∧ B := 〈{a ∧ b | a ∈ A, b ∈ B}〉

which is called the meet ideal of X generated by A and B. In this
case, we say that the operation “∧” is a meet operation.
If A = {a}, then {a} ∧ B is denoted by a ∧ B. Also, if B = {b},
then A ∧ {b} is denoted by A ∧ b.
Obviously, A ∧ B = B ∧ A for any nonempty subsets A and B of
X.
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Theorem
For any nonempty subsets A,B and C of X, we have

A ⊆ B, A ⊆ C ⇒ A ⊆ B ∧ C.

The following example shows that there are subsets A, B and C
of X such that A ⊆ B and A ⊆ C, but B ∧ C * A.
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Example
Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4}with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 3 3 0 3
4 4 4 4 4 0

For subsets A = {0, 1}, B = {0, 1, 2, 3} and C = {0, 1, 2, 4} of X,
we have

B ∧ C = 〈{a ∧ b | a ∈ A, b ∈ B}〉 = {0, 1, 2} * {0, 1} = A.
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We provide conditions for the meet set
K := {a ∧ b | a ∈ A, b ∈ B} based on A and B to be an ideal.

Theorem
If A and B are ideals of X, then so is the meet set

A ∧ B := {a ∧ b | a ∈ A, b ∈ B}

based on A and B.
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Definition
An ideal A of a BCK-algebra X is called commutative if
(x ∗ y) ∗ z ∈ A and z ∈ A implies x ∗ (y ∗ (y ∗ x)) ∈ A for any
x, y ∈ X.

Definition
An ideal A of a BCK-algebra X is called implicative if
(x ∗ (y ∗ x)) ∗ z ∈ A and z ∈ A implies x ∈ A , for any x, y, z ∈ X.

Definition
An ideal A of a BCK-algebra X is called positive implicative if
(x ∗ y) ∗ z ∈ A and y ∗ z ∈ A implies x ∗ z ∈ A , for any x, y, z ∈ X.
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Lemma
For an ideal A of a BCK-algebra X, the following are equivalent.

(i) A is positive implicative.
(ii) (∀x, y ∈ X) ((x ∗ y) ∗ y ∈ A ⇒ x ∗ y ∈ A).

Lemma
For an ideal A of a BCK-algebra X, the following are equivalent.

(i) A is commutative.
(ii) (∀x, y ∈ X) (x ∗ y ∈ A ⇒ x ∗ (y ∗ (y ∗ x)) ∈ A).

Lemma
Let A be an ideal of a BCK-algebra X. Then A is implicative if and
only if A is both positive implicative and commutative.
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Theorem
If A and B are positive implicative (resp., commutative, implicative)
ideals of X, then so is the meet set

K := {a ∧ b | a ∈ A, b ∈ B}

based on A and B.
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Proposition
If A, B and C are ideals of X, then

A ∧ {0} = {0}. (1)
A ∧ B = A ∩ B. (2)
(A ∧ B) ∧ C = A ∧ (B ∧ C) = {a ∧ b ∧ c | a ∈ A, b ∈ B, c ∈ C}.(3)



INTRODUCTION BACKGROUND MEET IDEAL RELATIVE ANNIHILATORS MEET WEAK CLOSURE OPERATION PLUS IDEAL SEMIRING

Corollary
For ideals A1, A2, · · · , An of X

n∧
i=1

Ai := A1 ∧ A2 ∧ · · · ∧ An

= {a1 ∧ a2 ∧ · · · ∧ an | a1 ∈ A1, a2 ∈ A2, · · · , an ∈ An}

=

n⋂
i=1

Ai.

(4)
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Theorem
For any element a of X, we have

〈a〉 = a ∧ X. (5)
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RELATIVE ANNIHILATORS

Definition
For any nonempty subsets A and B of X, we define a set

(A :∧ B) := {x ∈ X | x ∧ B ⊆ A} (6)

whenever x ∧ B exists for all x ∈ X, and it is called the relative
annihilator of B with respect to A.
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For a nonempty subset B of a lower BCK-semilattice X,
consider the following condition:

(∀x, y ∈ X)(∀b ∈ B) ((x ∧ b) ∗ (y ∧ b) ≤ (x ∗ y) ∧ b) . (7)

We provide conditions for the relative annihilator of a set with
respect to a set to be an ideal.

Theorem
Let B be a nonempty subset of a lower BCK-semilattice X in which the
condition (7) is valid. If A is an ideal of X, then the relative
annihilator (A :∧ B) of B with respect to A is an ideal of X.
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Theorem
If A and B are ideals of a lower BCK-semilattice X, then the relative
annihilator (A :∧ B) of B with respect to A is an ideal of X.
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Theorem
For ideals A and B of a lower BCK-semilattice X, if A is positive
implicative (resp., commutative and implicative), then the relative
annihilator (A :∧ B) of B with respect to A is a positive implicative
(resp., commutative and implicative) ideal of X.
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Definition
A mapping c : I(X)→ I(X) is called a weak closure operation on
I(X) if the following conditions are valid.

(∀A ∈ I(X)) (A ⊆ c(A)) , (8)
(∀A,B ∈ I(X)) (A ⊆ B ⇒ c(A) ⊆ c(B)) . (9)
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If a weak closure operation c : I(X)→ I(X) satisfies the
condition

(∀A ∈ I(X)) (c(c(A)) = c(A)) , (10)

then we say that c is a closure operation on I(X). In what
follows, we use Acl instead of c(A).
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Definition
An element x of X is called a zeromeet element of X if the
condition

(∃ y ∈ X \ {0}) (x ∧ y = 0)

is valid. Otherwise, x is called a non-zeromeet element of X.
Denote by Z(X) the set of all zeromeet elements of X, that is,

Z(X) = {x ∈ X | x ∧ y = 0 for some nonzero element y ∈ X}.
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Definition
A weak closure operation “cl” on I(X) is said to be meet if it
satisfies:

(∀A ∈ I(X)) (∀a ∈ X \ Z(X))
(
(a ∧ A)cl = a ∧ Acl

)
. (11)
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We consider relations between (z ∧ A :∧ z) and A for any ideal
A and z ∈ X \ Z(X). We can easily prove that A ⊆ (z ∧ A :∧ z).
But the reverse inclusion is not true in general as seen in the
following example.

Example
Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4}with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

For a non-zeromeet element 2 and an ideal A = {0, 1, 2} of X,
we have

(2 ∧ {0, 1, 2} :∧ 2) = X * A.
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In the following proposition, we discuss conditions for the
inclusion (z ∧ A :∧ z) ⊆ A to be true. We first consider the
following condition:

(∀a, b ∈ X)(∀z ∈ X \ Z(X))((a ∗ b) ∧ z ≤ (a ∧ z) ∗ (b ∧ z)), (12)

Theorem
If X satisfies the condition (12), then (z ∧ A :∧ z) ⊆ A and hence
(z ∧ A :∧ z) = A for every A ∈ I(X) and z ∈ X \ Z(X).
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Theorem
Let X satisfy the condition (12) and let “cl” be a weak closure
operation on I(X). Then “cl” is meet if and only if it satisfies the
following properties:

〈a〉cl = 〈a〉 and Acl = ((a ∧ A)cl :∧ a) (13)

for any a ∈ X \ Z(X) and any ideal A of X.
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PLUS IDEAL

Definition
For any nonempty subsets A and B of X, denote by A + B the
ideal generated by A ∪ B, and is called the plus ideal of A and B.
Thus

A + B = 〈A ∪ B〉.

The operation “+” is called the addition. Obviously,
1. A,B ⊆ A + B,
2. A + {0} = A
3. A + B = B + A.



INTRODUCTION BACKGROUND MEET IDEAL RELATIVE ANNIHILATORS MEET WEAK CLOSURE OPERATION PLUS IDEAL SEMIRING

Example
Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4}with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

Them X has ten ideals A0 = {0}, A1 = {0, 1}, A2 = {0, 3},
A3 = {0, 1, 3}, A4 = {0, 1, 2}, A5 = {0, 1, 4}, A6 = {0, 1, 2, 3},
A7 = {0, 1, 3, 4}, A8 = {0, 1, 2, 4} and A9 = X. For subsets
A = {1, 3} and B = {2} of X, we have

A + B = 〈A ∪ B〉 = {0, 1, 2, 3} = A6.
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Given two nonempty subsets A and B of X, we note that every
ideal I of X is represented by the meet ideal based on some A
and B, and every ideal J of X is represented by the plus ideal of
A and B. But we know that they are different, that is, I 6= J in
general as seen in the following example.
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Example
Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4}with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

For two subsets A = {1} and B = {2, 3} of X, the ideal I = {0, 1}
is represented by the meet ideal based on A and B as follows

I = 〈A ∧ B〉 = 〈{0, 1}〉 = {0, 1}.



INTRODUCTION BACKGROUND MEET IDEAL RELATIVE ANNIHILATORS MEET WEAK CLOSURE OPERATION PLUS IDEAL SEMIRING

Also the ideal J = {0, 1, 2, 3} is represented by the plus ideal of
A and B as follows:

J = A + B = 〈A ∪ B〉 = 〈{1, 2, 3}〉 = {0, 1, 2, 3}.

We know that I 6= J.
But we have the following Theorem;

Theorem
For any nonempty subsets A and B of X, we have A ∧ B ⊆ A + B.
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For any nonempty subsets A, B and C of X, consider the
following condition.

A ⊆ C, B ⊆ C ⇒ A + B ⊆ C. (14)

The condition (14) is not valid in general as we can see in the
following example.
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Example
Consider a lower BCK-semilattice X = {0, 1, 2, 3, 4}with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

For subsets A = {1, 3}, B = {2, 3} and C = {1, 2, 3} of X, we
have

A + B = 〈A ∪ B〉 = {0, 1, 2, 3} * C.
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We provide conditions for the implication (14) to be hold.

Theorem
If A and B are nonempty subsets of X and C is an ideal of X, then the
implication

A ⊆ C, B ⊆ C ⇒ A + B ⊆ C

is valid.
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Theorem
For any ideals A, B and C of a commutative BCK-algebra X, we have

A ∧ (B + C) = (A ∧ B) + (A ∧ C)
and

(B + C) ∧ A = (B ∧ A) + (C ∧ A).
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SEMIRING

Theorem
Let I(X) be the set of all ideals of a commutative BCK-algebra X.
Then (I(X),+,∧) is a semiring, that is, two operations + and ∧ are
associative on I(X) such that

(i) addition + is a commutative operation,
(ii) there exist {0} ∈ I(X) such that A + {0} = A and

A ∧ {0} = {0} ∧ A = {0} for each A ∈ I(X), and
(iii) the meet operation ∧ distributes over addition (+) both from the

left and from the right.
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