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@ What is CSP?

© Transitive Closure

@ 1-Consistency

@ Absorbtion

@ Rosenberg Completeness Theorem
@ Central Relations

@ Partial Order Relations

@ All Functions

@ Linear Case

@ Algorithm
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Relations or Predicates.

Let A be a finite set.
A mapping A" — {0, 1} is called an n-ary predicate.
A subset p C A" is called an n-ary relation.

e We do not distinguish between predicates and relations.
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Constraint Satisfaction Problem

Let G be a finite set of predicates.
CSP(G)

Given: a conjunction of predicates, i.e. a formula

1 (Xi1,1 yeen 7Xi1,n1 ) JANIEIVAN ps(X,'&1 e 7Xis,ns)’

where p1,...,ps € G.
Decide: whether the formula is satisfiable.
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Constraint Satisfaction Problem

Let G be a finite set of predicates.
CSP(G)

Given: a conjunction of predicates, i.e. a formula

p1(X,'1,1,...,X,'1’n1)/\ sos /\ps(X,'SJ,...,X,'s‘nS),

where p1,...,ps € G.
Decide: whether the formula is satisfiable.

| A\

Example
A:{07172}aG:{X<an§y}'
CSP instances:

X1 < Xo A\ Xo < X3 N\ X3 < Xq,

A,
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p1(X,'1,1,...,X,'1’n1)/\ sos /\ps(X,'SJ,...,X,'s‘nS),

where p1,...,ps € G.
Decide: whether the formula is satisfiable.

| A\

Example
A={0,1,2},G={x<y,x <y}

CSP instances:

Xy < Xo A Xo < X3 A X3 < X4, No solutions
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Constraint Satisfaction Problem

Let G be a finite set of predicates.
CSP(G)

Given: a conjunction of predicates, i.e. a formula

p1(X,'1,1,...,X,'1’n1)/\ sos /\ps(X,'SJ,...,X,'s‘nS),

where p1,...,ps € G.
Decide: whether the formula is satisfiable.

| A\

Example

A={0,1,2},G={x<y,x <y}

CSP instances:

Xy < Xo A Xo < X3 A X3 < X4, No solutions

Xt <X AXo < X3 A X3 < X1, X1 = Xo = X3 =0.

A,
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CSP Dichotomy Conjecture

A weak near unanimity operation (WNU) is an operation f satisfying

f(x,x,...,x) = x and

f(x,....x,y)=f(x,....x, ¥, x)=--- = f(y,x, ..

. X).
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CSP Dichotomy Conjecture

A weak near unanimity operation (WNU) is an operation f satisfying
f(x,x,...,x) = x and

f(x,....x,y)=f(x,....x, ¥, X) =~ =f(y,X,..., X).

Suppose (X = ¢) belongs to G for every ¢ € A.
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CSP Dichotomy Conjecture

A weak near unanimity operation (WNU) is an operation f satisfying
f(x,x,...,x) = x and

f(xX,....x,y)=1f(x,...,x,¥,x)=--- =f(y, x,...,X).

Suppose (X = ¢) belongs to G for every ¢ € A.

CSP(G) is solvable in polynomial time if there exists a WNU preserving
G, CSP(G) is NP-complete otherwise.
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CSP Dichotomy Conjecture

A weak near unanimity operation (WNU) is an operation f satisfying
f(x,x,...,x) = x and

f(xX,....x,y)=1f(x,...,x,¥,x)=--- =f(y, x,...,X).

Suppose (X = ¢) belongs to G for every ¢ € A. J

CSP(G) is solvable in polynomial time if there exists a WNU preserving
G, CSP(G) is NP-complete otherwise.

Theorem|Ralph McKenzie and Miklés Maréti|

CSP(G) is NP-complete if no WNU preserving G.
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CSP Dichotomy Conjecture

A weak near unanimity operation (WNU) is an operation f satisfying
f(x,X,...,x) = x and
f(xX,....x,y)=1f(x,...,x,¥,x)=--- =f(y, x,...,X).

Suppose (X = ¢) belongs to G for every ¢ € A. J

CSP(G) is solvable in polynomial time if there exists a WNU preserving
G, CSP(G) is NP-complete otherwise.

Theorem|Ralph McKenzie and Miklés Maréti|
CSP(G) is NP-complete if no WNU preserving G.

Challenge

Given a finite set of predicates G and a WNU w that preserves G. Find
an algorithm that solves CSP(G) in polynomial time.
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CSP Instance

Given a CSP instance
P1(Xig g5+ - s Xiy o YA A ps(Xig ys -5 Xig ng )

where pq,...,ps € G.
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CSP Instance

Given a CSP instance
P1(Xig g5+ - ,x,-1’n1) A N ps(Xigys s Xig ng)»

where pq,...,ps € G.

Step 1: Generate all binary constraints

For every constraint p(Xy,...,Xp) and i,j € {1,2,...,n} we add a
binary constraint o;;(X;, X;), where

O'i’j(yia y,) = 3}/1 5oa Hy,-_13y,-+1 e 3}//'_13}/”_1 R E|yn p(y1, e ,y,-,).
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Transitive Closure

Step 2: Transitive closure.
For every 2 binary constraints pq(X;, X;) and pa(X;, Xk) we add the
constraint p3(X;, Xk), where p3(y1,¥2) = 32p1(y1, 2) A p2(Z, y2).
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Transitive Closure

Step 2: Transitive closure.

For every 2 binary constraints pq(X;, X;) and pa(X;, Xk) we add the
constraint p3(X;, Xk), where p3(y1,¥2) = 32p1(y1, 2) A p2(Z, y2).

| A\

Example
We have constraints (X1 < Xz) and (X2 < X3).
We add (X1 < X3).
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1-Consistenc;

Let D; be the domain of x;. A CSP instance is called 1-consistent if x;
in any constraint takes all values from D;.
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1-Consistenc;

Let D; be the domain of x;. A CSP instance is called 1-consistent if x;
in any constraint takes all values from D;.

Step 3: Constraint propagation.

We can provide 1-consistency:
if a variable X; takes only values from D; C D; in a constraint then we
reduce the domain of X; to D} and restrict all other constraints.
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1-Consistency

Let D; be the domain of x;. A CSP instance is called 1-consistent if x;
in any constraint takes all values from D;.

Step 3: Constraint propagation.

We can provide 1-consistency:
if a variable X; takes only values from D; C D; in a constraint then we
reduce the domain of X; to D} and restrict all other constraints.

Example

CSP instance on A= {0,1,2}, x; < X2 A Xo < X3 A X3 < X4.
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1-Consistency

Let D; be the domain of x;. A CSP instance is called 1-consistent if x;
in any constraint takes all values from D;.

Step 3: Constraint propagation.

We can provide 1-consistency:
if a variable X; takes only values from D; C D; in a constraint then we
reduce the domain of X; to D} and restrict all other constraints.

Example

CSP instance on A= {0,1,2}, x; < X2 A Xo < X3 A X3 < X4.
Xi < Xp = the domain of Xo can be reduced to {1,2},
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1-Consistency

Let D; be the domain of x;. A CSP instance is called 1-consistent if x;
in any constraint takes all values from D;.

Step 3: Constraint propagation.

We can provide 1-consistency:
if a variable X; takes only values from D; C D; in a constraint then we
reduce the domain of X; to D} and restrict all other constraints.

Example

CSP instance on A= {0,1,2}, x; < X2 A Xo < X3 A X3 < X4.
Xi < Xp = the domain of Xo can be reduced to {1,2},
Xo < X3 = the domain of X3 can be reduced to {2},
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1-Consistency

Let D; be the domain of x;. A CSP instance is called 1-consistent if x;
in any constraint takes all values from D;.

Step 3: Constraint propagation.

We can provide 1-consistency:
if a variable X; takes only values from D; C D; in a constraint then we
reduce the domain of X; to D} and restrict all other constraints.

Example

CSP instance on A= {0,1,2}, x; < X2 A Xo < X3 A X3 < X4.
Xi < Xp = the domain of Xo can be reduced to {1,2},

Xo < X3 = the domain of X3 can be reduced to {2},

X3 < X4 = no solution for x4. We get a contradiction.

o We cannot reduce forever, hence either we get 1-consistency, or we
get a contradiction.
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Absorbtion

Libor Barto said something about absorbtion...said it is very
important...
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Libor Barto said something about absorbtion...said it is very
important... But it was complicated... I consider only binary absorbtion!
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Absorbtion

Libor Barto said something about absorbtion...said it is very
important... But it was complicated... I consider only binary absorbtion!

A subuniverse B absorbs A if there exists a binary operation f € Clo(w)
such that f(B,A) C B and f(A,B) C B.

e Clo(w) is the clone generated by a WNU w.
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Absorbtion

Libor Barto said something about absorbtion...said it is very
important... But it was complicated... I consider only binary absorbtion!

A subuniverse B absorbs A if there exists a binary operation f € Clo(w)
such that f(B,A) C B and f(A,B) C B.

e Clo(w) is the clone generated by a WNU w.

Step 4: Absorbing restriction.

If B; absorbs D;, we reduce the domain D; to B;.
Then we go to Step 3 and provide 1-consistency!

e Constraint propagation cannot give a contradiction in this case!

Dmitriy Zhuk zhuk.dmitriy@gmail.co CSP for small domain AAA91 9 /19



That was all [ knew about CSP...
But I know a bit about Clone Theory...Let try to apply it!
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That was all [ knew about CSP...
But I know a bit about Clone Theory...Let try to apply it!

Main Results in Clone Theory

@ The description of all clones on 2 elements (Post’s Lattice).
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That was all [ knew about CSP...
But I know a bit about Clone Theory...Let try to apply it!

Main Results in Clone Theory

© The description of atl-el e (Post's Lattice).

@ Rosenberg’s description of all maximal clones on K elements

Rosenberg Completeness Theorem

There are only following maximal clones on K elements.

@ Maximal clone defined by a unary relation;
Maximal clone of monotone functions;

Maximal clone of autodual functions;

(2]
(8]
@ Maximal clone defined by an equivalence relation;
@ Maximal clone of quasi-linear functions;

(6]

Maximal clone defined by a central relation;

@ Maximal clone defined by an h-universal relation.
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Let C be the clone generated by the WNU w on D; and all constants
from D;.
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Let C be the clone generated by the WNU w on D; and all constants
from D;.
Apply Rosenberg theorem. Then

@ C is the clone of all functions on Dj,

or C belongs to one of the maximal clones.
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Let C be the clone generated by the WNU w on D; and all constants
from D;.
Apply Rosenberg theorem. Then

@ C is the clone of all functions on Dj,

or C belongs to one of the maximal clones.

@ Maximal clone defined by a unary relation;

Dmitriy Zhuk zhuk.dmitriy@gmail.co CSP for small domain AAA91 12 / 19



Let C be the clone generated by the WNU w on D; and all constants
from D;.
Apply Rosenberg theorem. Then

@ C is the clone of all functions on Dj,

or C belongs to one of the maximal clones.

O Maximal-clone-defined-bya—unaryrelation: cannot happen

because of constants
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Let C be the clone generated by the WNU w on D; and all constants
from D;.
Apply Rosenberg theorem. Then

@ C is the clone of all functions on Dj,

or C belongs to one of the maximal clones.

O Maximal-clone-defined-bya—unaryrelation: cannot happen

because of constants

@ Maximal clone defined by an A-universal relation;
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Let C be the clone generated by the WNU w on D; and all constants
from D;.

Apply Rosenberg theorem. Then
@ C is the clone of all functions on Dj,

or C belongs to one of the maximal clones.

O Maximal-clone-defined-bya—unaryrelation: cannot happen

because of constants

Q Maximal-clone-defined-byan-h-universalrelation: cannot happen
because of WNU
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Let C be the clone generated by the WNU w on D; and all constants
from D;.
Apply Rosenberg theorem. Then

@ C is the clone of all functions on Dj,

or C belongs to one of the maximal clones.

Q Maxdmal-elone-defined-bya—unaryrelation: cannot happen

because of constants
Q Maximal-clone-defined-by-an-h-universalrelation: cannot happen
because of WNU

Q Muaximal-cloneof-autodual-funetions: cannot happen because of
constants

@ Maximal clone defined by an equivalence relation;
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Let C be the clone generated by the WNU w on D; and all constants
from D;.

Apply Rosenberg theorem. Then
@ C is the clone of all functions on Dj,

or C belongs to one of the maximal clones.

O Maximal-clone-defined-bya—unaryrelation: cannot happen

because of constants

Q Maximal-clone-defined-byan-h-universalrelation: cannot happen
because of WNU

Q Muadmal-cloneofautodual-funetions: cannot happen because of

constants

Q Maximal-clone-defined-byanequivatencerelation; factorize WNU,

generate a new clone, apply Rosenberg Theorem again
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Let C be the clone generated by the WNU w on D; and all constants
from D;.

Apply Rosenberg theorem. Then
@ C is the clone of all functions on Dj,

or C belongs to one of the maximal clones.

O Maximal-clone-defined-bya—unaryrelation: cannot happen

because of constants

Q Maximal-clone-defined-byan-h-universalrelation: cannot happen
because of WNU

Q Muadmal-cloneofautodual-funetions: cannot happen because of
constants

Q Maximal-clone-defined-byanequivatencerelation; factorize WNU,

generate a new clone, apply Rosenberg Theorem again
@ Maximal clone defined by a central relation;
@ Maximal clone of monotone functions;

@ Maximal clone of quasi-linear functions;
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Central Relations

To simplify we consider only binary central relations.

A relation p C A x A is called central if it is reflexive, symmetric, and
there exists ¢ such that {c} x A C p. J

e the set of all elements ¢ such that {¢} x A C p is called center.

Center
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Central Relations

To simplify we consider only binary central relations.

A relation p C A x A is called central if it is reflexive, symmetric, and
there exists ¢ such that {c} x A C p. J

o the set of all elements ¢ such that {¢} x A C p is called center.

Step 5: Central restriction.

If C; is a center in D;, we reduce D; to C;.
Then we go to Step 3 and provide 1-consistency!
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Central Relations

To simplify we consider only binary central relations.

A relation p C A x A is called central if it is reflexive, symmetric, and
there exists ¢ such that {c} x A C p. J

o the set of all elements ¢ such that {¢} x A C p is called center.

Step 5: Central restriction.

If C; is a center in D;, we reduce D; to C;.
Then we go to Step 3 and provide 1-consistency!

e if we don’t have binary absorbtion, then constraint propagation
cannot give a contradiction in this case!
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Clones of Monotone fun

Every maximal clone of monotone functions is defined by a partial
order relation with a greatest and a least element. J

o the least element can be viewed as a center.

Center
\ °
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Clones of Monotone fun

Every maximal clone of monotone functions is defined by a partial
order relation with a greatest and a least element. J

o the least element can be viewed as a center.

Step 5: Central restriction.

If we have a partial order on D;, we reduce D; to {g} where g is the
least element.
Then we go to Step 3 and provide 1-consistency!
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Clones of Monotone functions

Every maximal clone of monotone functions is defined by a partial
order relation with a greatest and a least element. J

o the least element can be viewed as a center.

Step 5: Central restriction.

If we have a partial order on D;, we reduce D; to {g} where g is the
least element.
Then we go to Step 3 and provide 1-consistency!

e if we don’t have binary absorbtion, then constraint propagation
cannot give a contradiction in this case!
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All Functions

For a congruence o the clone generated by w/o and constants is the
clone of all functions.

Dmitriy Zhuk zhuk.dmi @ P for small domain



All Functions

For a congruence o the clone generated by w/o and constants is the
clone of all functions.

Step 6: “All Functions” restriction.

Choose any equivalence class E in o and reduce the domain D; to E.
Then we go to Step 3 and provide 1-consistency!
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All Functions

For a congruence o the clone generated by w/o and constants is the
clone of all functions.

Step 6: “All Functions” restriction.

Choose any equivalence class E in o and reduce the domain D; to E.
Then we go to Step 3 and provide 1-consistency!

e if we don’t have a binary absorbtion and a center, then constraint
propagation cannot give a contradiction in this case!
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mal clone of quasi-linear functions

o If a WNU is a quasi-linear function then it can be represented as
t- (X1 + X2+ ...+ Xp) for an integer t and an operation + from an
abelian group.

Dmitriy Zhuk zhuk.dmi @ P for small domain



Maximal clone of quasi-linear functions

o If a WNU is a quasi-linear function then it can be represented as
t- (X1 + X2+ ...+ Xp) for an integer t and an operation + from an
abelian group.

Step 7: Linear restriction

@ For every i choose the minimal congruence o; on D; such that the
WNU w/o; can be represented as - (X1 + X2 + ... + Xp).
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Maximal clone of quasi-linear functions

o If a WNU is a quasi-linear function then it can be represented as
t- (X1 + X2+ ...+ Xp) for an integer t and an operation + from an
abelian group.

Step 7: Linear restriction

@ For every i choose the minimal congruence o; on D; such that the
WNU w/o; can be represented as - (X1 + X2 + ... + Xp).

© Factorize all the constraints, i.e. replace every predicate p by
P (X1, Xn) = 3y1 ... 30 p(V1, - Yn)A(X1, 1) € iy A~ -A(Xn, Yn) € T,
The obtained CSP instance we denote by ©
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Maximal clone of quasi-linear functions

o If a WNU is a quasi-linear function then it can be represented as
t- (X1 + X2+ ...+ Xp) for an integer t and an operation + from an
abelian group.

Step 7: Linear restriction

@ For every i choose the minimal congruence o; on D; such that the
WNU w/o;j can be represented as t- (X1 + X2 + ... + Xn).

© Factorize all the constraints, i.e. replace every predicate p by
(X5 X0) = 31 I P, s Y)A(KE, 1) € 03 A=A (X, i) € 3,
The obtained CSP instance we denote by ©

@ Solve © using any algorithm for Mal’tsev case.
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Maximal clone of quasi-linear functions

o If a WNU is a quasi-linear function then it can be represented as
t- (X1 + X2+ ...+ Xp) for an integer t and an operation + from an
abelian group.

Step 7: Linear restriction

@ For every i choose the minimal congruence o; on D; such that the
WNU w/o;j can be represented as t- (X1 + X2 + ... + Xn).

© Factorize all the constraints, i.e. replace every predicate p by
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@ Solve © using any algorithm for Mal’tsev case.

@ If © has a solution, we reduce every domain D; to the equivalence
class from the solution. This restriction is 1-consistent!!!
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Maximal clone of quasi-linear functions

o If a WNU is a quasi-linear function then it can be represented as
t- (X1 + X2+ ...+ Xp) for an integer t and an operation + from an
abelian group.

Step 7: Linear restriction

@ For every i choose the minimal congruence o; on D; such that the
WNU w/o;j can be represented as t- (X1 + X2 + ... + Xn).

© Factorize all the constraints, i.e. replace every predicate p by

(Xt X0) =313 pWts - V)X, 1) € i A=A (s ) € 0,
The obtained CSP instance we denote by ©
@ Solve © using any algorithm for Mal’tsev case.

@ If © has a solution, we reduce every domain D; to the equivalence
class from the solution. This restriction is 1-consistent!!!

@ If © doesn’t have a solution then we find a subset A} of the original
domain A; such that no solutions with x; € A} \ A;.
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Algorithm

© Generate all binary constraints.

@ Transitive Closure.

@ Provide 1-consistency. If necessary go to Step 1.
()

If there exists a binary absorbtion
Apply Absorbing Restriction and go to Step 3.

If there exists a center
Apply Central Restriction and go to Step 3.

©
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© Generate all binary constraints.

@ Transitive Closure.
@ Provide 1-consistency. If necessary go to Step 1.
()

If there exists a binary absorbtion
Apply Absorbing Restriction and go to Step 3.

If there exists a center
Apply Central Restriction and go to Step 3.

©

O If we get all functions after factorization
Apply “All Functions” restriction and go to Step 3.
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© Generate all binary constraints.

@ Transitive Closure.
@ Provide 1-consistency. If necessary go to Step 1.
()

If there exists a binary absorbtion
Apply Absorbing Restriction and go to Step 3.

If there exists a center
Apply Central Restriction and go to Step 3.

©

©

If we get all functions after factorization
Apply “All Functions” restriction and go to Step 3.
@ If the WNU w is quasi-linear after factorization

o Solve the Maltsev CSP.
o If there is a solution, apply Linear Restriction and go to Step 4.
o otherwise, reduce the original domain A; to Al
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Algorithm

© Generate all binary constraints.

@ Transitive Closure.
@ Provide 1-consistency. If necessary go to Step 1.
()

If there exists a binary absorbtion
Apply Absorbing Restriction and go to Step 3.

If there exists a center
Apply Central Restriction and go to Step 3.

©

©

If we get all functions after factorization
Apply “All Functions” restriction and go to Step 3.
@ If the WNU w is quasi-linear after factorization

o Solve the Maltsev CSP.
o If there is a solution, apply Linear Restriction and go to Step 4.
o otherwise, reduce the original domain A; to Al

e Kither it gives a solution,
e or it reduces the original domain A; to A,
e or it proves that no general solutions.

)
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we can apply a linear restriction twice.
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I can prove that it works if we don’t apply linear restrictions twice.

Why does it work for 5-element domain?
It probably doesn’t... But

@ Since 2+2+2>5, there are only few possibilities for the case when
we can apply a linear restriction twice.

o [ updated my algorithm a bit for these cases.
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Does the algorithm work?

I can prove that it works if we don’t apply linear restrictions twice.

Why does it work for 5-element domain?
It probably doesn’t... But

@ Since 2+2+2>5, there are only few possibilities for the case when
we can apply a linear restriction twice.

o [ updated my algorithm a bit for these cases.

| A\

Theorem

CSP Dichotomy conjecture holds for domain 5: CSP(G) is tractable if
there exists a WNU preserving G, and NP-complete otherwise.
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Does the algorithm work?

I can prove that it works if we don’t apply linear restrictions twice.

Why does it work for 5-element domain?
It probably doesn’t... But

@ Since 2+2+2>5, there are only few possibilities for the case when
we can apply a linear restriction twice.

o [ updated my algorithm a bit for these cases.

v

CSP Dichotomy conjecture holds for domain 5: CSP(G) is tractable if
there exists a WNU preserving G, and NP-complete otherwise.

If an algebra A omits unary type and affine type, then Steps 1-3 of the
algorithm solve CSP(A).
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Thank you for your attention

Dmitriy Zhuk zhuk.dmitriy@gmail.co CSP for small domain AAA91 19 / 19



	What is CSP?
	Transitive Closure
	1-Consistency
	Absorbtion
	Rosenberg Completeness Theorem
	Central Relations
	Partial Order Relations
	All Functions
	Linear Case
	Algorithm

