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Relations or Predicates.

De�nitions

Let A be a �nite set.
A mapping An → {0,1} is called an n-ary predicate.
A subset ρ ⊆ An is called an n-ary relation.

We do not distinguish between predicates and relations.
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Constraint Satisfaction Problem

Let G be a �nite set of predicates.

CSP(G)

Given: a conjunction of predicates, i.e. a formula

ρ1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ ρs(xis,1 , . . . , xis,ns

),

where ρ1, . . . , ρs ∈ G.
Decide: whether the formula is satis�able.

Example

A = {0,1,2},G = {x < y , x ≤ y}.
CSP instances:
x1 < x2 ∧ x2 < x3 ∧ x3 < x4, No solutions
x1 ≤ x2 ∧ x2 ≤ x3 ∧ x3 ≤ x1, x1 = x2 = x3 = 0.
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CSP Dichotomy Conjecture

A weak near unanimity operation (WNU) is an operation f satisfying
f (x , x , . . . , x) = x and
f (x , . . . , x , y) = f (x , . . . , x , y , x) = · · · = f (y , x , . . . , x).

Suppose (x = c) belongs to G for every c ∈ A.

Conjecture

CSP(G) is solvable in polynomial time if there exists a WNU preserving
G, CSP(G) is NP-complete otherwise.

Theorem[Ralph McKenzie and Mikl�os Mar�oti]

CSP(G) is NP-complete if no WNU preserving G.

Challenge

Given a �nite set of predicates G and a WNU w that preserves G. Find
an algorithm that solves CSP(G) in polynomial time.
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CSP Instance

Given a CSP instance

ρ1(xi1,1 , . . . , xi1,n1
) ∧ · · · ∧ ρs(xis,1 , . . . , xis,ns

),

where ρ1, . . . , ρs ∈ G.

Step 1: Generate all binary constraints

For every constraint ρ(x1, . . . , xn) and i , j ∈ {1,2, . . . ,n} we add a
binary constraint σi,j(xi , xj), where

σi,j(yi , yj) = ∃y1 . . . ∃yi−1∃yi+1 . . . ∃yj−1∃yj+1 . . . ∃yn ρ(y1, . . . , yn).
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Transitive Closure

Step 2: Transitive closure.

For every 2 binary constraints ρ1(xi , xj) and ρ2(xj , xk ) we add the
constraint ρ3(xi , xk ), where ρ3(y1, y2) = ∃zρ1(y1, z) ∧ ρ2(z, y2).

Example

We have constraints (x1 ≤ x2) and (x2 ≤ x3).
We add (x1 ≤ x3).
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1-Consistency

Let Di be the domain of xi . A CSP instance is called 1-consistent if xi
in any constraint takes all values from Di .

Step 3: Constraint propagation.

We can provide 1-consistency:
if a variable xi takes only values from D′i ( Di in a constraint then we
reduce the domain of xi to D′i and restrict all other constraints.

Example

CSP instance on A = {0,1,2}, x1 < x2 ∧ x2 < x3 ∧ x3 < x4.
x1 < x2 ⇒ the domain of x2 can be reduced to {1,2},
x2 < x3 ⇒ the domain of x3 can be reduced to {2},
x3 < x4 ⇒ no solution for x4. We get a contradiction.

We cannot reduce forever, hence either we get 1-consistency, or we
get a contradiction.
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Absorbtion

Libor Barto said something about absorbtion...said it is very
important...

But it was complicated... I consider only binary absorbtion!

De�nition

A subuniverse B absorbs A if there exists a binary operation f ∈ Clo(w)
such that f (B,A) ⊆ B and f (A,B) ⊆ B.

Clo(w) is the clone generated by a WNU w .

Step 4: Absorbing restriction.

If Bi absorbs Di , we reduce the domain Di to Bi .
Then we go to Step 3 and provide 1-consistency!

Constraint propagation cannot give a contradiction in this case!
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That was all I knew about CSP...
But I know a bit about Clone Theory...Let try to apply it!

Main Results in Clone Theory

1 The description of all clones on 2 elements (Post's Lattice).

2 Rosenberg's description of all maximal clones on k elements

Rosenberg Completeness Theorem

There are only following maximal clones on k elements.

1 Maximal clone of monotone functions;

2 Maximal clone of autodual functions;

3 Maximal clone de�ned by an equivalence relation;

4 Maximal clone of quasi-linear functions;

5 Maximal clone de�ned by a unary relation;

6 Maximal clone de�ned by a central relation;

7 Maximal clone de�ned by an h-universal relation.
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Let C be the clone generated by the WNU w on Di and all constants
from Di .

Apply Rosenberg theorem. Then

1 C is the clone of all functions on Di ,

or C belongs to one of the maximal clones.

2 Maximal clone de�ned by a unary relation; cannot happen
because of constants

3 Maximal clone de�ned by an h-universal relation; cannot happen
because of WNU

4 Maximal clone of autodual functions; cannot happen because of
constants

5 Maximal clone de�ned by an equivalence relation; factorize WNU,
generate a new clone, apply Rosenberg Theorem again

6 Maximal clone de�ned by a central relation;

7 Maximal clone of monotone functions;

8 Maximal clone of quasi-linear functions;
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Central Relations

To simplify we consider only binary central relations.

A relation ρ ⊆ A× A is called central if it is re�exive, symmetric, and
there exists c such that {c} × A ⊆ ρ.

the set of all elements c such that {c} × A ⊆ ρ is called center.

Center
0 0

1 1

2 2

3 3

4 4

Step 5: Central restriction.

If Ci is a center in Di , we reduce Di to Ci .
Then we go to Step 3 and provide 1-consistency!

if we don't have binary absorbtion, then constraint propagation
cannot give a contradiction in this case!
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Clones of Monotone functions

Every maximal clone of monotone functions is de�ned by a partial
order relation with a greatest and a least element.

the least element can be viewed as a center.

Center
0 0

1 1

2 2

3 3

4 4

Step 5: Central restriction.

If we have a partial order on Di , we reduce Di to {g} where g is the
least element.
Then we go to Step 3 and provide 1-consistency!

if we don't have binary absorbtion, then constraint propagation
cannot give a contradiction in this case!
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All Functions

For a congruence σ the clone generated by w/σ and constants is the
clone of all functions.

Step 6: �All Functions� restriction.

Choose any equivalence class E in σ and reduce the domain Di to E .
Then we go to Step 3 and provide 1-consistency!

if we don't have a binary absorbtion and a center, then constraint
propagation cannot give a contradiction in this case!
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Maximal clone of quasi-linear functions

If a WNU is a quasi-linear function then it can be represented as
t · (x1 + x2 + . . .+ xn) for an integer t and an operation + from an
abelian group.

Step 7: Linear restriction

1 For every i choose the minimal congruence σi on Di such that the
WNU w/σi can be represented as t · (x1 + x2 + . . .+ xn).

2 Factorize all the constraints, i.e. replace every predicate ρ by

ρ′(x1, . . . , xn) = ∃y1 . . . ∃yn ρ(y1, . . . , yn)∧(x1, y1) ∈ σi1∧· · ·∧(xn, yn) ∈ σin

The obtained CSP instance we denote by Θ

3 Solve Θ using any algorithm for Mal'tsev case.

4 If Θ has a solution, we reduce every domain Di to the equivalence
class from the solution. This restriction is 1-consistent!!!

5 If Θ doesn't have a solution then we �nd a subset A′i of the original
domain Ai such that no solutions with xi ∈ A′i \ Ai .
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Algorithm

1 Generate all binary constraints.

2 Transitive Closure.

3 Provide 1-consistency. If necessary go to Step 1.

4 If there exists a binary absorbtion
Apply Absorbing Restriction and go to Step 3.

5 If there exists a center
Apply Central Restriction and go to Step 3.

6 If we get all functions after factorization
Apply �All Functions� restriction and go to Step 3.

7 If the WNU w is quasi-linear after factorization

Solve the Maltsev CSP.

If there is a solution, apply Linear Restriction and go to Step 4.

otherwise, reduce the original domain Ai to A′
i .

Either it gives a solution,
or it reduces the original domain Ai to A′i ,
or it proves that no general solutions.
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Does the algorithm work?

I can prove that it works if we don't apply linear restrictions twice.

Why does it work for 5-element domain?

It probably doesn't... But

Since 2+2+2>5, there are only few possibilities for the case when
we can apply a linear restriction twice.

I updated my algorithm a bit for these cases.

Theorem

CSP Dichotomy conjecture holds for domain 5: CSP(G) is tractable if
there exists a WNU preserving G, and NP-complete otherwise.

Theorem

If an algebra A omits unary type and a�ne type, then Steps 1-3 of the
algorithm solve CSP(A).
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CSP Dichotomy conjecture holds for domain 5: CSP(G) is tractable if
there exists a WNU preserving G, and NP-complete otherwise.

Theorem

If an algebra A omits unary type and a�ne type, then Steps 1-3 of the
algorithm solve CSP(A).
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Thank you for your attention
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